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A simple theoretical approach is proposed that makes it possible to describe smectic ordering in 
melts of block copolymers containing flexible and rigid blocks. It is shown that for such systems 
the Ginzburg parameter is very small, which ensures that the mean-field approximation is appli- 
cable. It is found that 1 ) the nematic-smecticd transition can be either a second-order transition 
(if the volume fraction of the flexible component is small), or a first-order transition (in the 
opposite case); 2) in the smectic phase, with decrease of the temperature (increase of the param- 
eter X )  one or two structural transitions can occur (the latter case is always associated with a 
doubling of the period of the smectic phase). The phase diagram for the system under considera- 
tion is constructed. The parameters of the smectic structures are related to molecular characteris- 
tics of the polymer. The situation in which the appearance of a smectic-Cphase should be expect- 
ed is indicated. 

1. INTRODUCTION 

Numerous observations of liquid-crystalline phases in 
polymer melts'-3 have recently stimulated intensive devel- 
opment of theoretical ideas in this area. The special interest 
in smectic liquid-crystal polymers is connected both with the 
fact that they are a good model for illustrating general con- 
cepts in condensed-matter physics and biology, and with the 
application of materials based on them in new areas of tech- 
nology. 

The smectic mesophase is the most complicated and so 
least studied of the possible liquid-crystalline phases. The 
theoretical papers in which smectic liquid crystals are inves- 
tigated mainly use phenomenological methods of the Lan- 
dau-expansion t ~ p e . ~ - ~  In a recent paper,' Dowel1 proposed 
that a lattice model be used to describe the smectic ordering 
of a melt of particles that consist of a rigid rod and a flexible 
part. A number of nonrigorous assumptions in Ref. 7 lead to 
what is, in our view, the qualitatively incorrect conclusion 
that a stable smectic phase can exist in the absence of energy 
of attraction between the particles. 

The aim of the present paper is to give a theoretical 
analysis of smectic ordering in liquid-crystalline melts of 
two-block macromolecules with one rigid and one flexible 
block (Fig. la) .  The choice of this system for investigation is 
the most natural as a first step on the road to studying more- 
complicated polymer systems, such as many-block and 
branched polymers (Figs. lb,c), and is at the same time of 
obvious interest in its own right (see, e.g., Refs. 8 and 9, in 
which it is proposed that films of the block copolymer poly- 
butadiene with poly-y-benzyl-L-glutamate be used as a mod- 
el of biological membranes, etc.). 

The model of the macromolecule is represented in Fig. 
2a. The polymer chain is constructed from a rigid and a flexi- 
ble fragment, linked together. The rigid fragment is a strong- 
ly asymmetric rod of length L and diameterd ( L  /d> 1 ). The 
flexible fragment is a uniform filament of length L ', of diam- 
eter d ', and characterized by a rigidity segment I (the dis- 

tance over which substantial bending of the filament can 
occur); L '>l>d '. We shall assume that a rigid and a flexible 
block are incompatible and therefore tend to become spatial- 
ly separated. Since separation of the system into two macro- 
scopic phases is prevented by the chemical bonding of the 
blocks into a chain, a structure consisting of microdomains 
enriched alternately in the rigid and flexible components 
should be stabilized in the melt. In accordance with Ref. 10 
we shall describe the effective repulsion between unlike 
blocks (or the equivalent attraction between like blocks) by 
an interaction parameter x > 0. 

We also formulate the following additional statements 
concerning the model under consideration. First of all we 
use the fact that the orientational order of the rods in the 
region of the nematic-smectic transition should be very high. 
We shall assume, in the zeroth approximation, that the 
orientational disorder can be neglected completely, and that 
all the rods are strictly oriented along one axis (the z axis). 
As regards the flexible block, the description of its confor- 
mations is simplified substantially if we replace the uniform 
chain by the equivalent chain of beads on a nonmaterial fila- 

FIG. 1 .  Different models of polymer chains that can form a system in 
which smectic ordering is possible. 
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FIG. 2. a) Copolymer consisting of a rigid and a flexible block; b)  macro- 
molecule orientation corresponding to f,; c )  orientation corresponding to 
fi. 

ment (the standard Gaussian model; for the rules for going 
over to this model, consult Ref. 1 1 ) . It is assumed that the 
beads each have volume v ,  the total number of beads in one 
macromolecule is N, and the mean square distance between 
neighboring beads is equal to 6a2 (Fig. 2b). Of course, the 
beads model should ensure both the correct mean square 
distance between the ends of the flexible filament and the 
correct volume of a flexible block1': 

From the quantities a,  d, v, N, and L we can construct 
two important dimensionless parameters: 

An important role is played by their ratio 

As a rule, d -d '  and L>I, and therefore v(1. This is the 
limiting case that will be considered in the following. 

The results of the work are described in the following 
sequence. First we write out the free energy of the melt in the 
formalism of the mean-field method and discuss the charac- 
ter of the nematic-smectic transition and the possible struc- 
tural transitions within the smectic phase in this approxima- 
tion. In the last Section we analyze the density correlation 
function of one of the components in the region of the nema- 
tic-smectic transition. 

2. THE FREE ENERGY OF THE SYSTEM 

Each macromolecule can be found in two essentially 
different conformational states associated with the orienta- 
tion of the macromolecule relative to the z axis. To these 
states (which are shown in Figs. 2b and 2c) correspond dif- 
ferent distributions 7' (r)  and f2 (r)-the concentrations of 
the points of attachment between the rods and the flexible 
parts. The volume fraction occupied by rods near the point r 
is obviously equal to 

0 0 

where f l  = d y, ,  f2 = d y2, and e, is the unit vector along the 
z axis. Henceforth it will be convenient to take the length L of 
the rod as the unit of length. Since we are considering spatial 
variation only along thez coordinate, we can rewrite (2.1 ) in 
the form 

i 

The volume fraction occupied by flexible blocks in the layerz 
is equal to 

where c(z) is the total concentration of beads. 
The condition that the melt be incompressible has the 

form 

The average volume fractions are equal to 

where 

The free energy F of the system per area d in the xy 
plane can be separated into four terms 

where 

is the ideal-gas term, Fa:,, corresponds to the energetic inter- 
action (the attraction between like blocks), Fs, corresponds 
to the steric interaction of the rods, and FJ1 describes the 
change of the free energy on account of the restriction on the 
number of possible conformations of the flexible fragments 
in the microstratified system. We shall write the term Fat in 
the customary form'': 

To find F,, we shall use the lattice-packing model, i.e., 
we shall assume that the rods are arranged on a lattice with 
spacing d such that each rod occupies L /d successive cells 
along the z axis. It is necessary to find the number of ways in 
which the rods can be placed on the lattice without self- 
intersections for a given distribution a ( z ) .  This can be done 
by generalizing the well known arguments of Flory l2  to the 
case of a nonuniform system. We shall denote the number of 
cells in one layer of the lattice (in the xy plane) by n. Let Nl 
be the number of rods that begin in the first layer (and end in 
the layer with label L /d),  let N2 be the number of rods that 
begin in the second layer, and so on. The total number of 
ways of placing the rods for given N,, N2, ... is equal to 
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The term F,, = - Tn-'ln ( N / N o ) ,  whereN,, is the num- 
ber of ways of placing the rods when self-intersections are 
not forbidden: 

JY, = c,?cnN'cnN1. . . . 
Taking into account that N, = n (d  /L )a( zj ) and taking the 
thermodynamic limit, we find 

For a uniform system, (2.7) goes over into the correspond- 
ing formula of Ref. 13. Since L /d) 1, formula (2.7) can be 
simplified: 

F,,=T jo(z)ln 
1 

dz. 
1-q (z) 

We turn to the calculation of the last term in the free 
energy: 

where S is the conformational entropy of the flexible parts 
for a given total concentration c(z) of all the beads and a 
given concentration of the end beads adjacent to the rigid 
rods: ?(z) =?, (z) +?,(z). We have not succeeded in ob- 
taining an exact analytical expression for S [ C ~  in the gen- 
eral case. We shall investigate the limiting cases of short- 
wavelength and long-wavelength variations of the 
concentrations. If the characteristic length scale b of vari- 
ation of the concentrations c and y i s  considerably smaller 
than the characteristic spatial size of a flexible block 
(b<N 'I2a), end effects can be neglected completely. In this 
case, S = S[c] depends only on the total concentration of 
beads. Under the condition that the variation of the concen- 
tration c(z) is not too rapid (b)a), the entropy S[c(z) ] can 
be written in the form1 

where V is the spatial gradient. 
We shall consider the opposite limiting case b)N "2a. 

We shall assume that the stretching of the flexible blocks is 
small (the relative change in the distance between the ends 
of a flexible block is much less than unity). Then, as shown 
in Appendix A, the conformational entropy is equal to (cf. 
Ref. 13) 

where E = 2a2c/3, and the quantity D is determined from 
equations analogous to the equations of electrostatics: 

the function qb is proportional to the potential of the self- 

consistent field acting on the beads. As a reasonable approxi- 
mation for S we can take the sum of the expressions (2.9) 
and (2.10). This sum describes the behavior ofS  asymptoti- 
cally exactly in the short-wavelength and long-wavelength 
limits, and, as shown by analysis, even in intermediate cases 
gives an error less than 20%. 

Using the notation ( 1.2) we can write the formula for 
F,, in the form 

where 

Thus, formulas (2.5), (2.6), (2.8), and (2.12) deter- 
mine the free energy F of the system as a functional off, and 
f,. The polymer melt is a weakly fluctuating system,I4 and 
therefore to find its thermodynamic characteristics it is nec- 
essary simply to minimize the functional F with respect to f, 
and f,. The nematic phase corresponds to uniform distribu- 
tions: f, = f, = (1 - p)/2. The smectic-A phase corre- 
sponds to periodic functions f, (z) and f,(z). In Secs. 3-5 we 
investigate the conditions of formation and the properties of 
the smectic-A phase. 

3. THE SPINODAL OF THE SYSTEM. THE MONOLAYER- 
BILAYER PHASE TRANSITION 

We shall investigate the stability of the nematic melt 
against the formation of a smectic structure, which, for the 
system under consideration, corresponds to microphase 
stratification of the lamellar type (cf. Ref. 13). For this, in 
accordance with the general scheme of Ref. 15, we specify 
increments: 

go over to Fourier components, and write SF = F - Fo with 
quadratic accuracy: 

where C, ,, C,,, and C,, depend on q. 
It is easy to show that C, , = C,,, and therefore the con- 

dition for stability against smectic ordering has the form 
C, , > I C,, I for all q. The spinodal equation is 

min{C,, - 1  C,, I I= 0. (3.2) 
P 

The formulas of the preceding Section permit us to calculate 
C , ,  and C,,. After certain transformations Eq. (3.2) takes 
the form x = x,,  where 

"A = min 
1 

{(I +(++a). 
a 2(1-(p) tg a 

If /2(1 (i.e., ~ ( l  ), minimization with respect to a in (3.3) 
in the leading approximation leads to the equation 
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whence a, = n( 1 - il ) . Thus, when the volume fraction q, of 
flexible blocks is small, the instability appears when 

and corresponds to a density modulation with period (in 
units of L ) 

IT P = - w I+h-'/83tZh3. 
C1 

(3.5) 

In the opposite limit A)  1 (i.e., 1 - p g l )  and x < l  (the case 
x )  1 will be considered separately ), formula (3.3) reduces 
to 

1 aa 
XC = min - 

2 )  s in4a '  

whence a, = 1.17, and 

Thus, if the flexible blocks occupy most of the volume, den- 
sity modulations with a period comparable to L arise near 
the spinodal. 

In order to elucidate the character of the nematic-smec- 
tic transition it is necessary to take into account the next 
terms (after the quadratic term (3.1) ) in the expansion of 
the free energy. The cubic term in the expansion plays no 
role;4 the quartic term is calculated in Sec. 6, and is found to 
be positive on the spinodal (both for A < 1 and for A >  1 ) . In 
addition, analysis shows that forilgl,  v g l  andforil, 1, x g l  
smectic ordering is not favored for x <xC.  Consequently, in 
these cases the nematic-smectic transition is a second-order 
transition and occurs at x = x,, i.e., on the spinodal. 

We now investigate the phase transition between smec- 
tic structures that occurs at large values of the incompatibil- 
ity parameter x>x,. Here there arises competition between 
two structures, of the monolayer (Fig. 3a) and bilayer (Fig. 
3b) types. 

In the former the rods densely occupy layers of thick- 
nessL, which alternate with layers of thickness AL occupied 
by flexible blocks. The domain walls between the layers have 
a small thickness A. We draw attention to the fact that the 
period of this structure almost coincides with (3.5). Let 
x(A '; then the flexible blocks have to be strongly extended, 
in order to fill the layer of thickness A. The corresponding 
free energy, calculated from formula (2.12) (only the sec- 
ond term in this formula is important), is equal to 

F ,  I h2 -=- 
( S T )  16 x(I+h) ' 

where 2 is the total extent of the system along the z axis. 
The energy of a domain wall is calculated in Appendix B, 
and is equal to 

which corresponds to the following contribution to the free 
energy: 

FIG. 3. a )  Structure of the monolayer type; b) structure of the bilayer 
type. 

The structure of the bilayer type is formed by layers of 
twice the thickness, and therefore the flexible blocks are ex- 
tended twice as much, with a corresponding increase in the 
free energy of stretching F, by a factor of four. On the other 
hand, there are half as many domain walls in this structure. 
For large values ofx  the latter circumstance is decisive and a 
first-order monolayer-bilayer transition occurs. The transi- 
tion point x = X* is determined by the equation 

whence 

4. STRUCTURE OF THE SMECTIC PHASES FOR h ( l  

We proceed to a systematic study of the properties of 
the smectic order in the case when the rigid blocks occupy 
most of the volume of the system. For X>X, the volume 
occupation g(z) of space by the flexible blocks should have 
the form depicted schematically in Fig. 4a. From this Figure 
it is already clear that the period of the structure should be 
exactly equal to P = 1 +A. In fact, the space between the 
domains that are enriched in the flexible component is en- 
tirely occupied by rods. This means that there is exactly one 
rod per period (along thez axis) and per area d in the plane 
of the layer (the xy plane). Consequently, by virtue of the 
close-packing condition (2.3), the volume Pd should be 
equal to the volume 

of a macromolecule, i.e., P = 1 + A. Therefore, 
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where 

FIG. 4. a) Dependence of the concentration of flexible fragments on the 
coordinatez in the case p< 1; b)  distribution of the starting points of rigid 
blocks in the smectic phase with doubled period. 

Taking into account (4.1 ) and the definition of the function 
77(z), we find 

z+L 

g(z)- l-T,(z)= j o(z)L 

Substituting (4.2) into (2.8), expanding in the small 
parameter A, and retaining the leading terms we arrive at the 
expression 

An analogous procedure enables us to simplify the expres- 
sions for F,, and F,, (F,, corresponds to the first term in 
formula (2.12), and F,, corresponds to the second term) : 

From (4.3) follows the expansion 

Expressing f, and f2 in terms of +f, - f, and a ,  and substi- 
tuting the result into (2.5) and (2.12), we find 

Combining all the terms and minimizing with respect to $, 
we obtain the final expression for the free energy: 

F 1 of 
-= T 

s ( lnx+Q--  0 ~h'o') dz, 

We note that the first term in the brackets in (4.8) corre- 
sponds to the free energy of the nematic phase. 

It should be noted that the expression (4.8) is valid for 
anyx, and not only f o r x ) ~ ,  , if the period of the structure is 
exactly equal to Po = 1 + A .  We shall see what the expres- 
sion (4.8) gives for the spinodal. For this we minimize the 
expression (4.8) with respect to o for a given period Po and 
with the additional condition (4.1 ). As a result we obtain the 
equation of the spinodal: 

The slight difference between (4.9) and the exact solution 
(3.4) is connected with the fact that the true period of the 
structure on the spinodal differs slightly from Po. 

The density function is specified by the following rela- 
tion (see the calculations in Appendix B): 

hko I.' 
g ( z ) =  2 &Z koz ' ko = - 

Let x 4  '; then ko = X, and with increase o f x  the domains 
enriched in the flexible component become narrower and at 
the same time the density of the flexible component in these 
domains increases. For x - l/A this density becomes of the 
order of unity, and the size of the domain becomes of the 
order ofA. Above these values ofx formula (4.8) ceases to be 
valid, since gradient expansions of the type (4.2) become 
inapplicable. Further analysis shows that for X) l/A the 
structure practically does not change. In this stable struc- 
ture the density function g(z)  has a rectangular shape. In 
this state,p = f, + f, - g/A, i.e., the flexible parts of the ma- 
cromolecules are not extended (they are similar in shape to a 
"Gaussian ball"), and, therefore, by analogy with the elec- 
trostatic problem, such a structure can be called neutral. 

The transition to the monolayer-type structure (in 
which the period does not change, but the domains acquire a 
rectangular shape) occurs as a first-order phase transition at 

Finally, at x =x*%x, the final, first-order, monolayer-bi- 
layer transition occurs (see formula (3.10) ). 

In the casex)A 2, still in the stage of growth of the do- 
mains, a transition to a phase with doubled period occurs. 
We shall investigate this transition. It is clear that the func- 
tion a ( z )  should have the form depicted in Fig. 4b: It con- 
sists of identical waves u(z) = U ( z  - z, ) (2, is the average 
coordinate of the wave), separated alternately by intervals of 
length 1 +A1=l +A(1 -a)  and 1 + A  "=I +A(1 + a ) ,  
where a is an asymmetry parameter; the period of the struc- 
tureisequaltoP= 1 + A 1 +  1 + A "  =2P0. 

The density furiction of the flexible component corre- 
sponds to alternating waves of different amplitudes (Fig. 
4c). The domain corresponding to the lower wave is de- 
scribed by the formula 
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(4.12) 
Analogously, for the other domain, 

From the condition p = 0 we find 

Substitutingnow (4.12)-(4.14) into (2.5), (2.6), (2.8) and 
(2.12) and performing the same expansions as in the deriva- 
tion of formula (4.8), we find the free energy of the system 
per period P = 2P0: 

(4.15) 
where 

Minimizing (4.15 ) with the additional condition (cf. (4.1 ) ) 

J u(z)az= I 

and for fixed a, we find 

For a = 0 (4.17) agrees with (4. lo).  We substitute (4.10) 
into (4.15): 

Minimization of (4.18) with respect to a shows that the 
doubling of the period occurs by a first-order phase transi- 
tion at 

and the asymmetry parameter a at the transition point is 
equal to 

As x increases for x > x, the amplitude of the weaker 
waves rapidly decreases practically to zero, while the sharp 
waves grow yet more and gradually become narrower. At 
X-x/A 3 > ~ 1  a smooth transition occurs to a bilayer-type 
structure, characterized by a rectangular dependence g(z).  

5. PHASE TRANSITIONS FOR A > l  

We shall consider the properties of the smectic order in 
the case when the flexible blocks occupy most of the volume 
(A ,  I;  it is assumed, of course, that Y = x/A ( 1 ) . 

First let x(1. As shown in Sec. 3, the nematic-smectic 
transition in this case is a second-order phase transition and 
occurs on the spinodal at x = X, (formula (3.7) ). It is not 
difficult to show that for x,xc a neutral structure ( p = 0)  , 

analogous to that considered in the preceding Section for 
A( 1 and x(A 2,  is stabilized. 

We note that 

since (7) = 1 - p( 1, and therefore the condition p = 0 
gives fl + f, = l/A, i.e., 

where V(z) can vary between the limits - 1 and 1. Ifx)xC, 
the main contribution to the free energy is given by the term 
(2.6), which we write in the form 

where 77 = 7 - (7) can be represented, with allowance for 
(5.1), in the form 

I 

The expression (5.2), with the condition (5.3), must be 
minimized with respect to V(z). In order of magnitude, the 
answer is clear in advance: 

where f l  is a numerical coefficient. By taking the trial func- 
tion V(z) in the form depicted in Fig. 5a, we obtain 

For the trial function B(z) = cos kz, we obtain 

From these results it is clear that the true dependence V(z) 
should have the form depicted approximately in Fig. 5b, and 
the parameters of the structure should be close to (5.5). 

For sufficiently large values of x the neutral structure 
becomes less favored than the structure depicted in Fig. 6: 
The rigid rods form domains of thickness 1, separated by an 
interval S, 1 + S. The packing factor of the rods in the do- 
mains is obtained from the condition (7) = l/A: 

FIG. 5 .  a )  Trial function V(z); b) true solution for U(z) 
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The free energy is determined mainly by the terms Fa, and 
F*, . It is not difficult to find that the free energy per unit 
length is equal to 

Minimizing with respect to S, we find 

Comparing (5.7) with (5.4)-(5.5), we find that a first-or- 
der phase transition occurs at 

with the formation of a structure of the type shown in Fig. 6; 
the period of this structure at the transition point is 

i.e., is somewhat smaller than the period in the neutral 
phase. 

With increase ofx  the period P increases in accordance 
with the law 

P='/,+B~x/A, q,,,=3/2h+8x~lh2. 

This growth ceases when ij,,, becomes equal to 1, i.e., when 
x = x2 = A 2/8x. For large values ofx  >x, the system has a 
structure of the monolayer type. The final, first-order, mon- 
olayer-bilayer phase transition occurs at 

We now consider the situation when x~ 1. In this case 
the smectic ordering occurs directly with the formation of a 
structure of the type shown in Fig. 6, omitting the neutral 
phase. To investigate the corresponding transition it is nec- 
essary to add to the free energy (5.6) the ideal-gas term 
(2.5), which, in the logarithmic approximation, is equal to 

Minimizing the free energy of the smectic phase (the sum of 
the expressions(5.6) and (5.10)) with respect to S and 
equating it to the energy of the nematic phase (F/ 
Y T  = - x/il *), we find that the nematic-smectic transi- 
tion for x, 1 occurs as a first-order phase transition at 

FIG. 6.  Structure of the smectic phase for x>  1. 

FIG. 7. Schematic phase diagram of the system for a fixed value of v = x/  
A <  1. The solid lines correspond to a first-order transition, and the dashed 
lines to a second-order transition; AC=0.3/v, 1 ' - v ,  A "-Ac. The 
numbers indicate the following dependences: 1) ,y = 4.93( 1 + 2v/1), 
141 ;  2) x = 0.951, l /v>1>l;  3) x = y ( 1  /v)'I2, A>l/v, and y is deter- 
mined by Eq. (5.12); 4)  ~ = 0 . 0 9 / v ;  5)  ,y = 2.42v1I2/A 'I2, A+; 6 )  
x = 0.071 '/v3, 1>v.  

the period of the smectic structure at the transition point 
being equal to 

where the parameter y is determined from the equation 

As x increases in the region x >x,  the same changes of the 
smectic structure occur as in the case x( 1. 

Joining the line (5.11 ) of the first-order transitions with 
the line of second-order transitions, which is determined by 
the spinodal equation ( 3.3 ) and has the form 

a2 
X. = A min {-- 1+8u2x/3 } A > I, 

2 sin2 a sinz a+8a2x/3 ' 

we obtain the critical point of the second-order transitions: 

For x <x, the smectic ordering occurs as a second-order 
phase transition, while for x > x, it occurs as a first-order 
transition. 

The results obtained in Secs. 3-5 make it possible to 
construct the phase diagram of the system for a fixed value of 
Y = x/A ( 1. " This diagram is depicted schematically in Fig 
7 in the variables il and X. The solid lines on the diagram 
correspond to first-order transitions, and the dashed lines to 
second-order transitions. Nematic-smectic transitions occur 
on the line 1-2-3, and the critical point of the second-order 
transitions has the parameters A, s 0 . 3 / ~ ,  xC =0.27/~. The 
line 4 corresponds to transitions from the neutral phase to 
the phase with the monolayer-type structure; A'-Y, 
A " -Ac. Finally, the line 5-6 describes the monolayer-bi- 
layer transitions. The numbers correspond to the following 
asymptotic regimes: 1 ) A 4  1, formula (3.4); 2) l/v,AB 1, 
formula (3.7); 3) il>l/v, formula (5.11 1; 4)  formulas 
(4.1 1) and (5.8); 5)  A(Y, formula (4.19); 6) R>Y, formula 
(3.10). 
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6. DENSITY CORRELATION FUNCTION NEAR THE NEMATIC- 
SMECTlC TRANSITION 

In this Section we shall consider the density correlation 
function of one of the components in the melt: 

near second-order transitions from the nematic to the smec- 
tic phase. The interest in this function is connected with the 
fact that the structures with one-dimensional periodicity 
that were considered in the preceding Sections can exist only 
in the framework of the mean-field approximation; in rea- 
lity, over large scales they are washed out by fluctuations.15 
But the correlation function does have direct physical mean- 
ing; it can be measured in experiments on x-ray scattering. 

The correlation function near the transition from the 
nematic phase can be found in the standard way. We write 
the free energy 3 per unit volume of the system in the form 
of an expansion in powers of 67: 

where the summation over the wave vectors is performed 
with q, + q2 + q, = 0 and q, + q2 + q3 + q4 = 0 in the set- 

ond and third terms, respectively, and 

6sq=V-' 6q (r)e-"' d3r. 

I f x  is close to x,, then a (q) has a minimum near q,e,; for 

we have 

where r = 1 - x/x,. Let 

then 

where b = b (q,, q,, - q,), and E is a small parameter. Con- 
sequently, the nematic-smectic transition can indeed be sec- 
ond-order,4 and the Ginzburg parameter for this transition 
is equal to16 

The correlation function for r,<, as can be seen from (6.5), 
is equal to 

where q is defined by formula (6.3 ) . In the coordinate repre- 
sentation (6.7) gives 

Omitting the details of the calculations, we give the val- 
ues of the parameters a,, b, c,, and c, for our model: 

wherea = q& /2. The most important consequence of (6.8) 
is that c2 becomes negative for q, > q,,, where q,, = 0.639, if 
v< 1. Consequently, for q, > q,, the structure of the smectic-A 
phase is found to be unstable against rotation of the director. 
A more complicated structure (evidently, a smectic-C 
phase) should be stable. We shall not investigate this ques- 
tion here, but shall confine ourselves to the case p < p,. 

Substituting (6.8) into (6.6), we see that for q,<1 the 
Ginzburg parameter is small both in d /L and in q,. To esti- 
mate < when q, is not too small we can assume that x (p  '; 
then (6.6) and the generalization of the expressions (6.8) 
(for brevity, we omit them here) give 

where$(q,) = q, 4forq, S0.2;$(0.4) = 0.0046; $(q , , )  = CO. 

A typical value of the parameter vL /d = Id /6d '' (see for- 
mula (1.3)) is0.28 ( l = 7 A , d = 5 A , d 1 = 4 . 5 A ) .  Ifwe 
choose the value L /d = 4, which is typical for low-molecu- 
lar-weight substances (for polymers, as a rule, this quantity 
is much greater), then for q, = 0.4 the Ginzburg parameter 
is still found to be very small: 

Thus, the fluctuation region should be very narrow, even for 
low-molecular-weight smectics, and so should be still nar- 
rower for polymer systems. 

In the smectic phase the principal role for the correla- 
tion function is played by elastic distortions of the layers, 
which smear out the periodic structure. If u(r )  is the dis- 
placement of a layer along the director (along thezaxis), the 
free energy of distortion is equal 

If the equilibrium (in the framework of mean-field theory) 
structure has the form 677, = 2~ cos qg ,  and P = 2n/qo is 
the period of this structure, then, as shown on the basis of 
(6.9) in Ref. 19, the correlation function has the form2' 

where 
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We shall investigate how X ( T )  varies in the smectic 
phase near the transition. As follows from (6.5), 

&'=2a,~ /b ,  E=T ( L l d )  2 ~ 1 ~ 2 q 0 2 .  (6.12) 

The coefficient K, near the transition is equal to the trans- 
verse-bending constant for the nematic. To estimate this 
quantity we shall make use of scaling considerations: 

Ki=B (TIL) (Lid) ' ,  (6.13) 

where f l  is a numerical coefficient that depends weakly on 
the temperature. We estimate the quantity B starting from 
data for para-azoxy anisole (PAA). For T = 370 K, L = 20 
A, d = 6 A, and K, = 0.7.10W6 dyne (Ref. 17) we obtain 
flz 1/4. We substitute (6.12) and (6.13) into (6.1 1): 

whence, for p< 1, we have 

Consequently, already on the boundary of the fluctu- 
ation region (at JTJ  = l )  we have X(T) 5 1; with increase of 
171 the quantity X ( T )  decreases as ( 5  ) 'I2. For ( T I ) <  the 
length scale over which the smectic structure is washed out 
by fluctuations is exponentially large in the parameter 1/ 
~ ( 7 )  2 (  IT^/^)"^. 

CONCLUSION 

Thus, we have investigated the properties of the smectic 
ordering in melts of two-block copolymers by the mean-field 
method. The applicability of the theory is ensured by the 
smallness of the Ginzburg parameter <. It is shown that the 
nematic-smectic transition should be a second-order transi- 
tion if the length of the flexible fragment is small, and a first- 
order transition otherwise. As the parameterx increases and 
(the temperature decreases) a structural transition of the 
monolayer-bilayer type between two smectic phases should 
occur. 

These conclusions agree qualitatively with the experi- 
mental data for low-molecular-weight and polymer smec- 
tics. In most cases the nematic-smecticd transition is found 
to be a first-order transition, but in the case of short flexible 
fragments it has been established that this transition can be 
second-~rder .~ ' -~~  In low-molecular-weight systems cybo- 
tactic structures are known24 in which layer smectic order is 
observed only over small scales (of the order of a few layers). 
Such structures have also been observed recently in systems 
of polymers with strongly interacting cyan-containing meso- 
genic groups.25 The nematic-cybotactic transition is usually 
second-order. As follows from the analysis given in Sec. 6, 
the cybotactic structure is very similar to the smectic struc- 
ture near the point of the second-order transition to the ne- 
matic phase. 

A monolayer-bilayer transition when the temperature 
drops has been observed in a melt of cholesterol-containing 
polymers.26 

The authors are grateful to V. P. Shibaev for fruitful 
discussions of the results of this paper. 

APPENDIX A 

To calculate the conformational entropy S[ca we shall 
make use of the well known method of Ref. 11. We specify 
the concentrationT(r) of end links in a system of identical 
flexible chains and place this system in an external field @(r )  
acting on each bead-link. We assume that the length scale B 
over which T(r) and +( r )  change substantially is much 
greater than the size N 'I2a of a ball. In the zeroth approxima- 
tion we can assume that the total concentration c(r)  of all 
the beads has the same form as the distribution of the end 
beads: 

c ( r )  =Nf ( r )  . (A.1) 

Over the scale of one chain the field + ( r )  can be assumed to 
be uniform and to act on each bead of the chain with a force 
R = - V@. If F, and U, are the free energy and energy of 
one chain in the uniform external field, the entropy of the 
chain is obviously equal to S ,  = ( U, - F, ) /T. The calcula- 
tion of F, and U, is trivial (it reduces to the calculation of 
Gaussian integrals). As a result we obtain 

i.e., the total entropy is equal to 
a2N3 

s = j  s i f d 3 r =  --J 3T2 f ( v @ ) ~ d ~ r .  (A.2) 

We shall assume that the field @(r )  is sufficiently weak that 
the difference between7and c/N is due to the "polarization" 
of the chains in the external field: 

c / N - f = -  V D ,  (A.3) 

where 

in which r, is the mean position of the link with label n in a 
chain with origin at the point r. It is not difficult to show that 

D ( r )  =-2/3a2N2f ( r )  V @/T. (A.4) 

Substituting (A.4) into (A.2), we obtain 
2 2 

r,  E ( r )  = - a2Nf ( r )  = - aZc ( r )  . (A.5 ) 
3 3 

The formulas (A.5) and (A.3 ) solve the problem posed. 

APPENDIX B 

The energy of the domain wall is made up of two contri- 
butions: the energetic term Fa, (formula (2.6) ), which must 
be written in the form 

and the conformational term F,, (the first term in formula 
(2.12)): 

It is not difficult to see that if the shape ~ ( z )  of the domain 
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wall on one boundary of the domain is specified, then on the 
other boundary the corresponding dependence should have 
the form (with a shift through L ) i j  (z) = 1 - 7 (z) . The two 
domain walls should, obviously, have the same energy, and 
therefore the expressions (B.l) and (B.2) should be made 
symmetric with respect to the replacement 7--tl - 7. The 
final expression for the energy has the form 

Minimizing (B.3) with respect to all functions 7 (z) satisfy- 
ing 

we find 

l i ~ s  follows from formula (2.15 ), the condition v = const implies that we 
can change the length of the flexible blocks while leaving the rigid blocks 
unchanged. 

"We neglect the logarithmic corre~tions.'~ 

'Adv. Polym. Sci. 60/61 (1984). 
'N. A. Plat6 and V. P. Shibaev, Grebneobraznye polimery i zhidkie kris- 
tally (Comblike Polymers and Liquid Crystals), Khimiya, Moscow 
(1980). 

3A. Blumstein (ed.), Polymeric Liquid Crystals, Plenum, New York, 
(1985). 

4W. L. McMillan, Phys. Rev. A4, 1238 ( 1971). 
5P. G. de Gennes, Sol. State Commun. 10, 753 (1972); Mol. Cryst. Liq. 
Cryst. 21,49 (1973). 

6T. C. Lubensky and J.-H. Chen, Phys. Rev. B17,366 (1978). 
7F. Dowell, Phys. Rev. A28,3520, 3526 (1983). 
'B. Perly, A. Douy, and B. Gallot, Makromol. Chem. 177,2569 ( 1976); 
A. Douy and B. Gallot, Polym. Eng. Sci. 17, 523 (1977). 

9A. Nakajima, T. Hayashi, K. Kugo, and K. Shinoda, Macromolecules 
12,840 ( 1979). 

'"P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, 
Ithaca, New York ( 1971 ). 

"I. M. Lifshitz, A. Yu. Grosberg, and A. R. Khokhlov, Usp. Fiz. Nauk 
127,353 (1979) [Sov. Phys. Usp. 22, 123 (1979)l. 

12P. J. Flory, Proc. R. Soc. (London) 234, 73 (1956). 
13A. N. Semenov, Zh. E k s ~ .  Teor. Fiz. 88,1242 ( 1985) [Sov. Phys. JETP 

61,733 (1985)l. 
14P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Univer- 

sity Press, Ithaca, New York (1979) [Russ. Transl., Mir, Moscow 
(1982)l. 

15L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika (Statistical 
Physics), Vol. 1, 3rd ed., Pergamon Press, Oxford (1980). 

16S.-K. Ma, Modern Theory of Critical Phenomena, Benjamin, Reading, 
Mass. ( 1976) [Russ. transl., Mir, Moscow ( 1980) 1. 

17P. G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Ox- 
ford ( 1974) [Russ. transl., Mir, Moscow ( 1977) ]. 

"S. Chandrasekhar, Liquid Crystals, Cambridge University Press ( 1977) 
[Russ. transl., Mir, Moscow ( 1980) 1. 

I9A. Caille, C. R. Acad. Sci. Ser. B 274, 891 (1972). 
'OE. I. Kats, Zh. Eksp. Teor. Fiz. 83, 1376 (1982) [Sov. Phys. JETP 56, 

791 (1982)l. 
"N. Doane, R. S. Parker, B. Cvikl, D. L. Johnson, and D. L. Fishel, Phys. 

Rev. Lett. 28, 1694 ( 1972). 
"G. B. Kasting, K. J. Lushington, and C. W. Garland, Phys. Rev. B22, 

321 (1980). 
23D. Demus, H. Demus, and H. Zaschke (eds.), Fliissige Kristalle in 

Tabellen, VEB Deutscher Verlag fur Gerundstoffindustrie, Leipzig 
( 1974). 

24A. de Vries, Mol. Cryst. Liq. Cryst. 10, 219 (1970). 
25S. G. Kostromin, V. V. Sinitsin, R. V. Tal'roze, and V. P. Shibaev, 

Vysokomol. Soedin. Ser. A 26, 335 (1984). 
26Ya. S. Freidzon, A. V. Kharitonov, V. P. Shibaev, and N. A. Platt, Eur. 

Polym. J. 21,211 (1985). 

Translated by P. J. Shepherd 

79 Sov. Phys. JETP 63 (1), January 1986 A. N. Sernenov and S. V. Vasilenko 79 


