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Linear T = 0 surface-hydrodynamics equations consistent with the surface-energy 
conservation law are derived. A general expression is established for the frequency and angular 
dependences of the sound-transmission coefficient on the basis of these equations. The problem 
of the stability of the tangential flow of a superfluid liquid slipping along the surface of a 
quantum crystal is investigated. The threshold velocity at which instability sets in is 
determined and found to be much smaller than the velocity of sound. 

The large energy scale of the zero-point particle vibra- 
tions at a quantum liquid-quantum crystal phase interface, 
as well as the closeness of the solid- and liquid-phase densi- 
ties, allows us to assume that thermodynamic equilibrium 
can be established in the system over fairly short periods of 
time, and, consequently, that the melting-crystallization 
processes are essentially nondissipative. The correctness of 
this assumption is confirmed by the existence at the phase 
interface of weakly damped melting-crystallization waves, 
which were theoretically predicted by Andreev and Par- 
shin,' and experimentally observed by Keshishev, Parshin, 
and Babkin.* 

The rapid establishment of thermodynamic equilibri- 
um at a quantum liquid-quantum crystal interface also man- 
ifests itself in the effect, discovered by Castaing et U Z . , ~ . ~  of 
anomalously weak low-frequency-sound transmission 
across the interface. Indeed, if the period of the incident 
wave is longer than the time required for the establishment 
of thermodynamic equilibrium, then, besides the normally 
required continuity of the pressure across the interface, we 
must also have equality of the chemical potentials of the 
phases at the interface. In this case the variable part of the 
pressure is equal to zero, and the incident acoustic wave 
should be totally reflected from the boundary, as happens at 
a boundary with vacuum. 

But allowance for the purely surface effects in the 
boundary conditions gives rise to a small but finite sound- 
transmission coefficient D. Correspondingly, we obtain a 
finite, though anomalously large, Kapitza thermal resis- 
tance R,. As will be shown below, of greatest importance for 
the sound-transmission problem is the allowance for three 
main types of surface effect in the boundary conditions. The 
first type is described by terms connected with the surface- 
tension coefficient a and with the surface anisotropy. The 
second type is described by a term connected with the addi- 
tional surface kinetic energy introduced by Castaing and 
Puech,'" which is quadratic in the difference between the 
solid- and liquid-phase velocities perpendicular to the 
boundary. This term is derived in Ref. 5b on the basis of 

phase interface. Finally, the third type is described by terms 
introduced by Marchenko and Parshin6 and connected with 
the surface stresses (surface elasticity). Allowance for the 
surface stresses leads to a situation in which the crystal is 
elastically deformed even in the state of total thermodynam- 
ic equilibrium. 

In Sec. 1 of the present paper we derive linear, T = 0 
surface-hydrodynamics equations (generalized boundary 
conditions) consistent with the surface energy conservation 
law and taking simultaneously into account all the impor- 
tant surface effects. Using these equations, we establi~h a 
general experession for the frequency and angular depen- 
dences of the sound-transmission coefficient. As analysis of 
the general formula for the transmission coefficient, carried 
out with the use of the problem's two small parameters 

(PSOI -Pliq )Ips01 z (PSOI - Pliq )/pliq =&/P( 1, kdg 1 

(ps,, andp,,, are the densities of the solid and liquid phases, 
k is the wave vector, and d is the interatomic separation), 
shows, in the two opposite limiting cases of near-normal in- 
cidence and incidence at glancing angles, the nonvanishing 
ofthe amplitude ofthe transmitted wave is due largely to the 
effects of the reconstruction of the short-range order at the 
phase interface and the effect of the surface tension. At the 
same time, when the acoustic waves are incident at angles 
close to the critical angles for total internal reflection, the 
dominant contribution to the transmission coefficient is due 
to the surface stresses (the surface elasticity). 

In Sec. 2 of the present paper we derive the linear-in 
the deviations from equilibrium-equations of surface hy- 
drodynamics under conditions when there occurs a station- 
ary surface flow of superfluid liquid in the direction parallel 
to the phase interface. Using the system obtained, we ana- 
lyze the spectrum of the small surface oscillations. It turns 
out that the stationary flow of superfluid liquid is unstable 
against weak perturbations even at velocities v(c. 

1. SURFACE HYDRODYNAMICS IN THE ABSENCE OF 
STATIONARY SURFACE FLOWS 

model aiguments. The effect is due to the fact that, when As shown in Ref. 7, the slightly deformed state of a 
matter runs over from the solid into the liquid phase, its crystal surface in the absence ofthe melting-crystallization 
short-range order.must be substantially reconstructed at the processes is completely determined when its tangential- 
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strain tensor u:, is specified. To describe the deformation of In the relation ( 3 )  P i ,  = p2(usola - uliqa ), where 
the surface in the case when the melting-crystallization pro- p ,  - pd  is the effective surface density. The expression ( 3 )  is 
cesses occur in the system, we must introduce another the most general expression for the surface-energy differen- 
independent variable: the additional;-with respect to the tial at T = 0 .  With the substitutions 
elastic displacement-recrystallization-induced displace- 

~ i k - 4  ( VkX,  + ViXk ) , Xi + usolk VkXj = 0 
ment [ ( x ,  y,t)  of the surface points. In this case the total 
displacement will be given by the sum of the elastic, u,,  and (thexi are variables considered in Ref. 9)  for the elastic part 
recrystallization-induced, 5, displacements: Z = u, + <, of the surface energy and 
and, accordingly, the velocity of the phase interface will be 
equal to the sum of the velocity u, of the solid and the recrys- 
tallization rate i, viz. Vb = ti, + (the normal to the unde- 
formed surface coincides, as usual, with the z axis). 

The total surface energy consists of three terms: 

where %',, ( ~ : ~ , v , f , V , f )  is the elastic surface energy, 
which depends on the gradients of the elastic and recrystalli- 
zation-induced displacements; g,,,, ( i )  is the energy due 
to the necessity of reconstruction of the short-range order 
when matter flows over from phase to phase, and quadratic 
in the recrystallization rate; and %',, is the surface kinetic 
energy, which depends on the surface momentum density 
Ps = (P>P ) (a = 1,2)  and the surface mass v, as well as 
the velocities of the liquid v l iq ,  crystal v,,, = u and phase 
interface V,.  Let us go over into a reference frame KO in 
which, first, the phase interface is at rest ( V ,  = 0 )  and, sec- 
ond, the velocity of the liquid has no tangential component 
(vIiq,  = 0 ) .  Then the Galilean transformation formulas 

PSa=Pia+  Y V I , ~ , ,  P : = P g z + v V b ,  (1 

gS = ga + P ; ) a ~ l i q a  +ps)Zvb + I  Y V ;  + &vuEqa ( 2 )  

relate the surface energy density g ,  and the surface momen- 
tum density P" in the laboratory reference system K to the 
corresponding quantities in the KO system. Therefore, taking 
account of the fact that the kinetic part of the surface energy 
in the reference frame KO can depend only on the Galilean- 
invariant combinations of the velocities u, vIi , ,  and V, ,  we 
have 

d', =Aikdui  + F , d V a f  +dg , , , , , ,  

+ (us0la - Uliqa ) d P i a  + (uso~,  - Vb )dP iz . ( 3 )  

Here 

dgsinert = i d ( ~ l i )  7 ( 4 )  
where p ,  -pd  is the coefficient of proportionality between 
Z?,,,,, and i 2/2, and has the dimensions of surface density; 
u:, is the tangential strain tensor, which is connected with 

for the kinetic part made in it, we can use it to derive surface 
hydrodynamics equations that are nonlinear in the velocities 
and the deformations. We limit ourselves below to the deri- 
vation of the boundary conditions that are linear in the de- 
viations of the quantities from their equilibrium values. 

We shall derive the equations of surface hydrodynamics 
of the basis of the laws of conservation of the surface quanti- 
ties in the differential form. Then, as usual, we define the 
boundary as the place where the surface particle-number 
density v is equal to zero. Let us emphasize that we can de- 
fine the boundary without resort to the requirement that the 
surface mass there be equal to zero. In this case it is not 
difficult to show that each of the observable physical quanti- 
ties of the type of the sound-transmission coefficient D con- 
tains a displacement-invariant combination of the surface 
particle-number density v and the surface inertial mass p , .  
At low frequencies this combination has the simple form: 

M, = p ,  + vp,,, /p l iq  = invar 

According to Ref. 3, the laws of conservation of surface 
mass and surface momentum have, when the condition 
Y = 0 is taken into account, the form 

v , p ,  = (j"," ' j ? ) n k  - (psol - p l i q  Vb , ( 7 )  

In the absence of the melting-crystallization processes, the 
system of equations (7)-(9) is a complete system, and the 
law of conservation of surface energy is a consequence of it. 
In the presence of these processes there is an independent 
variable <, and the surface energy conservation law, as ex- 
pressed in the form 

@ + V a  @a = ( Qsolk - Qliqk Ink - (Eso~ - Ellq ) Vb , 
( 1 0 )  

constitutes an independent equation. In Eqs. ( 7 ) - (  10)  

the strain tensor u,, of bulk elasticity theory by the relation is the volumetric momentum flux in the solid phase; 
(see Ref. 8)  u;; = Uik - Ul,Sik / 3  , 

~ ~ l ' = A i p A k l u g l t  A i p = 6 i p - n i n p l [  I+ ( V a Z )  '1 , ( 5 )  where 

where n = (1, - V a Z )  is the normal to the deformed sur- O , k  = %sol c:u,k + PSOI (c:  - 2 c : ) u ~ ~ S l k  9 

face. The right-hand side of the identity ( 3 )  is a total differ- c,  andc, being the transverse- and longitudinal-sound veloc- 
ential; therefore, the cross derivatives for the elastic part of ities, is the shear part of the stress tensor; 
the surface energy should be equal to each other: n!? 'Pliq UliqiUliqk + p l i q S i k  

aZ8,O/abad~iki=ahik/dt,=6Fa/duiat. (6) is the momentum flux in the liquid; Pso, and Yliq  are the 
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pressures in the solid and liquid phases; jyl = p,,, vSoli and jyq 
= psol Ueqi are the volumetric matter fluxes; 

are the volumetric solid- and liquid-phase-energy fluxes; 

are the volume energy densities; pso1 and pliq are the chemi- 
cal potentials, which are connected with the pressure by the 
standard thermodynamic identities 

Pa,  P,, and 8' are the components of the surface momenta 
P D n d  Ps and the surface energy tT, in the (x, y )  plane: 

and rap, T,,, and 0, are surface momentum and energy 
fluxes to be determined. 

In the problem we consider the oscillations of the quan- 
tities under a hydrostatic stress due to an equilibrium pres- 
sure 9, = 26 atm. Therefore, the expression for the volume 
energy of the crystal contains terms linear, besides those 
quadratic, in the deformations. (At equilibrium it is the 
thermodynamic potential, and not the energy, that has a 
minimum. ) In view of this, it is convenient to separate out in 
this expression the purely quadratic-in the deformations- 
shear part. Notice that, to the accuracy required for the deri- 
vation of the linear boundary conditions, 

Ysol = 7 0  - ffl1/3, ills01 =Po - ~11/3~sol  9 

where Po and ,uo are the equilibrium values of the pressure 
and the chemical potential. Therefore, the volumetric mo- 
mentum flux in the solid can be represented in the form 

It must be emphasized that the equations (8)  and (9)  
expressing the law of conservation of surface momentum are 
consistent with the law of conservation of surface angular 
momentum (see Ref. 10) provided 

Furthermore, since momentum and mass flux are one and 
the same thing in nonrelativistic hydrodynamics, Eq. (7)  
expresses the equality of the bulk-momentum components 
perpendicular to the surface in the rest frame KO of the phase 
interface. Owing to the continuity of the bulk momentum 
density j,,, there is no need to introduce a surface momen- 
tum density Po, into the hydrodynamics. Notice that there 
is, generally speaking, no reason why Po, should also vanish. 
But in the linear equations of surface hydrodynamics the 
contribution of the terms containing Po, always turns out to 
be small. 

Substituting into the formula ( 11 ) for the surface-ener- 
gy component in the (x, y)  plane the expressions (2)-(5) 
with v = 0 and P,, = 0, and using the relation (6), we obtain 
in the approximation quadratic in the variable parts of the 
quantities the expression 

= + a a n p v  )SpCv/2 + AlafiySyuafi +p1k '12 

a a t v l V = a ~ , / ~ ~ , ,  ~ , ~ , , = a ~ , , / a ~ ~ ~ = a ~ ~ ~ / a ~ , ,  (13) 

where a, is the surface energy density in the absence of de- 
formation (the coefficient of surface tension), a,,, is the 
surface-anisotropy coefficient, Rlap,, is the coefficient of the 
off-diagonal term in the expansion of the elastic part of the 
surface energy: R lafly = R . In the expression ( 13) we 
have discarded all the terms of order u2S ', terms which, as 
can be shown with the use of the parameters Ap/p<l and 
kd( 1 of the problem, are small at not too high frequencies w, 
when w (d / c )  ( p/Ap) < 1. Of the small terms of order u/S 
we have retained only one, namely, AlaD,, uapC,,, which, as 
will be shown below, is important when the angle of inci- 
dence of the acoustic wave is close to the critical angle for 
total internal reflection. 

Let us emphasize that the volume equations for the liq- 
uid are usually written in the Euler variables. Therefore, to 
obtain the correct boundary conditions at the boundary 
between two contiguous semi-infinite phases, the volume 
equations for the solid should also be written in the Euler 
variables. Thus, the Euler volume fluxes and energy density 
of the solid that figure in Eqs. (7)-( 10) are not the same as 
the Lagrange fluxes and energy density used in the linear 
theory of elasticity. Owing to the presence of linear terms in 
the expression for the bulk energy of the crystal, these differ- 
ences (due to the presence of the factor Spsol/p,ol , where 
pkol and Spsol are the constant and variable parts of the den- 
sity of the solid) occur even when the linear expression for 
the volume momentum flux is used. But they can simply be 
reduced to a renormalization of the elastic moduli when we 
go over from the Lagrange to the Euler vitriables." 

Differentiating ( 13) with respect to the time, and using 
the forms (7)-(9) of the laws of conservation of surface 
mass and momentum under conditions when there are no 
stationary surface flows and v = Po, = Po, = 0, we obtain in 
the approximation quadratic in the variable parts of the 
quantities, after simple transformations, the equation 

@ + VpOp - (Qsolk - Qllqk Ink + - Ellq ) Vb 

- - - u s o l z v a r z a  - Usola Vp ( r a p  + Alpay S y  ) 

- 5. [ Psol ( PI,, - illsol + y s o 1  - YI,, 

+ Vp(zppSp + A I , ~ ~ , , )   PI^] 3 (14) 

where 

@P = - 8,'~ ,8pt - Alayp k ~ a y  - Alpay vpola,8y 7 

ZM = "oS,'p + aanpp . 
In order for Eq. ( 14) to have the form ( 10) of the surface- 
energy conservation law, the following conditions must be 
fulfilled: 

"as = - ~ l ~ a y C y ,  r a z = O ,  

~ s o 1  - ills01 ) + 9 sol - 9 liq 

+Vp(a,cp +n1 , , uay ) -p l i>=o .  

Let us emphasize that the expression 

r a p  ZP + Pa Vb = - Alpay CyZp + Pa Vb 

is of second order in smallness. Therefore, the condition c, 
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= 0 is consistent with the law of conservation of surface 
angular momentum, ( 12). If the melting-crystallization 
processes occur in the system, then #O. Therefore, 

pso~ ( P1iq - P ~ O I  + 9 s o 1  - 9 l i q  

+V,(zp,Cp +Ala,uay) -PIC = 0 .  
Finally, in the absence of stationary surface flows, the linear 
boundary conditions have the form 

The first equation in the system (15) is a matter-balance 
equation; the second and third equations constitute a condi- 
tion for mechanical equilibrium at the boundary; and the last 
equation constitutes a generalized condition for phase equi- 
librium. This last equation can also be regarded as the equa- 
tion of motion of the boundary relative to the solid. In the 
zeroth approximation the system ( 15) is consistent with the 
conditions for total phase equilibrium: 

In the approximation linear in the deviation from equilibri- 
um, we have, when account is taken of the thermodynamic 
identities Sys0 ,  = pso,Spso, and 13.9,~~ = p,,,SpIiq for the 
variable parts of the chemical potentials and pressures, the 
equations 

Let us emphasize that, in the absence of stationary surface 
flows, the velocities, displacements, and stress-tensor com- 
ponents coincide with their variable parts, and the symbol S 
in front of them can be dropped. In ( 16) Ap = psol - p,,, , 
p zpSol =pas (Ap/p< 1 ). In the balance equation, as in the 
expression ( 13), we have discarded the small terms of order 
u/c. It follows from the system of equations ( 16) that, for 
sound incident at the phase interface, the amplitude of the 
wave transmitted into the other medium is nonzero only be- 
cause of the capillary effects. Indeed, setting Zp, = jl layP 

= p,  = 0 in ( 16), we obtain 6pliq = 0 and Sozz = Sum = 0. 
Therefore, the liquid and solid phases become "decoupled" 
and, for acoustic waves incident at the boundary from any 
one of the media, this boundary is equivalent to a boundary 
with vacuum. As a result, no sound is transmitted into the 
other medium. 

2. TRANSMISSION OF SOUND ACROSS A QUANTUM 
LIQUID-QUANTUM CRYSTAL PHASE INTERFACE 

A. In the sound transmission problem it is convenient to 
represent the velocity and displacement fields in the isotrop- 
ic solid in the form of sums of longitudinal and transverse 
parts: 

where 

rot ul=O, ul=V@, div ut=O, ut=rOt W), 

and and Y are the longitudinal- and transverse-acoustic- 
wave potentials. Assuming in the particular case of the two- 
dimensional problem that all the quantities depend only onx 
andz, wherez is the normal to the undeformed boundary, we 
can choose the potential Y in the form Y = Yl,, where 1, is 
the unit vector along they  axis. Then the volume vector 
equationpii, = V,u, for the displacement field in the solid 
reduces to two scalar wave equations for the potentials Y 
and a: 

The displacements in the solid are given by the formulas 

The velocity field in the superfluid liquid is described by the 
potential p (where v,,, = Vp) satisfying the wave equation 

6 = c;, (d  '/ax2 + d 2/dz2)p , (19) 

where el,, is the velocity of sound in the liquid. The variable 
part of the pressure in the acoustic wave for the liquid is 
given by the standard formula 

=pliqSPliq = -pliq@= -PQ). (20) 
Let us consider a plane acoustic wave incident at the phase 
interface from the liquid. Taking account of Eqs. (17) and 
(19), which give for plane waves the relation between the 
frequency and wave vector, we have for the incident, reflect- 
ed, and the two transmitted waves the expressions 

where plo and p,, are the amplitudes of the incident and 
reflected waves in the liquid, @,and Yo are the amplitudes of 
the longitudinal and transverse waves generated in the solid, 
and 8,,,,, e2],,, el ,  and 8, are the angles between the wave 
vectors of the corresponding waves and the normal to the 
surface. The problem is homogeneous in the coordinate x;  
therefore, 

sine, - sine, - sin6JlIiq - sine,,,, 
(22) 

C1 CI C~iq  Cliq 

In particular, we have a priori the obvious equalities 

sin6,,,, = ~in8,,~, = sinOIiq . 
The recrystallization-induced displacement in the plane 
acoustic wave has the form 

t = f ~  exp [-iot+i(oIct) sin Otx]. (23) 
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I t  is well known that the velocities of sound in the liquid and 
crystal satisfy the inequalities (see, for example, Ref. 1 1 ) 

Therefore, in the case of sound incident from the liquid there 
exists a critical angle for total internal reflection for longitu- 
dinal sound in the solid: the "Brewster angle." It is given by 
the relation sinf?,,, = c,,, /c,, with sine, = 1 and cose, = 0. 
When the sound is incident at an angle greater than the criti- 
cal angle, only a transverse acoustic wave is generated in the 
solid. Notice that the phenomenon of total internal reflec- 
tion manifests itself in the sharply nonmonotonic character 
of the angular dependence of the sound transmission coeffi- 
cient. l 2 - I 3  

B. Let us, to begin with, analyze the case when sine,,, 
< CHq /c,. Substituting the formulas (21 ) and (23) into the 
system of equations ( 16) at the point z = 0, with allowance 
made for ( 18), (20), and (22),  and taking account of the 
fact that for the two-dimensional problem u, = u, = u,, 
= 0 and, consequently, only the components G,, and R ,,, 

of the tensors GPp and A la,p are important, we obtain for the 
sound transmission coefficient D = 1 - R (where 
R = lp2012/lplo12 is the reflection coefficient) at not too 
high frequencies w, specifically, at frequencies w, such that 
w ( d  /c) (p/Ap) < 1, the expression 

c? 
G = cos2 201 + 7 sin 20, sin 20,, 

cl- 

where d l ,  d, -d. In the formula (25) we have retained only 
the leading terms in the problem's small parameters Ap/p( 1 
and kd(1. The numerator in the transmission coefficient is 
proportional to a sum of two terms. The first term, which 
depends on the parameter d,, is connected with the coeffi- 
cient of surface tension and the anisotropy coefficient Ex,, as 
well as the effects of the reconstruction of the short-range 
order: the inertial surface mass p,. The second term, which 
depends on the parameter d l ,  is connected with the surface- 
elastic constant ill,,, . The lengths d ,  and d, are of the same 
order of magnitude. Therefore, it follows from (25) that, at 
small values of cos6, and, consequently, for angles of inci- 
dence close to the Brewster angle, i.e., for 

arc sin (c,,,/c,) - I q, 1 ( A ~ / p ) ~ < ~ , , , < a r c  sin (c,,,/c,) 

(7, is a numerical factor composed of the velocities of 
sound), the transmission coefficient is determined largely by 
the surface elasticity. At the same time, in the entire remain- 
ing angle range 

OtB,,,<arc sin (cl,,/c, )- I q, 1 (Ap/p) 2, 

it is determined by the surface tension, the surface anisotro- 

py, and the inertial mass. Let us emphasize that, at an angle 
of incidence exactly equal to the Brewster angle, the trans- 
mission coefficient is nonzero only because of the allowance 
made for the surface elasticity. ( In  this case it is, in magni- 
tude, (Ap/p)2 times smaller than the transmission coeffi- 
cient for angles not close to the Brewster angle.) This cir- 
cumstance justifies the retention, in the formula ( 13) for the 
surface energy, of the small term R ,,, (,u,. The frequency 
dependence of D is governed by the value of the characteris- 
tic dimensionless parameter E = ( w d / ~ ) ( ~ / A ~ ) '  of the 
problem (here and below we assume that all the sound veloc- 
ities are of the same order of magnitude). For values of E < 1 
the frequency-dependent term in the denominator of (25) is 
small compared to the frequency independent term G2.  
Therefore, in the region far from the Brewster angle 
D-c2< 1. In the vicinity of the Brewster angle D - E ~ ( A ~ /  
p)2,  i.e., it is a quantity of even greater degree of smallness. 
We are considering not too high frequencies, i.e., frequencies 
w, such that w(d /c) (p/Ap) < 1. This corresponds to the 
variation of E in the range 0 < E <p/Ap. Thus, there exists a 
frequency region where E > 1, but w ( d  /c) (p/Ap) < 1. For 
E 2 1, D-  E ~ / (  1 + E') - 1 in the region of angles far from the 
Brewster angle, i.e., at large values of the parameter E the 
quantum liquid-quantum crystal phase interface is "trans- 
parent." 

Let us emphasize that the small-surface-oscillation 
spectrum can also be obtained from the formula (25) for the 
transmission coefficient. For the purpose, we must eqHate 
the denominator of the formula (25) to zero (see Ref. 14), 
and restore in it the dependence on the frequency and wave 
vector with the aid of the relations 

cos Ot=ilkzllctlo, sin 0,=c,k,lo, 
cos Bl=il kZ1lcl/m, sin Ol=clkZ/o, 

cosO,,, = ilk f;'g lc,,, /w , sine,,, = c,,, k, /w 
Here we have taken into account the fact that the surface 
oscillations attenuate exponentially with distance from the 
surface into the interior of each of the phases. As a result we 
obtain (see also Ref. 15) 

where 
G= [ ( ~ ~ - - 2 ~ t ~ k , ~ )  2-4~l'kx2 I kzt I 1 klll] lo4 

Let us draw attention to the fact that the surface-elastic con- 
stant ill,, does not figure anywhere in Eq. (26).  For small 
values of the dimensionless parameter z, which coincides in 
order of magnitude with the parameter E introduced earlier 
( ~ = p p l l k ,  I / ( A ~ ) ~  < I ) ,  the right-hand of (26) is small 
compared to the left-hand side, and the spectral equation 
breaks up into two independent equations 

determining respectively the linear spectrum of the Rayleigh 
waves on the free surface of the solid: w = p ,c, / k ,  1, wherep, 
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is a numerical factor (of the order of unity) composed of the now consider separately the longitudinal- and transverse- 
velocities c, and c,, and the w a k 3'2 spectrum sound transmission coefficients, which make up D in the 

of the melting-crystallization waves, slightly renormalized 
as a result of the presence of the inertial surface mass. Notice 
that, for E( 1, the phase velocity of the melting-crystalliza- 
tion waves is much smaller than that of the Rayleigh waves. 
The two branches of the spectrum begin to interact with each 
other when 1 (E< (p/Ap ) . But in the leading approximation 
in Ap/p < 1 and kd < 1, in which Eq. (26) was obtained, this 
interaction leads only to the renormalization of the Rayleigh 
waves as a result of the presence of the capillary effects. The 
spectrum of the Rayleigh waves will have the form 
w = p2c, Ik, 1, wherep, <p ,  is a numerical factor. The spec- 
trum of the melting-crystallization waves can be determined 
as before from the second equation in (27). It is linear in the 
region E )  1: w2 = Exxk f The relative disposition of the 
two spectral branches is determined in the region 2) 1 by the 
relation between axx/p, and pic:. The spectral branches do 
not intersect when dxx/p, <pic:. 

Let us return to the formula (25), and consider the par- 
ticular case of normal incidence of sound from the liquid, 
i.e., the case when el,, = 6, = 8, = 0. For normal incidence 

which coincides with the result obtained by Castaing and 
P ~ e c h . ~  For the values of the parameter E < 1 we have 
D = 4~*c,,, /cl g 1; for 1 < E <p/Ap we have D = 4c,,, c,/ 
(c,,, + c, ) 2  - 1, in accord with the discussion carried out 
above. Let us draw attention to the fact that the formula for 
D in the case when 1 < E  <p/Ap coincides with the formula 
for D in the case of normal incidence of acoustic waves at a 
classical boundary between two immiscible liquids of the 
same density (see Ref. 16, 665). Indeed, estimates carried 
out on the basis of the system of equations ( 16) show that 
(Ap/P) i4~l iqZ ~ v , o , z  4 i  for 1 < E <p/Ap. Consequently, on 
the one hand, u<<, and the assumption under which the 
formula ( 13) was derived is confirmed. (Let us emphasize 
that, for E < 1, the displacement u is also small compared to 
6.) On the other hand, vliqZ = .u , ,~~)  ( Ap/p )i, and the matter 
balance equation in (16) reduces to the condition 
v,,,, = us,,, . In this case the boundary conditions ( 16), with 
allowance for the fact that at normal incidence of the wave 
from the liquid transverse sound is not generated in the solid 
and that 6uzz = - 69,,, , will coincide with the boundary 
conditions at the interface between two classical immiscible 
liquids: &PI,, = S.9'SOl, vliqZ = vSOIZ. This analysis shows 
that the characteristic parameter E of the problem can be 
written in the form E = WT, where T = ( d  /c) ( P / A ~ ) ~  is the 
hydrodynamic surface-reconstruction time. At w r  2 1 the 
quantum boundary becomes a classical one, and D increases 
significantly. Below we limit ourselves to the consideration 
of low frequencies: w r  < 1. The formula (25) contains the 
total transmission coefficient for incidence of sound from 
the liquid at angles smaller than the Brewster angle. Let us 

low-frequency region (E < 1 ): 

where v,,, ,, is the velocity field in the acoustic wave incident 
from the liquid. Comparison of the formula (25) for low 
frequencies and the formulas (28) leads to the relation Dl 
+ D, = D = 1 - R, which is in accord with the law of con- 

servation of energy. Naturally, Dl = 0 when the angle of 
incidence is equal to the Brewster angle, and D, = 0 at nor- 
mal incidence. 

Notice that, with the aid ofthe formulas (25) and (28), 
we can experimentally determine the values of all the surface 
constants important for the present problem. To begin with, 
from the transmission coefficient for longitudinal sound in 
the case of normal incidence we can find the inertial massp,, 
and from the transmission coefficient for transverse sound in 
the case when the angle of incidence is equal to the Brewster 
angle we can determine the surface-elastic constant A,, . 
Then from the transmission coefficient for the case of 
oblique incidence we can find the value of the constant Zxx. 

C. Let us now consider the case when the sound is inci- 
dent from the liquid at an angle greater than the Brewster 
angle (i.e., the case when sine,,, > cIiq/c, ). In this case the 
longitudinal acoustic wave attenuates with distance from the 
boundary into the interior of the crystal. The quantity cosf?, 
is purely imaginary: cos6, = il cos6,I. With allowance for 
this circumstance, D has the form 

D = ~ - R =  4 cos01,, cos ~~p~~~ 
cllq ct (Ap)' 

X [ (ApIp) cos9et+4d,Z (ct/c1)' sin2 Bl 1 cos 0,12] 
[cod 28tf 4(ct/c,)' sin2 281 din2 el 1 cos 81 1'1 , (29) 

Here by the quantity sine, > 1, we mean the quantity 
(c,/cIiq )sine,,,. The transmission coefficient given by the 
formula (29) coincides, in accord with the law of conserva- 
tion of energy, with the transverse-sound transmission coef- 
ficient given by the formula 

From the formula (29) it follows that in the angle range 

where 77, is a constant composed of the sound velocities, D is 
nonzero largely because of the effects connected with the 
surface elasticity. In the entire remaining region of angles 
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(in particular, when the angles of incidence are close to 7r/2, 
i.e., are glancing angles) D is related with the surface con- 
s t a n t s ~ ,  and Ex,. When the angle of incidence, eliq, is equal 
to the Brewster angle, the formula (29) and the second for- 
mula in (28) coincide, and lead to the expression 

D = -  
ct C, cos2 20t (Ap) 'el4 

As the angle of incidence 8,,,+71/2, the transmission coeffi- 
cient D tends to zero like cosOliq. 

D. Let us also briefly discuss the case of incidence at the 
phase interface of a tranverse plane acoustic wave from the 
solid. 

For the incident, transmitted, and two reflected waves 
we have 

Y =Y exp [-iot+i (ole,) sin Btx+ i (ole,) cos 0,z] 
+Yzo exp [-iot+i(o/ct) sin 0,x-i(o/c,) cos Otz], 
@=@a exp [-iot+i (h/cL) sin 0l+-i(ol~l) cos 01~1, 

(30) 

rp=cpO exp [-iot+ i( w/c1,, )sinBliqx + i(o/c,,, )cosOliqz] , 

where 

sin sin sinOliq: -=-- -- 
Ct CI C ~ i q  

TI,  is the amplitude of the incident transverse acoustic 
wave, T2, and @,are the amplitudes of the reflected longitu- 
dinal and transverse acoustic waves, and p, is the amplitude 
of the acoustic wave generated in the liquid. The recrystalli- 
zation-induced displacement ( is given as before by the for- 
mula (23). In the case when transverse sound is incident at 
an angle 0 < 8, < arcsin( c,/c, ) all the waves have real wave- 
vector components along the normal to the interface, i.e., 
along the z axis. 

For angles of incidence arcsin(c,/cl)<8, 
< arcsin(c,/c,,, ) the reflected longitudinal acoustic wave 
attenuates exponentially with distance into the interior of 
the crystal. For angles of incidence arcsin(c,/cliq ) < 8, < ?r/ 

2 both the reflected longitudinal acoustic wave in the crystal 
and the acoustic wave generated in the liquid are exponen- 
tially damped. 

Substituting (23) and (30) into the system of equations 
( 16), we find that the coefficient of transmission by the liq- 
uid of transverse sound incident at the interface from the 
solid 

where u ,~ ,  is the elastic-displacement field in the incident 
transverse wave, coincides with the transmission coefficient 
for transverse sound incident at the interface from the liquid, 

and is given by the second formula in (28) when 
sine, <c,/c,, and by the formula (29) when ct/cl <sine, 
< c,/cIi,. This result is a consequence of the principle of re- 
versibility. 

Notice that the transmission coefficient for normal inci- 
dence (i.e., in the case when 8, = 8, = el,, = 0)  is equal to 
zero. For small angles of incidence 8, the coefficient D is 

nonzero largely because of the effects connected with the 
inertial surface mass p,. In the angle range 

D is nonzero because of the effects due to the surface-elastic 
constant R ,,, . 

Let us also note that, at low frequencies, the coefficient 
of conversion of transverse sound into longitudinal sound in 
the case when sine, <c,/c, is, up to the small frequency- 
dependent terms -w2, equal to 

I i1 IZc, cos 01 - 4ct cos el COS' 20t sin90t 
Rl= . --- 

I U ,  in, 1 2 ~ t ~ ~ ~  e, Cl COS or G~ 

This expression coincides with the transformation ratio for 
the case of transverse sound incident at the boundary 
between a classical crystal and vacuum. 

3. THE QUANTUM LIQUID-QUANTUM CRYSTAL PHASE 
INTERFACE IN THE PRESENCE OF A TANGENTIAL 
SUPERFLUID-LIQUID FLOW 

Let us consider the problem of the development in time 
of surface oscillations excited in the background of uniform 
"slipping" of superfluid liquid along the surface of the ini- 
tially undeformed stationary crystal. The formulation of 
such a problem is itself possible only for the superfluid liq- 
uid, since, because of viscosity, the normal liquid has zero 
tangential velocity at the boundary with the solid. 

The derivation of the equations of surface hydrodyna- 
mics in the presence of a stationary surface superfluid-liquid 
flow parallel to the boundary is carried out on the basis of the 
same formulas, ( 1 )-( 13), that are used in the derivation of 
the equations in the absence of surface flows. Let us limit 
ourselves to the case of sliding velocities that are small com- 
pared to the sound velocities. Then it is easy to show that we 
again can ignore in the problem the dependence of the sur- 
face energy (3)  on the surface momentum Po,. Retaining 
only the leading terms in the small parameters Ap/p<l, 
kd(1, and udc(1, where u, is the slipping velocity of the 
liquid, we have for not too high frequencies, i.e., frequencies 
w such that w (d  /c) (p/Ap) < 1, the following linear bound- 
ary conditions: 

a,, + P l i q  - P o = O ,  

Psol ( Pso~ + ugq 12 - Uso~a U ~ i q a  - Pso~ ) + 9 sol - 9 ~ i q  

+VD(EpgCfl +R,ayB~ay) - P I ~ = O .  (31) 

The system of equations ( 3 1 ) differs from ( 15 ) by the pres- 
ence of terms quadratic in the velocities in the generalized 
phase-equilibrium equation and in one of the mechanical- 
equilibrium equations. Let us, moreover, note that the liq- 
uid-velocity component along the normal to the deformed 
surface, v,,, n, does not, even in the first approximation in the 
deviation from equilibrium, coincide with vliqZ :vliq n = uliqz 
- v,ca. In the zeroth approximation the system of equa- 

tions (3  1 ) yields the relations 
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9 h o 1  = 901iq = 9 0  2 POSO] = P01iq + d / 2  =PO . 
Notice that the chemical potentials of the solid and liquid do 
not coincide in the presence in the problem of a stationary 
surface flow even in the absence of small oscillations in the 
system. In the first approximation in the deviations of the 
quantities from their equilibrium values we obtain, after 
allowance has been made for the thermodynamic identities 

the equations 

Let us analyze the spectrum of the surface oscillations gener- 
ated in the background of uniform slipping of the liquid for 
small wave vectors k: E = (p/Ap) 2kd<9 1. In this case it can 
be shown that lzi / < I v,,, I. Therefore, if we are interested only 
in the low-lying branch of the spectrum, i.e., in the melting- 
crystallization waves, then we can discard the two mechani- 
cal-equilibrium equations in the system of equations (32), 
and set, as is done in Ref. 1, u = u = 0 in the phase-equilibri- 
um and balance equations. Then (32) reduces to 

The system (33) is valid at the temperature T = 0. In a real 
experiment T #O. It is important for us to determine both 
the real and the imaginary parts of the melting-crystalliza- 
tion wave spectrum. Therefore, it is expedient to include in 
(33) the dissipation due to the friction of the phase interface 
on the normal excitations of the liquid and crystal. Analysis 
similar to the one carried out in Ref. 17 shows that this can 
be done by adding to the phase-equilibrium equation a term 
linear in the recrystallization rate, specifically, the term 
- pSj  /K, where K is the crystal growth coefficient. Assum- 

ing 1/K to be a small quantity, and solving in this case the 
system of equations (33) with the aid of perturbation theory 
together with the volume continuity equation divSv,,, = 0 
and tlie equation Svliq + V{S,ullq + vonSvliqa = 0 of super- 
fluid motion, we find the spectrum 

which coincides in the case when K = cs with Nozibres's 
result.'' In deriving (34), we considered the two-dimension- 
al problem, i.e., the k = (k, ,k, ) case, and assumed the ve- 
locity to be parallel to the x axis. In (34) w, is the melting- 
crystallization wave spectrum in the absence of stationary 
flows. When vok, > 0 and @/@) 1 voJ 1 k, 1 > w,, we have Im 

w > 0, and, consequently, instability sets in. Physically, its 
origin is connected with the fact that the solid is stationary, 
and therefore the correction to the real part of the frequency, 
equal to - (p/@) v,k,, is not just a Galilean shift. This 
instability is very similar to the instability of a superfluid 
flow against excitation production at velocities higher than 
the critical velocity. 

Let us consider the region c <  1. Then wt 
-Z, pkzlk, I / ( b l 2  and (p/AP)(v,(/k, 1 >wo for 
IvoI > (Z,, Ik, l/p)'12-0 if k,-+O, i.e., the instability sets in 
virtually in a nonthreshold manner (the limitation on v, is 
due only to the fact that Jk, I > 21i-/L, where L is the dimen- 
sion of the crystal). But when we take gravity into account, 
we have 

and there appears the instability threshold 

Nevertheless, the critical velocity at which the instability 
sets in is low compared to the sound velocity, and the as- 
sumptions under which we derived the system of equations 
(3  1 ) hold. 
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"Here and below we neglect the static surface stresses, which have the 
order of smallness d /L, where L is the dimension of the crystal. They 
give rise to small-in comparison with the large equilibrium p r e s s u r e  
elastic-modulus renormalizations when we go from the Lagrange to the 
Euler variables. 
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