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The equilibrium shape of 4He crystals was studied in the vicinity of roughening phase transitions 
on the basal (0001 ) plane ( TR , = 1.2 K )  and on a family of { 10i0) (o r  { 1 130)) planes 
( TR , = 0.9 K )  . For T >  TR , the surface rigidity & ( p )  shows an appreciable angular dependence 
for lp 1 ~ 0 . 0 8  rad and depends weakly on temperature in the range T - TR , ~ 0 . 0 7  K.  I t  was found 
that there is no edge in the equilibrium shape of the crystal. The experimental results are com- 
pared with the predictions of contemporary theories of two-dimensional phase transitions. 

1. INTRODUCTION 

The concept of a roughening phase transition, i.e., the 
transition from an atomically rough to an atomically smooth 
state of a crystal surface at some temperaure TR , was intro- 
duced by Barton and Cabrera' and was developed by Barton, 
Cabrera, and Frank.' From the macroscopic point of view, 
these two states differ in the nature of the dependence of the 
free energy per unit area of a surface, a ,  on its orientation cp 
relative to the crystallographic directions. In the case of a 
smooth surface with cp = cp,, the function a ((0) is not analy- 
tical, viz., its first derivative a; undergoes a finite discontin- 
uity Aa; for (p = cp,, while for a rough surface a(cp) does 
not have any singularities at cp,. As was first shown in the 
equilibrium shape of the surface by L a n d a ~ , ~  the existence of 
a discontinuity ha; produces a plane section with linear 
dimensions proportional to the magnitude of the discontin- 
uity. Roughening phase transitions are thus characterized 
by the appearance (disappearance) of faceting in the equi- 
librium crystal shape. 

The theory of roughening transitions has recently un- 
dergone intense development (see, for example, the review 
of Weeks and Gilmer4). Analysis of different microscopic 
models of a surface5-l4 leads to the conclusion that this tran- 
sition can be ascribed to the Kosterlitz-Thouless class of 
phase transitions" with a critical exponential behavior of 
the discontinuity of the derivative: 

where t = T /TR and b - 1. A theory of roughening transi- 
tions in the mean field approximation was developed by An- 
dreev,15 analogous to the Landau theory of second-order 
phase transitions. In this case the critical behavior is entirely 
different: 

Measurements of the crystal surface that is in thermo- 
dynamic equilibrium permit, in principle, direct observation 
of the critical behavior in the vicinity of the phase transition. 
The temperature dependence of the magnitude of ha; can 
be obtained from measurements of the linear dimensions of 
the plane section for T+TR , while the angular and tempera- 
ture dependences of the surface rigidity B = a(cp) + a 2a/ 
dcp2 can be determined by measurements of the curvature of 

the rounded sections of the surface. Different theories give 
contradictory predictions for the behavior of a in the vicini- 
ty of the roughening transitions. Renormalization group 
transformationsI6 and also some of the microscopic mod- 
els'." predict that for T-TR, B stays finite but has a singu- 
larity of the form 

where b is the same constant as in Eq. ( 1 ), and d is the height 
of an elementary step on the surface. I t  also follows from Eq. 
( 3 )  that the curvature of the surface at the point cp = (p, 
decreases discontinuously to zero at T = TR . According to 
Refs. 14, 17 and 18, & tends to zero according to a linear law 
for T < TR and cp-+cp, 

Such a critical behavior is a characteristic of Pokrovskii- 
Talapov type phase transitions.' On the other hand, accord- 
ing to mean-field theory,15 &(?,) goes to infinity as T-TR 
as 

while at the critical point itself 

where p, y- 1, i.e., the curvature of the surface for T-TR 
goes steadily to zero. 

The change in shape of the surface for a first-order 
roughening transition can also be described by a phenomen- 
ological approach.I9 In this case two stable states exist near 
TR with different surface energies a, (cp,T) and a, (cp,T), 
with a ,  an analytical function of angle (i.e., it corresponds to 
a rounded surface), while the derivative of a, has a finite 
discontinuity at  cp = cp, (i.e., it describes a surface with an 
equilibrium roughness). Then a ,  < a, for all cp for T > TR 
and a ,  > a, over some range of angles near cp, for T < TR . 
This means that for T <  T R ,  a plane section arises in the 
equilibrium shape of the surace; the dimensions of this sec- 
tion are in no way related to the magnitude of ha;. The 
plane and rounded sections meet in this case at the finite 
angle 6 (i.e., an edge arises in the equilibrium shape), with 
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FIG. 1. Motion-picture photographs of a falling crystal. 

At the first-order phase transition the shape of the surface 
thus changes continuously and not discontinuously as a 
number of authors s ~ ~ ~ e s t . ~ ~ . ' ~ ' ~ ~ ~ ~ ' " ~ ' ~  It must be noted, how- 
ever, that the possibility of a first-order phase transition is 
considerably limited by the occurrence of strictional insta- 
bility of the ~urface.".'~ 

The question of the role of quantum effects in roughen- 
ing transitions has recently produced a lively discus- 
sion. 16.24-27 The existing models of the surface of a quantum 

do not yet allow for the possibility of a sufficient- 
ly full experimental check. From the experimental point of 
view, the of the existence of a narrowing of 
the region of critical behavior in the case when quantum 
effects are sufficiently strong, is most interesting. Under 
these conditions the magnitude of Aal, can also be much less 
than its "inherent" value, even for T<T, .'"" 

An extremely long time for establishing equilibrium is a 
characteristic of the surface of a classical crystal, and for this 
reason the equilibrium shape can only be observed on speci- 
mens of sufficiently small dimensions; however, in this case 
the critical behavior characterizing the transition is compli- 
cated by size  effect^.'^ Crystalline 4He, bounded by the su- 
perfluid liquid phase, is the most suitable system for an ex- 
perimental study of the roughening transitions in view of the 
very short times for establishing the equilibrium surface 
shape, brought about by quantum effects."~"' The equilibri- 
um shape of hcp %e crystals has in fact been observed in 
different laboratories."-" 

At present three roughening transitions in 4He have 
been recorded experimentally:x'~300-iS~37 1 ) on a surface ori- 
ented parallel to the basal (0001) plane, 2 )  on a family of 
planes parallel to the c axis { 10i0) (or  { 1  TO)), 3 ) on the 
(10i l )  family (or, correspondingly { 1 121)). The critical 
temperatures T,, , T,? and T,< are respectively 1.2,0.9 and 
0.36 K. Helium crystals have at T> T,, a fully rounded sur- 
face, and on lowering the temperature down to 0.07 K no 
other transitions are found.-37 

2. EXPERIMENTAL METHOD 

A 'He optical cryostat" was used in the experiments. 
The experimental chamber was a 25 mm long ferrochrome 
cylinder with inner diameter 15 mm; the axis of the cylinder 
was placed horizontally. Plane glass windows were stuck to 
the ends of the cylinder so that the whole inner volume re- 
mained open to observation. The horizontal copper base of 
the container ( 8  mm wide and 25 mm long) was connected 
to the 'He bath by a cold-finger. The temperature of the 
experimental space was maintained constant to an accuracy 
of not worse than 3 X 1 0 %  by an electronic ~tabil izer.~ '  or 

could vary according to some set pattern. The filling capil- 
lary entered through the upper part of the container. 

The working part of the experimental cell could, when 
necessary, be cut off from the outside connections by a bel- 
lows valve, controlled by helium pressure in an independent 
high pressure line, which was situated immediately before 
the entry of the capillary to the container and was in good 
thermal contact with the 3He bath. 

When measuring the equilibrium shape of a crystal near 
some determined crystallographic orientation and in the 
gravitational field, it is essential to arrange for the face stud- 
ied to be horizontal. As b e f ~ r e , ~ '  we used a wire-electrode 
electrical capacitor (diameter 2.5 mm and length 15 mm),  
placed in the upper part of the experimental container. For 
an appropriate choice of temperature in the experimental 
space (0.9-1.0 K )  and magnitude of the electric field, cry- 
stallization starts on the surface of the capacitor, the nucleus 
of solid phase then has a volume zz 1 mm."he crystallite 
then grew to a size of 2 mm or more, after which it fell to the 
plane bottom of the container on the (0001 ) face. A motion 
picture of the fall of one of the crystallites is shown in Fig. 1. 
In practice, crystals could be "stacked" by this method so 
that the departure of the basal (0001) plane from the hori- 
zontal was not more than (2-3) X l o p 3  rad. In addition, by 
varying the temperature and the regime of growing the nu- 
cleus, it is often possible to set one of the faces parallel to the 
c axis horizontal (certainly, with somewhat lower accura- 
cy),  and also to obtain crystals with the basal plane with a 
desired small ( 5 0.1 rad) inclination to the horizontal. 

i n  equilibrium, a crystal occupies the lower part of the 
chamber and its surface forms a convex meniscus, corre- 
sponding to poor wetting of the solids  wall^,""^*^^^ as shown 
in Fig. 2. The length of the specimens was 25 mm ( Y axis), 
width 10-14 mm (X axis), and height 2-4 mm (Z axis). In 
such a geometry, the curvature of the surface in the longitu- 
dinal direction is appreciably less than the transverse. Under 
these conditions, the shape of the interphase boundary for z: 
g l  can be found with sufficient accuracy from solving the 
one-dimensional equilibrium equation (see, for example, 
Ref. 19) 

wherep,, is the difference in density between the solid and 
liquid phases, whileg is the acceleration due to gravity. The 
accuracy in measuring the angles of inclination of a particu- 
lar face relative to the horizontalp ,, a n d p  ,, was better than 
1 x 1Op%ad. The angle p,, was not more than 2.5X lo-' 
rad for speciments with a horizontal basal plane (in the case 
of transition 1 ), while the angle pox was chosen within the 
limits from 0 to 3.3 X 10W2 rad. In all the results presented 
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FIG. 2. The path of a beam on reflection from the crystal surface 

below, the angle of inclination of a surface was reckoned 
from the particular face (0001 ), i.e., q, z :  - q, ,, . 

A He-Ne laser was used for measurements of the sur- 
face profile z ( x ) ,  operating in the single mode regime with a 
Gaussian intensity distribution in the beam. The narrow la- 
ser beam fell at a small glancing angle (3-5") on the surface 
being studied. The angular inclination of the beam 6' in the 
(X, Y )  plane as a function of x (Fig. 2 )  was fixed so that the 
z: (x )  dependence was measured directly, taken along the 
cross section of the surface corresponding to the condition zi 
= 0. The width of the beam ( ~ 0 . 3  mm)  was chosen so that 

the angular broadening of the reflected beam due to the cur- 
vature of the surface and due to diffraction effects should be 
optimized. In addition, when a plane section occurred in the 
equilibrium shape of the crystal surface, we could measure 
its longitudinal dimension (i.e., in the Y direction) by a dif- 
fraction method, as before.35 

3. RESULTS AND DISCUSSION 

Typical experimental curves are shown in Fig. 3a. 
Curve 1 corresponds to T >  TR,  when the surface is com- 
pletely rounded; curve 2 is for T < T, and in this case a plane 
section appears in the equilibrium shape (the region where 
q, = 0 in Fig. 3a) the dimensions of which decrease continu- 
ously to zero if T-+T,. In equilibrium, the angle q, at the 
boundary between the plane and rounded sections changes 
continuously. In other words, the equilibrium shape of the 
surface does not contain an edge, which indicates uniquely 
that the two transitions studied (namely transitions 1 and 2)  
are not of first order. The solid curve shown for comparison 
in Fig. 3 is calculated for a first-order phase transition ac- 
cording to Keshishev et a1.I9 with the linear dimension of the 
plane section taken as the same as in curve 2. 

In the absence of an edge, the behavior of the curvature 
of the rounded section of the surface near its junction with a 
plane face is uniquely related to the asymptotic behavior of 
the quantity & ( p )  for p-tO [Eq. ( 8 ) ] .  In particular, if 
& o: lp I (Refs. 9, 10, 14) thenz" should hold. o n  the 
other hand, mean field theory predicts that &-+const for 
q,--0 and, correspondingly, z" = const. As can be seen from 
Fig. 3b, our experimental results agree well with this latter 
prediction. We also carried out measurements of the shape 
of the surface on three inclined specimens (pox ~ 0 . 1  rad) at 
temperatures appreciably below T < TRI  (down to 0.6 K ) .  
In all cases the magnitude of z" at the meeting point stayed 

constant, i.e., thez" a x - " 2  relation was not observed in the 
angular region studied ( 5  x 10-3-0. 1 rad). 

An attempt to measure directly the temperature depen- 
dence of the plane dimensions 1 ( T) was not successful. As in 
our earlier  experiment^,^' in which we studied the critical 
behavior of the size of a plane section near transition 1, we 
observed fairly considerable hysteresis phenomena and also 
a poor reproducibility not only from specimen to specimen, 
but even in the course of one experiment. The most probable 
reason for such non-reproducibility must be considered the 
difference in the growth kinetics of atomically smooth and 
atomically rough In face, the short time 
for establishing the thermodynamically equilibrium shape is 
only characteristic of rough surfaces,*' while the mobility of 
an atomically smooth surface remains extremely low, as in 
ordinary classsical crystals. 

FIG. 3, a )  An example of the experimental curves: I,.) T <  TR; 2,O) 
T >  TR ; the solid curve is the p ( x )  dependence calculated for a first order 
transition." b) T h e p ( x )  dependence for T < TRI for a rounded section of 
surface near the point ofcontact with a plane; dashed line is the asymptote 
z: a x ,  p--0 (mean field), full curvegives the best curvez', a x ' "  (micro- 
scopic model). 
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FIG. 4. a )  An example of the establishment of the i r ( q )  
dependence, T >  TR, ; the error range is indicated by the 
dashed curves. b )  The & ( q )  dependence for seven speci- 
mens for T - T R I  (0.07 K. The curves corresponding to 
different specimens and temperatures are indicated by dif- 
ferent symbols. The arrow shows the universal value 
&(p = 0, T =  TRI  ) = 0.291 erg .  cm-' for transition 
1.9.16.17 

\ 
\ 

For this reason, the dimensions of a plane section can be 
far from its equilibrium value under real experimental condi- 
tions, while a round section of the surface is in equilibrium, 
i.e., it can be described by Eq. (8 ) .  Such a picture, naturally, 
can only be regarded as some approximation to reality; there 
probably always exists some "transitional" part of the sur- 
face adjoining a plane section, at which equilibrium is estab- 
lished in a time comparable with the duration of the experi- 
ment. In practice, the angular range of p corresponding to 
such a "transition" region, under our experimental condi- 
tions was sufficiently small (not more than 5 X l op3  rad) 
and had no effect on the results of the measurements. 

We obtained the fullest experimental results for transi- 
tion 1 at T >  TRl  . The equation for equilibrium ( 8 )  was used 
directly to establish the angular dependence of the surface 
rigidity & ( p )  at fixed temperature. Solution of such a prob- 
lem comes down to seeking the z ( p )  dependence and also 
the second derivative z; (p) from the known function 
z:(x). In the case of weakly inclined specimens (i.e., 
0 < pox 4 1 ) the numerical value of the undetermined con- 
stant of integration for establishing z ( p )  can be obtained 
from the symmetry condition, i.e., &(  - p )  = & ( p ) .  An ex- 
ample of a numerical treatment for one of the typical experi- 
mental curves with the corresponding uncertainty range is 
shown in Fig. 4a. 

The results ofanalyzing measurements made on 7 speci- 
mens of different dimensions wih different values of p ,, and 
of angles between the X and C, axes are shown in full in Fig. 
4b. The maximum value ofthe angle pox was 3.3 X l o p 2  rad. 

We did not find any regular temperature dependence of 
& ( T),  outside the limits of experimental error, over the tem- 
perature of the investigation, T - TR, ~ 0 . 0 7  K and angles 
Ip 198 x lo-' rad. This is in agreement with the results of 
Wolf et a/.  l 4  and of Balibar et al.," which are distinguished 
by the absence of a noticeable temperature dependence of the 
surface rigidity over a wider interval, T - TR, ~ 0 . 2  K, and 
contradicts the temperature dependence 2E. ( T )  predicted by 
microscopic theories [Eq. ( 3 ) ] for the case of b 2 1. 

The existence of a noticeable angular dependence 6 (p)  
for p ( l  and, at the same time, the absence of a temperature 
variation of & in the assumptions of mean-field theory" 

A- 
o,o6 J p ,  rad 

means that the temperature range of our measurements is 
appreciably narrower than the characteristic temperature 
region of critical behavior, i.e., T- TR, . In this case, the 
6 (p)  dependence should be described by Eq. (6 ) ;  the best 
curve of this form, with the adjustable parameter 
a ( 0 )  y = 3 X erg.  cm-2 is shown in Fig. 4b by the 
dashed line. Assuming that a ( 0 )  ZZO. 1 erg . cm-', we obtain 
y z 0 . 3 .  

In recent French ~ o r k , ' ~ . ~ ~  using another method of 
optical measurements on smaller specimens ( z 1 mm),  an 
angular dependence & ( p )  also emerges for transition 1 such 
that ( l / & )  (d '&/ap 2, = - 26 + 5 (the full curve in Fig. 
4b), with 6 ( T =  TR, , p = 0 )  = 0.246 + 0.015 erg .  cm-*. 
The results were obtained from measurements of the profile 
of an equilibrium surface z ( x )  over an appreciably wider 
angular range / p  / (0.4 rad, which on analysis by the numeri- 
cal method used could lead to considerable errors due to 
"averaging" of the singularity for p-0. 

At temperature 0.02-0.03 K below critical, when the 
dimensions of the plane section are still not too large, only 
the mean value of & in the angular range 5 X  rad 
< jp / G2.5 x lo-* rad can be determined with sufficient ac- 
curacy. The corresponding values for four specimens as a 
function of temperature are given in Fig. 5. No regular tem- 
perature dependence or difference of the results obtained 
from the mean value in the angular interval shown, 
c?,,,, ( T < TRI  ) (the dashed line in fig. 5 )  was found. A 
similar result was found in the experiments of Wolf et a/. l 4  

and of Balibar et 
On considering possible sources of errors in the mea- 

surements in the vicinity of TR,  , it should be remarked that 
apart from the sources of errors mentioned earlier (vibra- 
tions of the apparatus, temperature instabilities, etc.),I9 we 
observed equilibrium-surface distortions produced by heat 
flows from the external helium bath to the experimental 
space along the filling capillary ( rS: 5 x lo-' W ) .  Such an 
effect on the equilibrium shape of a crystal would lead to 
practically complete "smearing out" of its features produced 
by the critical behavior near TR, , which most probably ex- 
plains the difference between the results given and those 
published earlier.40 In our most recent experiments, the use 
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FIG. 5. The temperature dependence of the mean value a,,,,, (5X lo-' 
rad< q ,  ~ 2 . 5  x lo-' rad) at T< T,, for four specimens. 

of an additional valve having the 3He-bath temperature ap- 
preciably reduced the heat flux to the experimental cell. In a 
control experiment with the valve closed, no distortion of the 
shape of the crystal surface was noticed even when addi- 
tional power ( -- W )  was dissipated in a heater placed 
on the capillary before it entered the valve, and also when the 
pressure in the external connections oscillated in a range 
f 1 atm. 

Transition 2 [on the { 10i0) (or  { 1 120)) plane] has so 
far been studied in less detail. In this case, the symmetry of 
the particular face is lower than in the case of the basal 
(0001 ) plane; the value of 5 can thus depend appreciably on 
the angle between the X axis and the C, crystal axis. This 
angle was within the limits of 70-85" in some of the speci- 
mens we studied. 

Experimental results of measuring the profile of a sur- 
face in the case of transition 2 were obtained for three small 
( - 7 mm in diameter) specimens. The average value of ti in 
the angular range f 0.1 rad and for temperatures in the 
range 0 < T - TR, 50.05 K was determined to be 
ti,,,, = 0.25 + 0.05 erg . cm-* (Ref. 40). I t  is significant 
that, as in the case of transition 1, a plane section arises in the 
equilibrium shape of a surface without an intermediate "cy- 
lindrical" stage, the existence of which is predicted by mean 
field theories. l 5  

As can be seen, the experimental results can not be fully 
explained by the present theories of surface phase transi- 
tions; to obtain a self-consistent picture of the phenomenon, 
further experimental and also theoretical studies are thus 
essential. 

From the experimental point of view there still remains 
unexplained the question of the behavior of the surface rigid- 
ity 5 for T-+TRI and p-0. Extrapolation of the 5 ( p )  de- 
pendences obtained to p = 0 (Fig. 4b) gives values ~ 2 0 %  
above the universal value [Eq. ( 3 )  1 predicted by a number 
of authors; however, in virtue of the finite resolving power of 
the method [on average z 5 x l o p 3  rad (Fig. 4a) ] produced 

both by errors in the measurements and by the accuracy of 
the numerical analysis, a unique answer cannot be given to 
the question of whether 5 (p  = 0 )  remains finite for T-+TRI 
or becomes infinite. An experimental method with apprecia- 
bly higher resolving power must be used to remove this inde- 
terminacy. As before, an experiment for a temperature be- 
low T R l  to elucidate the temperature dependence of the 
discontinuity in the derivative ha; [Eqs. ( 1 ) and ( 2 )  ] is 
extremely urgent. 
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