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A study is made of surface Rayleigh sound waves in highly anisotropic hexagonal, tetragonal, and 
cubic crystals. The anisotropy of the velocity of bulk transverse vibrations in the uniaxial (tetra- 
gonal and hexagonal) crystals is described by introducing a parameter 7 which goes over to the 
familiar elastic anisotropy parameter of the cubic crystal for C , ,  = C,,. The dependence on this 
parameter is analyzed for the main characteristics of the surface Rayleigh waves (both the ordi- 
nary and generalized). It is shown that a necessary and sufficient condition for the existence of 
deeply penetrating Rayleigh waves is that this anisotropy parameter differ appreciably from 
unity, i.e., that the velocity of the bulk transverse vibrations in the sagittal plane be highly aniso- 
tropic. The surface waves are studied in the case of degenerate roots of the characteristic equation 
for the bulk vibrations. The contribution ofcapillary effects to the velocity and penetration depth 
of surface waves is taken into account, and it is pointed out that the role of these effects is greater 
in highly anisotropic media than in isotropic solids. 

Two of the most important characteristic of surface 
sound waves from the standpoint of applications are their 
velocity and penetration depth. The possibility of varying 
these characteristics in an isotropic solid is very limited: the 
velocity of the surface wave is nearly the same as that of the 
bulk transverse wave, and the penetration depth is of the 
order of the wavelength.' Anisotr,opic media, on the other 
hand, have a much broader spectrum of these main charac- 
teristics of the surface waves-the penetration depth can be 
either of the order of the wavelength or it can be considerably 
larger, and the velocity can be either very close to that of a 
bulk transverse wave in the given direction or it can be con- 
siderably smaller. In  particular, deeply penetrating and slow 
Rayleigh waves can propagate in highly anisotropic crys- 
t a l ~ ~ - ~  and in crystals near structural phase transitions6-' 
due to a softening of acoustic phonons (ferroelastic, ferro- 

direction 
Rayleigh 
identical, 

[ 1001. In such a geometry the properties of the 
waves in hexagonal and tetragonal crystals are 
and the displacement in the waves is of the form 

U,= (A l  exp ylkz+A2 exp y ,kz)exp{i (kx-ot) ) ,  

U ,= i (Alr l  exp  y lkz+8 ,r ,  exp y L k z )  exp {i(kx--cot)).  (1) 

Here U, k, and w are the displacement vector, the wave num- 
ber, and the frequency of the wave, the z axis is directed 
along the outward normal to the crystal, y ,  and y2 are the 
eigenvalues of the biquadratic characteristic equation for the 
bulk vibrations 

electric, magneto-orientational, and other transitions). In 
(where Cik are the moduli of elasticity andp  is the density of other words, the bulk elastic properties of the crystals have 

an important influence on the main parameters of surface the crystal), and r, and r, are the eigenvectors for the bulk 
equations of motion: sound waves. In this paper we formulate a criterion for the 

existence of deeply penetrating Rayleigh waves and analyze 
the connection between the main characteristics of these 
waves and the bulk elastic properties of the crystals.'' We 
also investigate the influence of capillary effects on the ve- 
locity and penetration depth of surface waves in highly an- 
isotropic crystals. We analyze the transition from the ordi- 
nary to the generalized Rayleigh waves on a change in the 
anisotropy parameter for the case of waves on a high-sym- 
metry cut of a uniaxial crystal and elucidate the connection 
between this transition and the properties of the isofre- 
quency surface of the bulk transverse vibrations. 

1. PROPERTIES OF SURFACE RAYLEIGH WAVES IN HIGHLY 
ANISOTROPIC UNIAXIAL CRYSTALS 

Let us consider a uniaxial (tetragonal or hexagonal) 
crystal with a (001 ) boundary plane and a wave propagation 

We use the following boundary conditions for z = 0 with 
allowance for capillary effects'0*'': 

where o, is the stress tensor, g,, = gap, is the surface-ten- 
sion tensor (p,v = 1,2 label the coordinate axes in the tan- 
gent plane), h , , = h is one of the excess surface moduli, and 
p, is the excess surface mass. With allowance for boundary 
conditions (4) ,  the dispersion relation for a Rayleigh wave 
in the nondegenerate case ( y ,  # y,) is of the form 
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where (y ,  + y,) is determined from ( 2 )  with the aid of Vi- 
6te's theorem. When y ,  and y, are real and different, surface 
wave ( 1 ) is an ordinary wave; when y ,  and y, are complex, it 
is a generalized wave. The transition from one kind of wave 
to the other occurs when y ,  = y, (the degenerate case): the 
solution for the surface wave in this case is no longer of form 
( 1 ) and will be discussed below. We note that in the case 
C,, = C, ,, C,, = C,, Eq. ( 5 )  describes a Rayleigh wave in a 
cubic crystal in the geometry under study (with allowance 
for capillary effects). 

We introduce the anisotropy parameter for a uniaxial 
crystal 

As in a cubic crystal, this parameter describes the an- 
isotropy in the xz plane of a bulk transverse wave polarized 
in this plane. According to the conditions for elastic stabil- 
ity," the parameter 7 can vary from zero to infinity. For 
7 =: 1 the crystal is slightly anisotropic, and for values of 7 
substantially different from unity the crystal is highly aniso- 
tropic. Examples of highly anisotropic crystals are layered 
and chain-like compounds (graphite, Gas,  GaSe, etc. ), solid 
helium in the hexagonal close-packed phase, paratellurite 
TeO,, and crystals near a proper ferroelastic transition due 
to a softening of one of the bulk transverse sound velocities 
(RbMnCl,, Nb,Sn, V,Si, etc.). 

Let us follow the evolution of the main characteristics 
of the Rayleigh waves on changes in the anisotropy param- 
eter (6) .  In the case 7)1 a Rayleigh wave (in neglect of 
capillary effects) is of the form 

where 

As in an isotropic solid (7 =: 1 ), this wave ( 7 )  contains two 
components which are exponentially damped with depth in 
the crystal. However, while for 7 =: 1 the two components 
have comparable amplitudes and comparable semiaxes of 
the polarization ellipses and penetrate into the medium to a 
depth of the order of the wavelength, for 7) 1 one of the 
components becomes predominant, has an almost linear po- 
larization (normal to the surface), and penetrates into the 
crystal to a depth considerably greater than the wavelength. 

In the limit V+CO the surface Rayleigh wave thus ap- 
proaches an SVbulk wave propagating in the same direction. 

I t  is known that near-surface distortions (capillary ef- 
fects) make it possible for a purely shear surface wave, close 
to an SH bulk wave, to propagate on the surface of a solid in 
addition to the Rayleigh wave.13s'4 In other words, a surface 
shear wave is extremely sensitive to capillary effects. I t  turns 
out that in highly anisotropic crystals the Rayleigh wave 
also exhibits a heightened sensitivity to capillary effects. 

For 7) 1 the dispersion relation for surface sound waves 
with allowance for capillary effects is of the form 

and the penetration depth determined by the smaller of the 
roots for y in Eq. ( 2 )  is given by 

Analysis of ( 9 )  and ( 10) shows that in this case the role of 
capillary effects is markedly greater than in the case 7 =: 1. In 
fact, the corrections to the frequency and penetration depth 
of the surface wave contain in the denominator the small 
quantity ~ , , a 8 " ~ / g g  1 (for g- C,  ,a - C3,a, where a is the 
interatomic distance). The presence of this enhancing factor 
means that in highly anisotropic crystals the domain of ap- 
plicability of the methods of the linearized theory of elasti- 
city, which does not incorporate spatial dispersion, is con- 
siderably narrower than in isotropic crystals: Instead of the 
restriction ak( 1 in the isotropic case, for 7% 1 we get the 
condition ak( ( l /7)3 '2g  1. 

Let us now investigate the structure of the Rayleigh 
wave in the other limiting case of a highly anisotropic crys- 
tal: 74 1. In this case the roots of Eq. (2 )  are complex conju- 
gates, and the generalized Rayleigh wave is of the form 

C' 
[I ,  = d ( e x p  y,kz+f e u p  y , k z ) c s p { i ( k x - - w t ) ) ,  ( 1  1)  

d  

where y, = 6 7  - ( d  - cq)i, y, = bq + ( d  - cv)i ,  

( l - d 2 ) 2  C55 d' ( & + 2 d Z + 3 ) ( L + ! & ) - _ _ -  bZ = ------ 
(1+d213 c~~ c1 t c,, ( l + d Z ) '  c~~ ' 

[ In  the case d = 1 wave ( 11 ) goes over to a deeply penetrat- 
ing generalized Rayleigh wave in a highly anisotropic cubic 
~ r ~ s t a l ~ ~ ~ ] .  For 7-0 the penetration depth of the Rayleigh 
wave goes to infinity, and the period of the oscillations with 
depth goes toA /d, whereA is the wavelength, i.e., the period 
of the oscillations is considerably smaller than the penetra- 
tion depth, and the generalized character of the surface wave 
is most clearly expressed. In this limit the surface wave un- 
der study is actually a superposition of two purely bulk 
transverse waves polarized in the sagittal plane and propa- 
gating at angles of + 9 = arccotd to the z axis. For 74 1 the 
dispersion relation of the surface sound wave with allowance 
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FIG. 1. Velocity of Rayleigh waves in uniaxial crystals as a function of the 
anisotropy parameter 7 of Eq. (6)  (curve I ) ,  and the solution corre- 
sponding to the degenerate case (curve 2 ) .  

for capillary effects is of the form 

where 

In this case also the influence of capillary effects on the ve- 
locity (and penetration depth) of the Rayleigh wave is stron- 
ger than in the case of an isotropic solid. For studying sur- 
face waves in highly anisotropic crystals it is thus necessary 
to take the spatial dispersion or the discreteness of the lattice 
into account even in the region of comparatively long wave- 
lengths: for 7% 1, this is necessary starting at ak-77,3'2gl, 
and for 7 4 1  starting at ak-741.  

In both cases considered the Rayleigh wave is slow (its 
velocity is determined by a small parameter) and deeply 
penetrating. These features are due to the noticeable differ- 
ence of the anisotropy parameter ( 6 )  from unity. This cir- 
cumstance enables one to formulate an existence criterion 
for Rayleigh waves having these properties. Deeply pene- 
trating Rayleigh waves propagate in crystals which are char- 
acterized by strong anisotropy in the sagittal plane of the 
velocity of bulk transverse waves polarized in this plane. 
This conclusion is based on consideration of the properties of 
Rayleigh waves with an xz sagittal plane in uniaxial (and 
cubic) crystals, but it is valid for other sagittal planes as well. 
For example, in the case of an xy plane the anisotropy pa- 
rameter for the velocity of bulk transverse waves polarized in 
this plane is 

For tetragonal and cubic crystals this parameter 
can differ appreciably from unity upon the softening 
of one of the transverse velocities: V,, = (C,,/p)"' or 
V,, = [ (C , ,  - C,2)/2p] 'I2. In the presence of such a soft- 
ening, a Rayleigh wave (ordinary or generalized) propagat- 
ing in the [ 1001 direction on the (010) plane or in the [ 1 101 
direction on the ( 170) plane will be slow and deeply pene- 
trating. In the case of a hexagonal crystal, anisotropy param- 
eter ( 13) [unlike parameter ( 6 )  ] is identically equal to uni- 
ty. Consequently, the velocity of a bulk transverse wave 
polarized in the xy plane is isotropic, and deeply penetrating 
Rayleigh waves with an xy sagittal plane do not arise. (The 
softening of the transverse velocity V,, = V,, leads only to 
a slowing of the velocity of the Rayleigh wave.) 

2. DEGENERATE CASE AND THE TRANSITION FROM 
ORDINARY TO GENERALIZED RAYLEIGH WAVES IN 
UNIAXIAL CRYSTALS 

In the previous section we showed that in tetragonal 
(and cubic) and hexagonal crystals, a Rayleigh wave along 
the [ loo]  direction on the same high-symmetry boundary 
surface (001) can, depending on anisotropy parameter (6 ) ,  
be either ordinary (for 7) 1 ) or generalized (for 74 1 ). The 
solution [normalized to V,, = (C,,/p) 1'2] ofdispersion re- 
lation ( 5 )  as a function of the anisotropy parameter 7 is 
shown by curve 1 in Fig. 1. This curve describes both the 
ordinary and generalized Rayleigh waves in the given geom- 
etry. The transition from one kind of wave to the other oc- 
curs when 7 = 70, corresponding to equality of the roots of 
characteristic equation (2 ) .  The condition y,  = y2 (the de- 
generate case) leads to the following equation: 

Curve 2 in Fig. 1 describes the dependence on the anisotropy 
parameter 7 of the root (corresponding to a real value 
y1 = y2 = y )  of Eq. (14).  This curve exists in the interval 
from 7 = 1 to 7 = 7, < 1. At the point 
(Cl,C33)11Z - C,, = 2C5, (at  which 7 = 1 ), Eq. (14) has a 
root of zero, and in the case 

(which corresponds to 7 = 177" ) the root corresponds to the 
bulk transverse velocity V,, = (C,,/p) ' I 2  in the given di- 
rection. In the degenerate case the solution for a surface 
wave should be sought in the form 

U,= ( A , + A , z )  exp ( ykz - i  ( k r - o z ) } ,  

Using the bulk equations of motion p ~ i  = G'gik/G'xk and 
boundary conditions ( 4 ) ,  one can show that a nontrivial 
solution for a surface wave of the form (16) exists only at  
one point-the point of intersection of the Rayleigh-wave 
branch (curve 1 in Fig. 1)  with the branch y ,  = y, (curve 
2 ) .  Thus for Rayleigh waves propagating on high-symmetry 
faces along high-symmetry directions, the transition from 
the ordinary to the generalized waves on a change in the 
anisotropy parameter occurs at the point of degeneracy of 
the roots of the characteristic equation for the bulk vibra- 
tions. The value 7, corresponding to the point of the transi- 
tion from the ordinary to the generalized Rayleigh waves 
and the value 7, corresponding to the extreme point of curve 
2 in Fig. 1 are of order unity." 

We shall now show that the presence of a point 7 = 7, 
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FIG. 2. Cross section of an isofrequency surface for bulk transverse vibra- 
tions polarized in the xz plane, in the limit q <  1. 

is related to features of the bulk vibrational characteristics of 
the crystal. Equation (2 )  for the bulk vibrations can be used 
to study the question of whether the k, ,k, cross section of an 
isofrequency surface of the bulk transverse vibrations polar- 
ized in the xz plane is convex. This cross section is onconvex 
with respect to the [ 1001 direction in the given uniaxial crys- 
tals under the condition 

Equality of the left-hand side to zero corresponds to the con- 
dition for the transition from a convex to a nonconvex cross 
section and coincides with the definition of the extreme point 
7 = 7 ,  oncurve2ofFig.  1 [seeEq. ( l S ) ] .  Sincefor?7<7, 
the corresponding cross section is nonconvex, the surface 
wave in the given geometry should clearly be a generalized 
wave. As we see from Fig. 1, the Rayleigh wave is also a 
generalized wave for 7, < 7 < q,, i.e., nonconvexity of the 
corresponding cross section of the bulk transverse vibrations 
polarized in the sagittal plane is a sufficient condition for the 
existence of generalized Rayleigh waves. 

The geometric interpretation of the connection between 
nonconvexity of the corresponding cross section of the iso- 
frequency surface of the bulk vibrations and the main char- 
acteristics of the surface waves is particularly transparent in 
the case of highly anisotropic crystals. Figure 2 shows, for 
the case 74 1, the shape of the k, > 0 part of the cross section 
of an isofrequency surface of the bulk vibrations polarized in 
the xz plane. The lengths of the segments OB = OB'  = OA 
and OD = OD ' are inversely proportional to the velocities of 
the bulk transverse sound propagating in the given direction. 
In the limiting case 7-0 the cross section is stretched out 
along the straight lines OD and OD ', directed at an angle 
8 = arctan(C,,/C, , )  ' I 4  to the z axis (OD>OA). Here the 
bulk transverse velocities are as follows: along the direction 
OA the velocity is 

while along the direction OD it is 

The line HE corresponds to a surface wave of the given fre- 
quency, segment O E  is equal to the wave number k of the 
transverse wave and is inversely proportional to its velocity, 
and segment O F  determines the period of the oscillations of 
the surface wave with depth. Since in highly anisotropic 
crystals the separation of the surface wave from the bound- 
ary of the continuous spectrum is small (the waves are deep- 
ly penetrating), the line EH actually touches the c,ross sec- 
tion near the point D. In this case we see from Fig. 2 that 
OE = OFtan 8 and O E  = OD sin 8, i.e., we get the following 
expressions for the quantity Im y which determines the peri- 
od of the oscillations (with depth) and for the velocity V, of 
the surface wave: 

The same values of the main parameters of the generalized 
surface wave are obtained from an analytical treatment of 
( 1 1 ) and ( 12) in the limit 7+0. In addition, Fig. 2 clearly 
illustrates that the surface wave in this limit is actually a 
superposition of two extremei5 bulk waves, OD and OD ', 
propagating at  an angle 8 to the z axis. In the other limiting 
case of a highly anisotropic crystal, q )  1, the cross section is 
stretched out along the coordinate axes. Here OANOD, and 
segment OF, which determines the period of the oscillation 
with depth, goes to zero-the Rayleigh wave is ordinary. 

Since in highly anisotropic crystals, both for 7 %  1 and 
for 74 1, the surface waves are deeply penetrating (unlike 
the 7~ 1 case), it is of interest to examine the overall picture 
of how the damping coefficient and the period of the oscilla- 
tion with depth depend on the anisotropy parameter. Figure 
3 shows how the damping constants y ,  and y, for an ordi- 
nary Rayleigh wave and y = y' f iy" for a generalized Ray- 
leigh wave depend on the parameter 7 over its entire range of 
variation. As we see in Fig. 3, in both limiting cases 
(747,- 1 and 7)q0) the surface Rayleigh wave is charac- 
terized by small values of y (or  y ') ,  i.e., the wave is deeply 
penetrating. At the point 7 = 7, of the transition from the 
ordinary to the generalized surface waves the penetration 
depth is minimum. We also note that as 7 decreases from 7, 
to zero the increase in the penetration depth is accompanied 

FIG. 3. Damping coefficients for Rayleigh waves versus the anisotropy 
parameter q, d = ( C ,  , / C , , )  'I4. 
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by a decrease in the period of the oscillation with depth to its 
minimum value of A (C,,/C,, ) 'I4. 

In an analogous way one can study a Rayleigh wave 
(having the same sagittal plane xz) propagating on a ( 100) 
boundary in the [001] direction. Expressions (7) - (  10) for 
7) 1 and ( 1  1 )  and (12) for 7( 1 carry over to such a wave if 
x is replaced by z. Upon such a replacement the moduli C,, 
and C,, remain unchanged, while C , ,  and C,, exchange 
places, i.e., the definition of anisotropy parameter (6 )  re- 
mains unchanged. For example, in the case of a generalized 
deeply penetrating Rayleigh wave for 7 4 1 ,  we obtain the 
following expressions for y", which determines the period of 
the oscillation with depth (along the x axis), and for the 
velocity V, of the surface wave: 

Result ( 18) can also be obtained in a geometric analysis of 
the cross sections of an isofrequency surface (see Fig. 2 )  
with allowance for the fact that the length of segment O F  in 
this case is proportional to the wave number and inversely 
proportional to the velocity of the surface wave, and segment 
OE determines the period of the oscillation with depth. 

CONCLUSION 

We have investigated ordinary and generalized surface 
Rayleigh waves in highly anisotropic tetragonal and hexag- 
onal crystals and formulated a criterion for the existence of 
deeply penetrating Rayleigh waves. Deeply penetrating 
Rayleigh waves propagate in crystals characterized by 
strong anisotropy in the sagittal plane of the velocity of bulk 
transverse waves polarized in this plane. On the basis of this 
criterion we have shown how the period of the oscillation 
with depth and the velocity of a generalized Rayleigh wave 
in a highly anisotropic crystal are related to features of the 
shape of the isofrequency surface of the bulk transverse vi- 
brations. For uniaxial crystals we have introduced an anisot- 
ropy parameter 7 = [(CllC3,)112 - C,,]/2C5, for the ve- 
locity of bulk transverse vibrations (polarized in the xz 
plane) and analyzed the transition from the ordinary to the 
generalized Rayleigh waves on a change in this parameter 
for waves in the [ 1001 direction on a (001 ) boundary plane 
and in the [001] direction on a (100) plane. We have de- 

scribed the form of the surface wave at the point of the transi- 
tion which occurs at the point of degeneracy of the roots of 
the characteristic equation for the bulk vibrations. We have 
noted an increase in the influence of capillary effects on the 
velocity and penetration depth of the Rayleigh waves as the 
anisotropy of the bulk elastic properties of the crystal be- 
comes stronger. 

We are grateful to V. I. Al'shitz, M. I. Kaganov, and A. 
M. Kosevich for a helpful discussion of the results. 

"Such a connection was analyzed numerically for a series of slightly aniso- 
tropic crystals in Ref. 9. 

''For example, in the case of small bulk transverse velocities C,,<C,,, 
(Cl,C3,)1'2 - C13<Cll one can obtain analytically 7, = +(3 + l / d 2 ) ,  
vc =4(2 + l / d 2 ) ,  whered2 = (Cll/C33)1'2.  
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