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It is shown that the electron-diffusion rate in a strong magnetic field H is determined by 
multiple returns to one and the same scattering center. The scattering-act correlations 
connected with the returns accelerate the transverse diffusion and slow down the longitudinal 
one. In scattering by charged centers, the effect turns out to be strong when the Larmor radius 
becomes smaller than the screening radius. The transverse-diffusion coefficient D ; is found in 
this case to be proportional to 1/H 4 /3 .  With increasing magnetic field, the cross section for 
Coulomb scattering becomes dependent on H. As a result, D decreases like 1/H I6l9. If 
negatively charged (repelling) centers are present, slow electrons become "trapped" between 
pairs of such centers. The coefficients of both transverse and longitudinal diffusion become 
proportional to 1/H. Electron diffusion is considered in a film placed in a perpendicular 
magnetic field. The size effect due to the scattering-act correlation is described. The effect 
consists of acceleration of the diffusion across H when the film thickness L is decreased, such 
that D = 1/~ ' " .  It comes into play in a strong magnetic field if the film thickness exceeds 
greatly the mean free path. In this case D is proportional to 1/H. The manner in which the 
correlations of the scattering acts are "destroyed" by motion of centers (e.g., ions in a gas 
plasma) is considered. 

1. This paper is devoted to a qualitative description of 
the kinetics of electrons scattered by randomly placed poten- 
tial centers. The medium is assumed to be macroscopically 
homogeneous. It is shown that the Boltzmann kinetic equa- 
tion cannot be used to describe such a system in a sufficiently 
strong magnetic field. We emphasize that we are dealing 
with fields that are only classically strong. The quantum 
properties of the electrons are immaterial. It is found none- 
theless that the electron motion cannot be regarded as a se- 
quence of independent scattering acts. The point is that a 
magnetic field makes the electron trajectory one-dimension- 
al, and in a sufficiently strong field to such an extent that 
multiple returns of the electron to one and the same center 
become significant. As a result, many scattering acts become 
correlated, whereas the usual theory presupposes the ab- 
sence of any correlation whatever. 

The change produced in the character of transverse dif- 
fusion by the fact that the electron leaves repeatedly identi- 
cal regions of a random electric field was considered earlier 
by Dreizin and D ~ k h n e . ' . ~  In Ref. 1 was investigated diffu- 
sion in a medium with macroscopic inhomogeneities (whose 
dimension is much larger than the mean free path I). Refer- 
ence 2 dealt with the kinetics of electrons in a hot excited 
plasma. The assumed excitation wavelength, while smaller 
than I, was larger than the screening radius. In the present 
paper principal attention is paid to the description of a ho- 
mogeneous equilibrium plasma. It is shown that effects simi- 
lar to those investigated by Dreizin and Dykhne occur also 
in the case. It is also shown that the correlations of the scat- 
tering acts can alter substantially the character of the longi- 
tudinal diffusion. 

The plan of the exposition is the following. In Sec. 2 the 

general laws are illustrated by considering a simple model. 
The correlations investigated throughout are for scattering 
by charged centers. The transverse component of the diffu- 
sion-coefficient tensor is calculated in Secs. 3-7, and the lon- 
gitudinal in Sec. 8. The influence of collisions with short- 
range centers is treated in Sec. 6. Motion of charged centers 
(e.g., ions in a gas plasma), is taken into account in Sec. 7. 
The size effect due to scattering-act correlations is consid- 
ered in Sec. 9. 

2. I t  is convenient to elucidate the gist of the topic by 
using the following model. Assume that the entire space oc- 
cupied by the medium can be subdivided into regions of two 
types, which we call reflecting and displacing. An electron 
incident on a region of the first type undergoes a reversal of 
the sign of its longitudinal velocity. This is the only function 
of a reflecting region. The deflecting region, on the contrary, 
does not influence the longitudinal motion. However, pas- 
sage through it is accompanied by a displacement of the Lar- 
mor-orbit center in a direction transverse to the magnetic 
field. We designate the typical dimensions of reflecting and 
displacing regions by 6, and Cd, respectively. The character- 
istic length of the transverse displacement during the free 
path time T will be designated R(T) .  (More accurately 
speaking, T is here the time between reflections.) Assume 
that the Larmor radius r, 5 R (7).  The mean free path I 
along the magnetic field will be assumed larger than either of 
the lengths g,, ld, R (T) .  Thus the distances between reflect- 
ing regions are much larger than the sizes of the regions. On 
the basis of the solution of Boltzmann kinetic equation, the 
expressions for the respective coefficients D, and D ,, of the 
transverse and longitudinal diffusion are given by 

Dl-R2(%)  /T, D,,-12/t. 
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These (Boltzmann) diffusion coefficients do not depend ex- 
plicitly on f, and f d .  In fact, however the true coefficients 
D and D differ considerably, depending on the relation 
between the lengths f, , l d ,  and R (7). Namely, D = D, 
only ifR (T)  s f ,  and D = D II only ifR (T)  )fr . Actually, at 
R (T)  5 gd it is highly probable that the electron will return 
upon reflection to the same displacing regions through 
which it passed prior to the reflection. In the case of the 
strong inequality R (T)  (fd the electron will return to them 
many times. If, however, the condition R (T)  sf, is not met, 
the successive reflections will not be independent. At 
R (T)  (f, the electron is "trapped" between a pair of reflect- 
ing regions. 

Let us estimate the diffusion coefficients for the case 
when the correlations are important. To this end we must 
know the time dependence of R ( t ) ,  the transverse displace- 
ment after a time t. We introduce also the symbol t (R) for 
the time of displacement by a distance R. 

A. f, )R ( t )  )fd . By virtue of the last inequality the 
transverse diffusion obeys Boltzmann's law (the correla- 
tions in the transverse displacements are small). The longi- 
tudinal diffusion is much slower than than according to 
Boltzmann. The value of D i; can be estimated to equal the 
ratio I 't (f, ) . Indeed, to traverse a length I along H the elec- 
tron must be displaced by a distance -6, in the transverse 
direction. If the electron is tracked from the instant t = 0, it 
is seen to be at t 5 T(f,) in a trapped state between two 
reflecting regions. Its transverse displacement in this case is 
R ( t )  -R (T)  ( t  /T) 'I2, and accordingly t(f, - T ( ~ , / R  (T)  )'. 
We have thus 

B. f d  )R (T)  sfr. In this case the it is the longitudinal 
diffusion that obeys the Boltzmann law. The transverse dif- 
fusion is faster. This is due to the strong correlations in the 
transverse displacements. The decisive factor here is the re- 
currence property of one-dimensional diffusion. In one-di- 
mensional motion the electron passes repeatedly through the 
starting point of its trajectory. In fact, the path traversed by 
the electron with a time t is vt (where v is the longitudinal 
velocity), and the diffusion volume corresponding to this 
timeis (D t )  'I2.  ~hera t iov t  /(D t )  'I2- ( t  /T) ' I2  yields the 
number of returns within a time t 2 T. Since f d  )R (T)  by 
assumption, the electron returns at t 5 t(fd ) to the same dis- 
placing regions. The contribution made to the transverse dis- 
placement by each region is "enhanced" by a factor ( t  /T) 'I2. 
After a time t the electron negotiates ( t  /T)'/' mean free 
paths along H. Since the directions of the displacements in 
different regions are random, R ( t )  can be calculated by mul- 
tiplying R ( T )  ( t  /T) 'IZ only by the square root of this number 
of free paths, i.e., by ( t  /T) 'I4. We get thus 

In times of the order of t>t(fd ) the transverse motion is 
diffusive. Therefore 

The diffusion coefficients take therefore the form1' 

Their interpretation of the macroscopic equations permits a 
ready generalization of their result to include also micro- 
scopic defects. Such a generalization, which we in fact dupli- 
cate in the present subsection, was carried out later in Refs. 2 
and 3. 

C. g, )cd R (7). At t 5 t(f, ) the electron is in a trapped 
state. In contrast to case A, the sizes of the displacing regions 
are assumed larger than R(T).  Therefore, so long as 
t 5 t(fd ), the electron is displaced in the same direction in 
each passage between reflections. In other words, in a time 
on the order of ~ ( t (  ( fd  ) the transverse motion takes place 
with constant velocity: 

At still longer times t)t(fd ) the transverse motion becomes 
diffusive. Accordingly, D ;  must be estimated as the ratio 
cd2/t(fd ), by finding t(fd ) from Eq. (3) .  We obtain thus 
D 1 -DL (fd  /R (T) ) . The longitudinal-diffusion coefficient 
is estimated as in case A at 1 2/t(fr ). Knowing D 1, we get 
t(f, ) -f, '/D ; - ~ ( f ,  '/R ( ~ ) f  ), and ultimately 

D. fd  sf, R (7).  This case differs from the preceding 
one in that (3)  is valid only if t 5 t(f, ) [now t(f, ) is shorter 
than t(gd ) 1. Over times of the order of t(f, ) 5 t 5 t(fd ), 
however, the variation of R ( t )  is given by Eq. ( 1 ). The diffu- 
sion regime R ( t )  cc t 'I2 is reached at t - (fd ). The value of 
t(fd ) is obtained by successively using Eqs. (3)  and (1): 

To obtain D I we must substitute this time in the definition 
D 1 -fd '/t(fd ). The value of D is estimated to be the ratio 
12/t(f,), where t ( f , ) -~({, /R(7)) .  Asaresult we have 

We have thus discussed the cases of all possible rela- 
tions between the lengths f, , f d  , and R (T)  . We consider one 
more situation, in which a new characteristic length comes 
into play. We consider a film placed in a perpendicular mag- 
netic field. Of greatest interest here is the size effect that 
manifests itself when the film thickness L is much larger 
than the mean free path [and accordingly f r  , f d  , and R (T)  1. 
An effect that is similar in principle was considered for mac- 
roscopic inhomogeneities of a medium by Kvyatkovskii 
(Ref. 4).2' We denote by tL the time during which the elec- 
tron diffuses from surface to surface: t, -L 2/D i;. If tL 
turns out to be shorter than the time within which the trans- 
verse motion becomes diffusive, the presence of the surfaces 
greatly influences the value of D 1. Since L>I by assumption, 
this can happen only in cases B and D. The size effect is 
strong when 5 t(fd ). Assume that this is the case. Then, 
obviously, in case B Eq. ( 1 ) is valid only at t 5 tL . For time 
scales t, 5 t 5 t(fd ), however, the transverse motion ap- 
pears to be uniform: R ( t )  -R (t, ) ( t  /tL ). As a result, the 
time t(fd ) decreases and becomes of the order of 
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T ( E d R  ( T )  )"' ( L / L c i )  I/', Lciwz (Edf? ( T )  ) "'. 
The length LC, determines the characteristic film thickness 
at which the size effect becomes strong. It is important that 
this thickness is much larger than the mean free path. Substi- 
tuting the obtained value oft({, ) in the relation D ; -{, 2 /  

This expression is valid up to values L - 1, at which it goes 
over into Eq. (4 ) .  For the case D we obtain similarly 

The characteristic film thickness differs here from that in 
case B. It can be seen, however, that in the region of the 
strong size effect the expressions for D are the same in both 
cases. In the derivation above it was assumed that L 2 I. We 
rewrite (6)  in the form D 1 - D, (f, /S) (f,/L) 'I2, where 6 
is the characteristic value of the transverse displacement on 
passage through one displacing region. It is easy to verify 
then that this expression is valid at L(1 (up to L -fd ). The 
same asymptotic form as assumed by the dependence of D 
on L in cases A and C. In the former case the size effect 
manifests itself strongly at L 5 6, (fd/S)2, and in the latter 
a tL51.  

3. We consider now effects due to correlations of the 
scattering acts in a homogeneous equilibrium rarefied plas- 
ma. We use the term "plasma7' for brevity to denote in gen- 
eral a gas of electrons scattered by charged centers. In Secs. 
3-6 these centers are assumed to be immobile. Therefore the 
results can be used directly to describe electrons in doped 
semiconductors. The differences caused by the presence of 
moving centers (ions in a gas plasma) are considered in Sec. 
7. By plasma homogeneity is meant the absence of fluctu- 
ations with a scale larger than the screening radius. 

The hierarchy of the characteristic lengths in the ab- 
sence of a magnetic field is the following. The largest is the 
mean free path 1- l/nro21n(rs /r,), where n is the density of 
the centers, ro-e2/x& ( K  differs from unity in a semiconduc- 
tor, where it constitutes the dielectric constant of the lat- 
tice), E is the average kinetic energy of the electron, and r, is 
the screening radius. The length ro is the shortest 
(ro(n-'I2). The quantity r, satisfies the inequalities 
n- 'l3(r, <1. To be specific, we assunie also that the electron 
wavelength (fi2/me) ' I2  is small compared with r, (i.e., the 
average electron energy is lower than the Bohr energy). If, 
however, this condition is not met, the wavelength must re- 
place r, in the argument of the Coulomb logarithm. 

The magnetic field influences strongly the transverse 
diffusion if the Larmor radius r, 5 I. According to the Boltz- 
mann equation, the diffusion coefficient D is proportional 
to 1/H2 at r, <I. It usually assume that the same relation 
holds also at r, 5 r, (except that a dependence on H appears 
in the argument of the Coulomb logarithm). It will be shown 
below that in fact the "1/H2 law" holds only for r, )r,/ 
ln(rs/ro). For smaller values of r, it is necessary to take 

correlation effects into account. 
We obtain the function D (H) first at ro 5 r, 5 r, . The 

case rL(ro will be considered later. 
The scattering in the plasma is collective. The number 

of simultaneously interacting particles is restricted by the 
screening. According to the usual theory, self-consistent 
electric-field fluctuations of all scales are of equal impor- 
tance, starting with ro and ending with r, (this is the cause of 
the Coulomb logarithm). It is natural to consider, in a strong 
magnetic field, separately the scattering by fluctuations with 
f 5 r, and f 2 r, . In the former case the influence of the 
magnetic field on the scattering process is insignificant. The 
contribution to the Boltzmann diffusion coefficient from 
such collisions is of the form6 

In the opposite limit f)r, the electric field changes little 
along the radius of the cyclotron orbit. The scattering re- 
duces therefore to electric drift of the orbit as a whole. A 
solution of the Boltzmann equation in this (drift) approxi- 
mation is given in $60 of Ref. 6. The corresponding contribu- 
tion to the diffusion coefficient is 

Here 2 is the large logarithm that appears following the 
thermodynamic averaging (for details see Ref. 7) .  

A decisive factor when correlations are taken into ac- 
count is scattering by fluctuations having the largest scale 
f - r, . To verify this, we turn to the results of Sec. 2 (case B ) . 
Equation (2)  contains the correlation radius 6, , the Boltz- 
mann diffusion coefficient DL, and the displacement R (7) 

during the mean-free path time. A phase differs from the 
medium considered in Sec. 2 mainly in that the fluctuations 
are of large scale. We consider, however, fluctuations of only 
one scalef, so that f sr ,  . The role off, is then assumed by f 
and expression (2)  is directly applicable. It remains to find 
Dl and R (7) .  It is convenient to introduce the drift-velocity 
distribution 

Y,, ( r )  =C [E ( r )  , HI /HZ. 

Mere E(r)  is the self-consistent electric field.3' For fluctu- 
ations of scalef the characteristic field intensity is obviously 
of the order of (e /~{*)  (n{""2. We have then 
Dl - u; (f /v), where u, is the drift velocity corresponding 
to this field, i.e., D, -rinvrt (as expected, this quantity is 
independent of f ) .  The free path time is 

(The length {, introduced in Sec. 2 corresponds to 
r,ln'12(r,/ro). Its square is of the order of the transport 
cross section of the Coulomb scattering at ro 5 r,  5 rs . ) The 
displacement is 

R ( T )  - (D.T) '12-rL/ln'12(rL/ro) 

(recall that this is the drift displacement in a field of fluctu- 
ations having only one scale). Substituting the expressions 
obtained in Eq. (2) ,  we obtain for the diffusion coefficient 
0: 
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It can be seen that D 1 increases with increasing 6. This indi- 
cates that the diffusion velocity in the plasma is determined 
by the drift in the field of the fluctuations with the largest 6. 
These are 6-r, . Ultimately we have 

From a comparison of this expression with the Boltzmann 
relation we find that the correlations in the scattering be- 
come significant at r, - r, /ln ( r ,  / r , ) .  With increasing mag- 
netic field, D ; decreases mainly in proportion to I / H ~ / ~ .  

The result ( 8 )  can be derived somewhat more rigorous- 
ly by considering the time "scan" of the diffusion process. In 
accord with the drift approximation, the transverse displace- 
ment in a time t  is 

1 

R ( t ) =  j d t 1 y d ( r ( t ' ) ) .  
0 

The mean value is 

<RZ ( t )  ) 

where G is the probability that, given the velocity field 
v, ( r ) ,  the electron trajectory passes through the points r' 
and r" at the respective instants of time t  ' and t  ". The angle 
brackets in the right-hand scale mean averaging over the 
distribution of vd ( r ) .  The integral is estimated in the follow- 
ing fashion: 

Hereg= ( 4 d l 1  I t ' - t"I ) -"2exp(  - ~ ~ / 4 D , ~ t ' - t " I )  is 
the probability of landing from the point z  = 0  on the point z 
after a time It ' - t  " I. This estimate is in fact an equation for 
(R 2 ( t ) ) .  At t ) r f / D  the exponential ingcan be set equal to 
unity. Using the correlator of the drift velocities 

2 C 2  
V d  0 vd ( ) = - (-1 (E (0 )  E  ( r )  ) 

3 H 

we obtain at T 5 t< t ( r ,  ) 

< RL ( t )  ) - 
'L' ( $) " (F) . ln (rL/ro) 

The time of transverse displacement by a distance r, is 

Note that, compared with expression ( I ) ,  the time depen- 
dence of ( 9 )  is weaker. Equation ( 9 )  contains a logarithm 
that decreases with increasing t .  This is a manifestation of 
the fact that there are fluctuations with many scales in the 
plasma. It can be seen, however, that when the time t -  t ( r ,  ) 
is reached the loqarithm becomes of the order of nnity. The 

presence of many scales plays therefore no role in the case of 
longer times. 

At t ) t ( r , )  we have ( R  ' ( t ) )  cct, and we return to 
expression (8)  for the diffusion coefficient D 1 - < / t ( r ,  ). 

Note the following important circumstances. The dis- 
tribution of the electric field E ( r )  [and hence of v, ( r )  ] was 
assumed independent of time. It is useful to bear in mind, 
however, that actually E ( r )  oscillates rapidly, owing to the 
temporal fluctuations of the number of electrons in a given 
volume. The amplitude of the oscillations is not small -it is 
of the order of the characteristic time-averaged value. We 
must track spatial E ( r )  fluctuations of scale r , .  They have a 
characteristic frequency v/r,  equal to the plasma frequency. 
The period of the oscillations is much shorter than the free 
path time. The scattering acts are thus correlated only "in 
the mean." When referring above to E ( r ) ,  we meant namely 
the field averaged over the fast plasma oscillations. The justi- 
fication for this averaging is the recurrence of the passage of 
the electrons through the same sections of the field.4' 

4. Equation ( 8 )  was obtained under the assumption 
that r, 2 r,. We consider now the opposite case." The pic- 
ture of the diffusion remains essentially the same. All that 
changes is expression ( 7 )  for the free path time. The cross 
section for reflection from an attracting ion now turns out to 
be much smaller than 6 ,  on the order of 6 ( r ,  / r , )4/3 .  This 
estimate can be obtained simply by making the equations of 
motion nondimensional. We explain this in the following 
manner. We denote by p the impact parameter of the t a r -  
mor-orbit leading center. Electrons incident on an ion with 
sufficiently large p do not contribute to the cross section. 
They pass through the Coulomb field without reflection. 
Scattering for them is a slow drift of the orbit center along a 
circle around the ion. The question is: how long does such a 
description remain valid whenp is decreased? The required 
condition is that the electric field acting on the electron 
change little during the period of the cyclotron revolution. It 
takes the form ( e ~ / m c ) p / v (  p ) ) l  ( v ( p )  - (e2 /xmp) '12  is 
the velocity acquired by the electron in the field of the cen- 
ter) and is met whenp) (mc2/xH ' )  ' I 3 .  This inequality can 
be identified also as the condition that the drift velocity c ( e /  
xp2H) be small compared with v( p ) .  If, however, p( (mc2/ 
xH ' )  ' I 3 ,  then the electric force e2/xpZ becomes much larger 
than the force e H ( v ( p ) / c )  exerted by the magnetic field. 
Electrons emitted with such low p are scattered in the Cou- 
lomb field and reflected (just as at H = 0 ) .  Writing the re- 
flection cross section in the form ( m c 2 / x ~  2 ) 2 / 3 ,  we obtain 
the expression given above. 

Following the same reasoning that led to Eq. ( 8 )  and 
replacing ( 7 )  by 7- l/nvri ( r ,  /r0)4'3, we obtain at r ,  ( r ,  
the diffusion coefficient6' 

The diffusion coefficient decreases with increasing magnetic 
field in proportion to ( l /H)l6I9.  This is close to the usual 
quadratic dependence. We emphasize, however, that in this 
case D 1 is much larger than the Boltzmann value. 

5. We have considered above only scattering by positi- 
vely charged ions. We turn now to scattering by negative 
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ones. We assume their density n - to be lower than n + of the 
positive ions. I t  turns out that even rare negative ions are 
important in a strong magnetic field. Their diffusion coeffi- 
cient is much larger than given by Eq. ( 11 ), and varies with 
the magnetic field like 1/H. The cause of this effect is that 
the cross section for reflection by an ion at  r, <ro depends 
strongly on the sign of its charge. For a repelling ion it equals 
approximately 4, much more than the 1.2, (r, /r0)413 for an 
attracting one. I t  follows hence rightaway that at 
rL <ro(n -/n + )314 the free path time r is determined by scat- 
tering from the relatively rare negative ions. (We emphasize 
that within the framework of the Boltzmann theory this cir- 
cumstance is of no importance whatever, since Dl continues 
to be proportional to 1/H '.) The positive ions merely dis- 
place the Larmor orbit in the transverse direction. I t  might 
seem at first glance that negative ions can be present only 
r, 5ro(n- /n+)3/4 ,  in which case it suffices to change the 
expression for 7. We would then obtain at r, 5 r o ( n - /  
n+)314 

We shall show that this relation can hold in fact only in a 
relatively narrow interval of rL : 

For such an interval to exist the ratio n -/n + must be larger 
than l/ln2(rs /ro), i.e., the Coulomb logarithm must be large 
enough. If, however, n -/n + < l/ln (r, /ro) , as H increases 
the negative ions become significant at r, - ro(n -/n + ) 9114/ 

ln3114(rS/r0), when the time is still not bounded by them. 
We denote by t- the time of motion from one negative 

ion to another. So long as r, ,ro(n-/n+ )3/4, the time is 
longer than r - t- - ( l/n -vro2) '/r. (Accordingly, 
R( t - )  -R (T)  ( t - / ~ ) ~ / ~ . )  In a stronger field, the reflections 
occur mainly upon collision with negative ions, so that 
t- - r - l/n - vro2. Expression ( 12) presupposes that 
R ( t - )  )ro. Indeed, only then are the successive acts of re- 
flection by negative ions independent. In the opposite case, 
the time t- is too short for the electron to move across H to a 
distance larger than their reflection radius. As a result, the 
electron is "trapped" between a pair of negative ions. 

Clearly, the condition R( t - ) ) r ,  ceases to hold on 
further increase ofH.  The value of r, at  which R ( t -  ) comes 
close to ro depends on the parameter (n -/n+ )ln2 (r, /ro). It 
is of the order of r,(n -/n + ) 1/21n1/2 (rS rO) (and lands in the 
region r, (ro(n-/n+ )3 /4 ) .  If this parameter is large. This 
corresponds to the existence of the r, interval, indicated 
above, in which D 1 is described by Eq. (12).  To  calculate 
D at smaller r, we turn to the results of Sec. 2 (case D) .  
The multiplicity of fluctuation scales in the plasma, which 
distinguishes it from the model considered in Sec. 2, mani- 
fests itself in the possibility of using Eq. (5 )  directly for D 1. 
I t  is nonetheless easy to generalize this equation. I t  was 
shown in Sec. 3 that the main contribution to the diffusion 
acceleration is made by drift in the field of the fluctuations 
having the largest scale cd -r,. The Boltzmann diffusion 
coefficient in the field of such fluctuations is Dl - r i n -  uri. 
The corresponding displacement R ( r )  - (Dl r) ' I 2  within 

the free-path time r- l /n_ur i  is estimated at rL (n+ /  
n- ) 'I2. This is precisely the quantity that should enter in the 
ratio 6, /R (7)  in Eq. (5  ) . I t  is readily understood, however, 
that the number of passes that an electron must make 
between a pair of negative ions before it leaves the "trapped" 
state is determined by the displacement R (7)  due to the drift 
in the field of the fluctuations of all scales. I t  exceeds the 
indicated value by a factor In1i2(rs /ro), and it is this number 
which must be substituted in the factor ( l , / R ( r )  ) ' I 3  of 
expression ( 5  ) ( the role of 6, is assumed here by r,). We 
obtain thus7' 

When the magnetic field is strengthened the diffusion coeffi- 
cient decreases in proportion to 1/H. 

We consider now the case (n  -/n + ) ln2 (r, /ro) < 1. 
R (t-  ) becomes comparable then with ro at r, - (n -/ 

+ )9/14/1~3/14 (rs /rO), hence r, >ro(n -/n + )"4. Therefore 

the relation ( 12) does not appear at  all. It is easily verified 
that Eq. (13) is valid for all rL 5 ro(n-/n+)9/'41n3/14 (rs 1 
rO). I t  was assumed in its derivation that the positive ions do 
not limit the free path time. In fact, however, it is valid for all 
cases only if R ( t -  ) 5 ro (even when the electron motion 
between the collisions with the negative ions is by diffusion). 
The point is that at t 2 t- the value of R ( t )  depends on 
R ( t - )  and t- via theratioR ( t_) / t - .  The latter, however, is 
expressed by identical formulas regardless of the number of 
times that the electron reverses its longitudinal velocity dur- 
ing the time t-. 

6. Assume now that the density of the charged centers is 
low. Let for the sake of argument the free-path time by 
bounded by scattering from neutral centers. We shall show 
that scattering by ions is nonetheless a decisive factor in the 
calculation of the transverse-diffusion velocity for large H. 
Indeed, at  r, 5 rs the collisions with the ions are correlated. 
The electron is repeatedly scattered by one and the same ion. 
At large H this leads again to the relation Dl ' m 1 / ~  413 [see 
Eq. ( 2 ) ] .  The diffusion coefficient, which is governed by 
scattering from neutral centers, is on the other hand -6/r 
(the collisions with neutral centers are assumed to be uncor- 
related). It decreases with increasing H more rapidly - in 
proportion to 1 /H '. In a sufficiently strong field we have 
therefore Dl '> r t / r .  The difference from the picture de- 
scribed in Sec. 3 is then negligible, only that the electron is 
now reflected by collision with neutral centers. Accordingly, 

By comparing this expression with r:/r we find the region of 
its validity: r, 5 r, (nvr i r ) .  Recall that we have assumed 
that nurir< 1. 

7. In the preceding reasoning the charged centers were 
assumed at  rest. This is the case, for example, for ionized 
impurities in semiconductors. The ions in a gas plasma are in 
motion. Obviously, the correlation of the scattering acts is 
"characterized" by this motion. The question is: How rapid- 
ly must the ions move for the Boltzmann theory to hold? In a 
gas plasma, the large-scale (6- r, ) structure of the self-con- 
sistent electric field oscillates with two frequencies, viz., the 

321 Sov. Phys. JETP 63 ( Z ) ,  February 1986 D. G. Polyakov 321 



electron plasma frequency 0, - v/r, and the frequency 
ni -vi/rs connected with the motion of the ions (whose 
thermal velocity is vi ). In a single-temperature plasma ni 
coincides with the plasma frequency of the ions. An electron 
cannot return to a given ion in a time shorter than that of the 
mean free path. This time is comparable with the period of 
the field oscillations. The oscillations due to the motion of 
the electrons are faster, the corresponding parameter a, r) 1 
and the averaging was therefore carried out with respect to 
them. The variation of a field averaged in this manner is 
already relatively slow, with a characteristic frequency ni . 
It is clear therefore that the scattering correlations can be 
neglected (even at rL S: r, /ln(r, /ro) ) if a, r) 1. Putting 
r - l/nvrt In (r, /ro), we rewrite this condition in the form 
nrj)(v/vi )ln(v/vi ). It holds only for a sufficiently rarefied 
plasma. It must be noted, however, that under typical ex- 
perimental conditions the plasma is not very strongly rar- 
efied, so that ni T is large enough. 

Let us describe the situation at SZi 74 1. The correlations 
are then important if the field is strong enough. This, how- 
ever, still does not mean that the equations derived above can 
be used. Their applicability calls for the more stringent con- 
dition fli t(r, ) S: 1 which becomes less valid the stronger the 
magnetic field. The field must therefore be strong enough to 
permit correlations to manifest themselves, but still weak 
enough to be describable by the theory expounded above. 
Consider the case Qi t(r, ) ) 1. Clearly, the correlations van- 
ish over time scales t- Q; '. The diffusion should therefore 
be estimated at D 1 -R 2(Q; ' ) a i .  TO calculate R 2(f2; ') 
at rL 2 ro we shall use Eq. (9).  As a result we get 

1 , [ ra2 (Qi,)" ] Dlt-rL2nvro2 - 
( a )  " rL2nvroZa ' 

where T- l/nuri In(rL /ro). The condition fli t(r, ) - 1 cor- 
responds to the value rL -r, (fli r)3141n'12(rL /r,,). At this 
values, Eqs. (8)  and ( 14) become "joined." Thus, as H is 
increased, the relation D a 1 / ~ ~ ~ ~  goes over into the rela- 
tion D 1 a 1/H that follows from ( 14). The generalization 
to the case rL (ro is obvious. 

Equation ( 14) describes electron diffusion in a weakly 
ionized plasma. The time T is then determined by the scatter- 
ing from neutral centers, so that a situation with n i r ( l  is 
easily realized. It must be borne in mind, however, that the 
condition for ( 14) to be valid in this case is satisfaction of an 

, inequality that is very stringent in practice, viz., the quantity 
( 14) must be larger than r i / r .  

8. We discuss now the influence of the correlation ef- 
fects on the longitudinal diffusion. The transverse-displace- 
ments correlations considered in Secs. 3 and 4 are immater- 
ial. The deviation of the prolonged-diffusion velocity from 
that is due exclusively to "trapping" of the electrons. Obvi- 
ously, the prolonged diffusion slows down in this case. To 
calculate D ;i we turn to the results of Sec. 2. The lengthld in 
the plasma corresponds to screening radius, and the length 
f, to the radius of reflection by the ion (f is of the order of 
the cross section for reflection). In the case of scattering by 
positive ions only, R (7) is always larger than 5,. The "trap- 
ping" effects are then weak. The situation changes if nega- 
tive ions are present. Their reflection cross section at rL (r, 

is -4 (and is independent of H, in contrast to the cross 
section for reflection by a positive ion). In a sufficiently 
strong field the transverse displacement R ( T )  becomes 
smaller than l, -ro. The electrons are thus "trapped." 

The situation is simplest when the positive ions do noth- 
ing but displace transversely the cyclotron orbit, and the 
free-path time is governed by scattering from negative ions. 
Equation (5)  for D i; can then be applied directly. 
On this case l, -ro, r- l/n-u4 D  -/vn_TZg, and R ( r )  
-r, (n +/n - ) 1121n11Z (r, /rO). Accordingly 

The value of D i; decreases with increasing field in propor- 
tion to 1/H (note that under these conditions all the compo- 
nents of the diffusion tensor have this dependence on H). 
Without repeating the arguments advanced at the end of Sec. 
5, we indicate that Eq. ( 15) is valid also for diffuse longitudi- 
nal motion between collisions with negative ions. It is neces- 
sary only to have R (t- ) 5 r,. The D i; (H) dependence is 
thus found to be nonmonotonic. With increasing H, the val- 
ue of D l l  Increases, first in proportion to l/ln(rL/ro) at 
r, 5 rL 5 r, , and next in proportion to (r,JrL )413. The accel- 
eration of the diffusion is due simply to the decrease of the 
cross section for scattering by the positive ion. If, however, 
R( t - )  becomes smaller than r,, the rate of diffusion de- 
creases with increasing field: D ; a 1/H. This is due to the 
"trapping" of the electrons by the negative ions.8' (Note that 
in the case (n -/n + ) ln2 (r, /ro) s 1 there exists an interval of 
rL in which there is no "trapping" but the free-path time is 
determined by scattering from negative ions-see Sec. 5. In 
this case D  I I  is independent of H. ) 

9. At the end of Sec. 2 we considered the size effect in a 
film placed in a perpendicular magnetic field. To estimate its 
vlaue for scattering by charged centers, the time tL -L 2/D i; 
(the time of diffusion from surface to surface at a film thick- 
ness L )  must be compared with the time t (r, ) (which as- 
sumes the role of the time t(fd ) of Sec. 2) .  The size effect is 
strong when tL 5 (L /t12. Assume that ro S: rL 5 r, . Then 
t(r, ) is expressed by formula ( lo),  tL - r (L  and the 
condition tL 5 t(r, ) is satisfied at L S: LC,  where 

The dependence of D  on L and on H can be obtained by 
resorting to Eq. ( 6 ) ,  which is best rewritten here in the form 

(in accordance with the results of Sec. 3 it is necessary to 
substitute here the Boltzmann diffusion coefficient D in the 
case of scattering by fluctuations of only one scale -r,: 
D, - r i  nvr; ) . With decreasing L, the value of D 1 increases 
in proportion to 1/L ' I2  and is inversely proportional to the 
magnetic field. Since (16) does not contain the cross sec- 
tions for reflection by the ion, the same field dependence 
remains in force also if rL 5 r,. All that changes is the equa- 
tion for the characteristic thickness of the film, viz., we get 
LC -I(r,/r, )213, where I- l/nrt (rL /r0)413. We emphasize 
the unusual character of this effect. It manifests itself when 
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the film thickness exceeds greatly the mean free path (not- 
withstanding the assumption that this film is macroscopical- 
ly homogeneous ) . 

I am deeply grateful to V. I. Perel' and B. I. ShklovskiY 
for helpful discussions. 

"In fact, the type of transverse motion described in this subsection is 
similar to that first observed in Ref. 1. There Dreizin and Dykhne inves- 
tigated the magnetoresistance of a medium with macroscopic inhomo- 
geneities having dimensions much larger than 1. Their interpretation of 
the macroscopic equations permits a ready generalization of their result 
to include also microscopic defects. Such a generalization, which we in 
fact duplicate in the present subsection, was carried out later in Refs. 2 
and 3. 

"We note that Dreizin and Dykhne'.' also described a size effect that 
manifests itself at large L (they investigated the magnetoresistance of 
polycrystals with openFermi surfaces). Whileit is not due to scattering- 
event correlations, it is caused, as in our case, by the long time required 
for the diffusion across H to set in. 

"Of course, the concept "drift velocity at a point" is meaningful if the 
characteristic correlation radius of the field is {>r,. 

4' In the expressions derived, the diffusion coefficient was determined by 
electrons of approximately average energy. Yet it follows from the re- 
sults of Dreizin and Dykhne2' that in a strong magnetic field the main 
contribution to D ;  should be made by electrons that move very slowly 
along H. These are just electrons whose energy of motion along H is of 
the order of the characteristic amplitude of the fluctuation potential y 
(but higher than the percolation threshold). These electrons, however, 
constitute a small fraction of the total, and according to Ref. 2 they 
diffuse rapidly across H. 
The derivation of Ref. 2 is based on the premise that a slow electron 
moving along H with energy - y turns out to be trapped in the fluctu- 
ation well and its transverse motion becomes drift-like. Our picture 
differs in principle from that described by Dreizin and Dykhne. The 
fluctuation potential oscillates rapidly with time (owing to the electron 
motion). In other words, the electrons rapidly exchange energy with 
one another. It can be easily verified that the time in which an electron 
acquires an energy y- (e2/xr, ) (nrj)'I2 is of the order of the plasma- 
oscillation period. This time is so short that no trapped state is realized. 

5 '  We emphasize once more that we confine ourselves to classical (non- 
quantizing) magnetic fields. The Larmor radius can then be comparable 
with r,, only if& is lower than the Bohr energy. We note also that for our 
analysis to be valid the characteristic amplitude of the self-consistent 

potential must be small compared with E. These two conditions can be 
satisfied simultaneously if the parameter nu3 is small enough (a is the 
Bohr radius). 

6' In so strong a magnetic field the electrons collide with one another 
much more frequently than with ions. In Eq. ( 11 ), however we took r t o  
mean the time between ion-ion collisions. The reason is that the longitu- 
dinal-diffusion collisions of electrons that interact only with one an- 
other and not with ions becomes in fact infinite. Conversely, the coeffi- 
cient of diffusion of such electrons across H is strictly equal to zero. 
Thus, electron-electron scattering does not lead by itself to diffusion. Its 
influence manifests itself only in the form of the electron distribution 
function, and it does not alter the estimates of D ;. 

7' Expression ( 13) can be derived also in another manner, by considering 
the "time scan" of the diffusion procedure, in analogy with the proce- 
dure used to derive (9) .  The only difference from the derivation of (9)  is 
that it is now necessary to use the value ( 15) for the diffusion coefficient 
(see below). 

" In the derivation of ( I  5 )  it was assumed that the electrons incident on a 
negative ion with impact parameters smaller than e2/xE ( E  is the ener- 
gy of longitudinal motion) are totally reflected. The possibility of tun- 
neling was disregarded. Yet tunneling enables electrons to leave the 
"trapped" state even without transverse displacements. In a sufficiently 
strong magnetic field this circumstance is decisive. A simple calculation 
of the longitudinal-diffusion coefficient yields in this case D 7 D  
x (exp( - 16(E,/E)'l2)) ( D l  is the Boltzmann diffusion coefficient, 
E, is the Bohr energy, and the angle brackets denote thermodynamic 
averaging). Recall that in a nonquantizing magnetic field the Larmor 
radius may turn out to be smaller than r,, but only when the electron 
energy is less than E, . 
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