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A characteristic feature of the distribution of a passive scalar or vector quantity (e.g., concentra- 
tion or magnetic field) in a random medium is intermittency, i.e., the appearance ofsharp peaks in 
which the main part of the intensity is concentrated. This is demonstrated for the example of a 
scalar field in random stationary and nonstationary potentials with statistically uniform initial 
conditions. 

1. INTRODUCTION 

A number of problems concerning the evolution of sca- 
lar and vector fields (distribution of concentration or tem- 
perature, magnetic field or vorticity) are treated against the 
background of the random motion of a fluid. A typical exam- 
ple is the turbulent flow of a carrier fluid.' Problems con- 
cerning the motion of matter relative to a medium under the 
action of a force equal to the gradient of a potential, a ran- 
dom distribution of the potential is typical.' The local rate of 
reproduction or death of a given species in biological prob- 
lems is often a random function of space and time.3 In the 
problems enumerated, as a rule, it is necessary also to take 
into account molecular diffusion or the equivalent migration 
under the action of a concentration gradient. In the case of a 
vector quantity, e.g., a magnetic field, random transport of 
the vector can be accompanied by change of its length, and, 
in particular, by exponential amplification of the field.4 

The classical way of approaching the solution of these 
problems is to obtain equations for the average quantities. 
The Reynolds expressions for the average flux of momentum 
or heat in turbulent flow, and the Taylor formula for the 
turbulent viscosity, are well known. In magnetohydrodyna- 
mics an important role is played by the average helicity of 
the velocity field.5.4 In this case the problem reduces to the 
study of deterministic equations similar to or modified in 
comparison with the evolution equations in the nonrandom 
medium. Usually one confines oneself to considering the 
first two statistical moments: the mean, and the mean square 
or correlation function. It is assumed that these averages 
characterize the field sufficiently well. I t  is also customary to 
assume that the system is ergodic, so that averaging over 
space or time is equivalent to averaging over realizations of 
the random medium. 

In reality, with such a simplified approach, very impor- 
tant properties of the field that arise from the random distri- 
bution of the medium are left outside the picture. As Mark 
Twain remarked in his story My Watch, "a correct average is 
only a mild virtue in a watch. . . ". Mathematical experi- 
ments of recent years,6 and also detailed experimental stud- 
ies of turbulent flows'.' and astronomical observations of the 
structure of the universe,' have shown that a typical distri- 
bution of sclar and vector fields is one in which there appear 
characteristic structures accompanied by high peaks or 

spikes with large intensity and small duration or spatial ex- 
tent. The intervals between the spikes are characterized by 
small intensity and large extent. 

The general name for such a situation is "intermit- 
tency." This phenomenon has been studied for turbu- 
l e n ~ e , * ' ~ ~ ~ ~  in particular, in connection with the refinement, 
stimulated by Landau, of the Kolmogorov-Obukhov theory 
(the subsequent development is reflected in Ref. 1 ), and also 
in the theory of wave propagation in random media.'' An- 
other well known example is the phenomenon of localization 
in the theory of disordered media, which has been compre- 
hensively studied by Liftshitz and his students." From the 
physical point of view, intermittency arises as a result of the 
random, fluctuating nature of the medium. For example, in a 
stream of a conducting liquid with a random velocity field 
and with an applied initial magnetic field one can find places 
at which the flow will most effectively intensify the magnetic 
field, say, by turning magnetic loops into a figure eight and 
doubling them.4 Of course, the appearance of such regions is 
a rare, improbable event. But since almost all the energy of 
the generated field will be concentrated in these rate maxima 
we cannot neglect them; they will make the main contribu- 
tion to the mean and mean square. However, the first two 
moments are not adequate for a full characterization of the 
peaks. The main indicator of intermittency is an anomalous 
(e.g., in comparison with the Gaussian) relation between 
successive statistical moments. In Fourier-analysis terms in- 
termittency is characterized not only by a slow decrease of 
the amplitudes of the Fourier harmonics with increase of the 
wave number, but also by a definite phase relationship 
between the harmonics. A sum of high harmonics with ran- 
dom phases would give something similar to a Weierstrass 
function, or, in modern terminology, a fractal curve, instead 
of individual high peaks. l 2  

As we shall show, in a medium that is spatially uniform 
in the statistical sense, intermittency is a very strongly pro- 
nounced phenomenon: In the presence of instability the ratio 
of the mean squares of the field that is concentrated in the 
peaks and the field that is not concentrated in the peaks 
grows exponentially. 

In the case of spatially bounded media it turns out that 
the characteristic spacing between high peaks begins, after a 
certain time, to exceed the size of the system. After this it is 
found that spatial averages cease to coincide with ensemble 
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averages, with the former growing more slowly than the lat- 
ter: Intermittency is expressed less sharply in a bounded me- 
dium. 

It is also of great interest to take the non-one-dimen- 
sionality into account and to analyze the structure of the 
field distribution. Asymptotically in time, one typically ob- 
serves the formation of high isolated spots-field peaks sepa- 
rated by extensive regions of reduced intensity. As an inter- 
mediate asymptotic form, however, it is possible (and, in 
many cases, typical) to find the formation of a cellular or 
network structure-thin channels of raised intensity (the 
rich phase), separating isolated islands of the poor phase. 

In the present paper we shall study the phenomenon of 
intermittency for the example of a scalar impurity in a steady 
state and in a nonstationary (transient) regime. In the ab- 
sence of diffusion this example admits an elementary inter- 
pretation. To take diffusion into account we shall make use 
of the technique of integration over random Wiener trajec- 
tories (see, e.g., Refs. 13 and 14). 

2. THERMODYNAMIC EQUILIBRIUM 

We shall consider a random medium, characterized by 
a random potential p (x,w ) . The parameter w labels the real- 
izations of the potential, so that for a fixed w the potential is 
an ordinary deterministic function. We suppose, for definite- 
ness, that p has a Gaussian distribution with zero mean and 
variance a2.  Such a potential can be viewed as a sum of 
phase-incoherent Fourier harmonics. The equilibrium con- 
centration of the substance in such a medium, 

n=no exp (-rplkT) ( 1 )  

is not Gaussian, by virtue of its nonlinear dependence on p. 
This is obvious for a / k T 2  1. But it seems natural that for a/ 
kT< 1 the dependence is linear: 

n=no ( I -cp lk l ' ) ,  

( n > r n , .  

In fact, we shall find the value of the potential that corre- 
sponds to the most probable concentration of the substance. 
Since 

the maximum of the exponential corresponds to p,/ 
a = - u/kT, whereP,,, -exp(d/2k 'T 2 ) .  However, in an 
exact treatment of the successive moments 

( 1 1  >=no esp  (o ' /2k 'T2) ,  

(n')''>=n exp ( o ' / k ' T 2 ) ,  . . . , ( n " >  '"'=n,, ex11 (po2/2k'T') 

( 2 )  
it is found that they are larger the larger their label p :  
(n2), (n)*,(n4) >,n2)2, i.e., the successive averages are de- 
termined not by the most probable value o/kT, but byplt2a/  
kT. Therefore, even for small u/kT, generally speaking, we 
cannot use the linear approximation to ( 1 ) (if we are inter- 
ested in sufficiently high moments). The behavior of the mo- 
ments (2 )  is explicable only if there are rare, high peaks in 
the concentration distribution. In principle, there are also 
high peaks in the Gaussian potential itself, for which 

( p  P, l'p grows likep"' at largep. But this growth is weak in 
comparison with the exponential growth in (2) ."  In this 
way, weak intermittency in p ,  which in itself could be ne- 
glected, turns out to be sharply expressed in a concentration 
distribution that depends nonlinearly on the potential. 

3. A STATIONARY MEDIUM 

The equilibrium concentration ( 1 ) arises as the station- 
ary solution of the equation describing the transport of an 
impurity in a medium with constant density and diffusion 
coefficient D: 

where in the mobility approximation we have V = ( D  / 
kT)Vp. The probability of the appearance of high peaks is 
determined by the quantities u /kT  =Re, which has a direct 
similarity to the Reynolds number. In fact, the root-mean- 
square velocity v = ( D  /kT) [ ( v)2] 'I2 = Da/kTl, and 
therefore, Re = vl /D.  

We shall investigate how intermittency arises from an 
initial smooth distribution no(x) ,  say, no = const. In the ini- 
tial stage we can neglect the term Vn-Vp in comparison with 
nVp. In the equation obtained after this, in contrast to the 
exact equation, the total number of particles is no longer 
conserved, and essentially we are dealing with an increase in 
the number of particles at the peaks on account of the (disre- 
garded) decrease of the concentration in the space between 
the peaks. The growth of the peaks ceases upon increase of 
the concentration gradients, when the concentration ap- 
proaches the stationary solution ( 1 ) . The approach to equi- 
librium is slow, and by the time t equilibrium is established in 
cells with spacing R -  (Dt)"' and depth of the order of 
kT(3  In R )  'I2. Thus, with time, equilibrium is established in 
ever deeper cells (on account of particles escaping from the 
less deep cells). 

In a number of problems in biology or in the kinetics of 
chemical and nuclear reactions we are concerned directly 
with random proliferation and diffusion (see, e.g, Refs. 15 
and 16). In these case the initial growth is suppressed by 
nonlinear effects. Here, also, one finds the onset of intermit- 
tency, which grows with time and tends, evidently, to a sta- 
tionary state of the type described above. We shall consider 
the onset of such intermittency in the linear approximation, 
using the example of the simple equation 

In the general case, the solution of Eq. ( 3 )  can be written in 
the form of an integral over random t r a j e c t ~ r i e s l ~ . ~  P, de- 
scribing diffusion with diffusion coefficient x :  

t 

where M, denotes averaging over all trajectories arriving at 
the point x at time t .  The solution ( 4 )  is similar to ( 1  ), 
except for the fact that the exponent is nonstationary. 

Let the potential U have a Gaussian distribution with a 
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FIG. 1. Schematic illustration of an "optimal" trajectory, starting from a 
point x, at which 4, > 0 and arriving, at time t, at the point x. At the point 
x,,, of the maximum of the potential the trajectory also spends a time of 
the order oft .  

certain characteristic decay length of the spatial correlation, 
zero mean, and variance 2. For simplification, it is conven- 
ient to divide space into cells with dimensions equal to the 
correlation length of the potential and to replace the diffu- 
sion by a discrete random walk of the particle, which, in time 
At, crosses with probability xAt into one of the six (in the 
three-dimensional case) neighboring cells, and remains with 
probability 1 - 6xAt in the initial cell. In other words, we 
replace the continuous integral (4) by a close, finite-dimen- 
sional integral of very high multiplicity. 

We shall show that for any bounded non-negative func- 
tion &(x) and any x > 0, with probability unity the solution 
grows asymptotically like exp[ t (6d  In t )  ' / * I ;  more precise- 
ly, there exists the limit 

This time dependence is explained by the fact that the deci- 
sive contribution to the solution (4 )  is made by trajectories 
that fall rapidly into the high maximum of the potential. The 
magnitude of the maximum of the potential in a region of 
size R--. m is of the order of 2' 

max U- (20' 1n V )  "I- (60' In R )  l i 2 ,  

as is easily established directly from the form of the Gaussian 
distribution. For a typical trajectory R =t ' I 2 ,  and therefore 
it would seem that $ a e x p [ t ( 3 d  In t)1'2]. In reality, alarge 
contribution is given not by a typical trajectory but by a less 
probable, so-called (by I. M. Liftshitz) optimal trajectory, 
which in a time t moves away over a large distance -R a t 
(see Figure l ) ,  compensating its small statistical weight by 
the large factor max U. This weight can be determined as 
follows. The number of jumps of a particle in time t is a 
Poisson process with parameter 6xt, and therefore 

P {mas I El-x I >at )  

= (ex t i  - exp ( -6x t )  r. (Gexla) exp (-Gxt) .  
kPa1  

li! 

Thus, the statistical weight of a trajectory deviating by a 
distance a t  is of the order of e - ", where S = 6% + a ln(a/  
6ex). We shall estimate the solution ( 4 )  for t - rm:  

$ ( x ,  t )  r.qO exp (-6t)  exp (max U t )  

u~exp[t (Goz In t ) '"]  , 

which proves (5 )  (compare with the contribution of a typi- 
cal trajectory!). 

We call attention to the fact that, although the rate of 
growth does not depend on x ,  in the case x = 0 the solution 
will grow only exponentially.'* This is connected with the 
fact that the time at which the emergence to the superexpon- 
ential solution occurs depends in an essential way on x. 
Thus, depending on the order of the limits (x-+ 0, t+m, or 
t-+ w , x-t 0 ) ,  different results are obtained. 

We now find the rate of growth of successive statistical 
moments of $. For this we make use of the fact that, in dis- 
crete space, 

t 

where r (x , t )  is the time spent at the point x before the time t, 
and also use the well known formula for averaging an expo- 
nential: (exp q, ) = exp((q, 2)/2),  which we have already 
used in the preceding Section. Then from ( 4 )  we obtain 

Obviously, r( t ,  and therefore the maximum value d t  2/2 of 
the exponent is attained on that trajectory which sits in the 
same cell (a t  point x )  for the whole time t. The statistical 
weight of this trajectory is equal to exp( - 6xt).  Therefore, 

exp (ozt2/2)  >($)>exp (-6xt+aZt2/2), 

whence we obtain 
In($ ( x ,  t )  > 0% 

lim =- 
f tZ  2 '  

Thepth moment is estimated analogously: 

where d i )  is the time spent at the point y by the ith trajectory 
before the time t. Consequently, 

Thus, the statistical moments ($P grow much 
more rapidly, like exp( p$t /2), than the function $ itself, 
and in such a way that the rate of growth increases with the 
order of the moment. This progressive increase of the mo- 
ments is explained by the presence of sharp peaks in the solu- 
tion $(x,t), i.e., by the presence of intermittency in the dis- 
tribution of $. 

The appearance of superexponential growth of the mo- 
ments can be explained by the fact that we have considered, 
in an infinite space, a potential that can take arbitrarily large 
values. For a bounded potential the solution and its mo- 
ments will grow exponentially. It can be shown that 

11- 

y = lim - = sup I U (x) ( =O, 
i-oo t 

However, when the next term of the asymptotic form is tak- 
en into account we have 

11 90 Sov. Phys. JETP 62 (6), December 1985 Zel'dovich eta/. 11 90 



wherep( p) /p  falls with increase ofp. Thus, for a bounded 
potential the intermittency is expressed much more weakly. 

We note that for a Gaussian potential in a bounded vol- 
ume we have $ccexp(maxUt), where maxU is a random 
quantity. As before, the moments grow like exp( p2a2t '/2). 

4. A SCALAR FIELD IN A RANDOM NONSTATIONARY 
POTENTIAL 

We shall consider now the case of a nonstationary po- 
tential U(t,x,w). We can foresee that in this case the solution 
will grow more slowly, since the deep cells that ensure the 
maximum growth will exist only for a finite time. 

We shall examine the simple case of an extremely non- 
stationary potential, when the potential is white noise in 
time, with independent values in different spatial cells of a 
certain characteristic size: 

where w, is a Wiener (Brownian) process, (w,) = 0, (w:) 
= at ,  and ( . . . ) denotes the average at the given point x. 

This problem was considered in Ref. 17 in relation to the 
Burgers equation, which in its pure form reduces to (3 ) .  
When generalized potentials are used it is necessary to spe- 
cify more precisely the meaning o fa  /at in ( 3  ), i.e., to specify 
the order of the limits: First, dt-, 0 and then the correlation 
time rO+ 0, or vice versa. We shall consider the second case, 
i.e., we shall understand (3 )  as the limit of a difference equa- 
tion (for the first case, see Ref. 17 ) . 

Equation (3 )  is solved explicitly for x = 0 in the man- 
ner of ItoI3: 

$(t ,  x, O )  = $ o ( ~ )  exp (wt-at/2). (10) 

The appearance of the additional factor3' - a t  /2 in the ex- 
ponential is connected with the fact that in differentiation of' 
a Wiener process it is necessary to consider the square of its 
differential and to use the equality (dw, )' = a d t  (Ref. 13). 
Therefore, 

d exp (wt-at/2) =exp (wt-ot/2) [ (dw,-csdt/2) 

+ ( d ~ , - o d t / 2 ) ~ ]  =exp (wt-ot/2) [awl-odt/2+dwt2/2] 

=exp (wt-ot/2)dwt. 

Since a typical value of the process w, for large t is of the 
order oft  'I2, the solution ( 10) decays with probability unity 
like exp( - a t  /2) at any spatial point. However, with a 
small probability a Wiener process takes values exceeding 
t ' I 2  by an arbitrary amount. Therefore, on the background of 
the general solution it cannot be doubted that there are rare 
high peaks in the solution $. 

To verify this, we shall calculate successive statistical 
moments, assuming $,(x) to be a random quantity that is 
deterministic or distributed independently of U. Applying 
the formula 

(exp pw, )=exp (pZot/2), 
we find 

( $ P ) = ( ~ o P ) ( e ~ p ( p ~ t - p o t / 2 )  )=($oP)e~p[p(p-l)to/2].  

Thus, the exponential-growth rates y, / p  increase like 
a( p - 1 )/2 with increase of the order of the moment. The 
mean value, corresponding to p = 1, coincides with ( r l , ) ,  
the mean square grows like exp(at  /2), the fourth moment 
grows like exp(6at1, etc. We recall that a typical realization 
$( t )  decays like exp( - a t / 2 )  with increase oft. Therefore, 
the increase of the moments is explained by the nontrivial 
contribution of rare events. This means that amongst the 
complete set of realizations $(t,x,w ), at any time t, functions 
growing with time at certain spatial points x can be found. 
As is clear from the solution (10) and the properties of a 
Wiener process, these functions are functions of intermittent 
growth. This can also be elucidated by calculating the aver- 
ages not over the statistical ensemble but over space (sample 
averages). It is usually assumed that these averagings give 
identical results. In the present case the result of the spatial 
averaging depends in an essential way on the form of the 
initial function. 

It is easily verified that the sampling moments coincide 
with the statistical moments when the initial function $ , ( x )  
is distributed statistically uniformly in an unbounded vol- 
ume, Now let the initial distribution be localized in a finite 
volume V. Then, with probability unity, 

We draw attention to the fact that the sampling momentsp, , 
unlike the statistical moments, are random quantities. How- 
ever, their rate of growth is a nonrandom quantity and is 
equal to 7, /p = - 1/2. In the Stratonovich approach or for 
a potential with a small but finite restoration time one ob- 
tains qp/p = 0. Thus, this difference affects the result. We 
note that the correction to yt is of the order of ~ 7 t  ' I 2 ,  where r] 

is a random quantity. 
This difference between the sampling moments and the 

statistical moments should be understood as follows. For a 
localized initial distribution or in a bounded body, in the 
overwhelming majority of realizations the rare intermit- 
tency peaks exist only for a finite time. After a certain time 
the characteristic spacing between these peaks exceeds the 
size of the body (or  the characteristic size of the region occu- 
pied by the field), and only a certain, exponentially decaying 
probability of reappearance of a peak remains. Nevertheless, 
this probability is sufficient to change qualitatively the sta- 
tistical average. It is not difficult to understand that the time 
for the peaks to die out is of the order of (we do not write out 
the dependence on p ) 

where r,  is the characteristic correlation length of the poten- 
tial and r is the characteristic growth time of the given mo- 
ment. Thus, for t > t, the given volume turns out to be too 
small for ergodicity to be realized in respect of the given 
order of the moment. 

5. LIMIT OF SMALL DIFFUSION 

We shall show that the intermittency effect is preserved 
even in the presence of diffusion, at least in the limit of small 
x .  To this end, it is sufficient to prove the continuity of the 
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rates of growth of the moments as x+O. 
This result is by no means obvious. We shall think of the 

diffusion of t+4 as an average of an aggregate of transports of 
this scalar along distinct random Brownian trajectories. 
Then for x#O there arrives at each point in space a beam 
consisting of an infinite number of trajectories, each of 
which "brings" a solution of the type ( 10). Although the 
statistical contribution of a typical trajectory is small, viz., of 
the order of exp [ ( a t )  ' I 2  - at /2 1, one can find an exponen- 
tially small number of optimal trajectories that carry a con- 
tribution of the order of exp At with A > - & a.  The problem 
is to show that in the limit x+O the contribution of these 
optimal trajectories will not change the results of the preced- 
ing Section. 

We note that in the above problem with a stationary 
potential diffusion slows the growth of the solution. In a 
nonstationary problem, as will be shown below, the inclu- 
sion of diffusion has the opposite effect. The point is that, 
because of the nonstationary character, a well at a given 
point always disappears. But thanks to the diffusion there 
are always trajectories that are situated for the maximum 
time in regions of growth of the solution. Of course, there is 
also a multiplicity of paths passing mainly through regions 
where t+4 is decreasing. However, because of the exponential 
dependence of the solution on the potential the contribution 
of the constructive paths turns out to be the more important. 

The solution of the problem ( 3 )  for x  # O  can be repre- 
sented in the form of a Wiener integral over trajectories that 
arrive, at time t, at a given point x. In the discrete space-time 
described, this solution naturally generalizes ( 10) : 

1 6 ,  n) =M:"$. (E.) e r p  (z ~af'"-n/2) . 
11-1 

where n is the discrete time, {, ( x )  is the trajectory of a ran- 
dom walk through the lattice, M, is an average over the 
trajectories {, but not over the realizations of the potential 
U, and A, w'"' = wSx' - w:?, are the increments of the Wie- 
ner processes at the times s at the given point. These incre- 
ments are indepenent Gaussian random quantities with zero 
mean and unit variance. 

Let the initial distribution $,(x) be localized at zero: 

We shall find bounds on thepth sampling moment 

P P ~ )  = h n ,  x). 
X 

For the lower bound we can consider the point x  = 0 and the 
trajectory which, having begun its motion at this point, does 
not leave it before the time n. The statistical weight of this 
trajectory is equal to ( 1 - 6 x )  ". Therefore, 

pP (n) 2 (1-6%)" e r p  (pw, (0) -pn/2). 

Hence, with probability unity, 

yp = lim In PP (n) P w* P lJ >1~(1-6x)+---~-Gx--  
n-m n n 2 2 '  

n--t-. 

This bound is sufficient to establish the continuity of the rate 

ofgrowth. However, it would be possible to conclude from it 
that diffusion only decreases the rate of growth. In fact, 
allowance for a nonzero x  increases the rate of growth, since, 
owing to the diffusion, the particle is able to visit sites with a 
very large value of the potential. For the proof we divide the 
time segments n into intervals with a length k  that depends 
on x.  We shall choose this dependence later. We consider a 
trajectory that starts from the coordinate origin and passes 
into that neighboring cell which has the maximum value of 

k 

the quantity z U. This random quantity has a Gaussian dis- 
1 

tribution with variance k u  and zero mean. Therefore, the 
k 

average value of C U is equal to C ( k a  2 ,  ' I 2 ,  where C is a 
I 

constant that depends on the number of neighboring cells. 
After the time k  the trajectory passes into a new cell-the 

2k 

cell with the maximum 2 U, and so on. The statistical 
k 

weight of this trajectory is equal to 

and its contribution gives the following bound on the solu- 
tion: 

Since, by the law of large numbers, 
k Lk 

the maximum of the exponent as a function of k  is reached at  
k,,, = (9/4 a C )  I In x  1 .  Consequently, 

In $, > const (>0) p 9 ,  = lim- -- 
,,, n ( l n ( l / x )  1 2 ' 

To obtain an upper bound we draw attention to the fact 
that a typical value of the quantity 

is of order nLI2. The danger arises from those rare trajector- 
ies that are moving, so far as this is possible, through local 
maxima of the potential and making a higher (in comparison 
with n'I2) contribution to this quantity. The probability that 
for one fixed trajectory the sum of the increments exceeds n 
by a factor of S is exponentially small: 

However, the number of trajectories is exponentially large- 
of the order of 6". Obviously, 6" exp( - S2n/2)  tends to zero 
as n- co only for 6 > (21n6)'I2. This crude bound is not 
satisfactory, since it gives only an upper limit y, 
< [ ( 2  In 6)'" - 2 1 that does not depend on x  and so does 
not solve the problem of the limit x+O. This estimate is 
crude-we have not taken into account the fact that the sta- 
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tistical weights of the different trajectories are different. We 
shall allow for this circumstance. 

In the time n, a typical trajectory (, executes, not n but 
only 6xn=( Y ,  ) transitions to other cells. The probability 
that m transitions occur is equal to 

where 

The entropy S ( x , r )  in the square brackets in the exponential 
is always negative, except at the point r = 6 x ,  where it van- 
ishes. For a given m the number of trajectories arriving at the 
point x = 0 at the time n is equal to 

We recall that the sampling moment is a random quan- 
tity. The probability that pp takes anomalously large values 
is estimated as follows: 

P { p p  (n) ) > exp { n ~  (x,  r )  +16 (r) n-pnl2) 

GZ exp{n[-rlnr-qln q+rln 6-6'(r)/2]). 
m 

We choose 6 ( r )  so that the maximum of the function in the 
square brackets in the right-hand side of the inequality is 
negative; i.e., we let 

6 (r) > [2r In 6-2r In r-2q In q] "'. 

Therefore, after a certain time n the inequality 

p, (n) <exp { n  max [S (x, r) +6n-pn/2] ) 

will be fulfilled. Consequently, with probability unity, 

p p  (x)  <max[S (x, r) +r6 ( r )  -pi21 

where { (x )  is a quantity of the order of lnln( l / tr) .  Thus, 

-! P 1 - ' I2  

( l n t l  <yr+-<  2 ~ n -  , I  % I  
i.e., the continuity of the growth rates is proved. The bounds 
show that for ?r-+ 0 the graph of the function pp ( t r )  has a 
sharp tangency to the vertical axis. The lower bound shows 
that small diffusion increases the rate of growth. 

The continuity of the rates of growth of statistical mo- 
ments that are not random quantities has been demonstrated 
in Ref. 4. In this case, 

Thus, yp (tr ) > 0 and pp ( x  ) < 0 for x-0. 

6. COMMENTS ON THE VECTOR AND MULTIDIMENSIONAL 
CASES 

The derived properties of the growth rates for statistical 
and sampling moments are also typical, in our opinion, of 
more complicated problems, e.g., for the problem of hydro- 
magnetic dynamos in random flows.' The main difference in 
this case is that for sufficiently small diffusion coefficients 
even a typical realization of the field can grow exponentially. 
The intermittency in this case takes the following form. 
Against the background of the exponential growth of a typi- 
cal realization there are peaks which ensure advanced 
growth of the moments. By a fixed time, the statistical and 
sampling averages of order p smaller than a certain critical 
valuep, coincide, while those of large ordersp are different. 
This means that the peaks that give rise to the advanced 
growth of the statistical moments in comparison with that of 
the sampling moments have already become so rare that, as a 
rule, not one of them appears in the volume occupied by the 
field. The quantity po decreases exponentially with time 
(here we are considering also the noninteger statistical and 
sampling moments), so that the contrast of the field outside 
the peaks in a typical realization grows nonexponentially or 
even stabilizes. A mathemetical justification of the picture 
we have drawn requires calculations more complicated and 
cumbersome than those carried out for the simple example 
studied in this paper. We note that in the vector case the 
nonuniformities of the solution have a structure in the form 
of plaits of magnetic lines or layers. 

The simple model of the type ( 3 )  considered above does 
not convey an important feature typical of the evolution of 
intermittency in the multidimensional case. In the model 
( 3 ) ,  the peaks are concentrated from the outset near individ- 
ual points-local maxima of the potential. More typical is an 
initial formation of features with cellular or network struc- 
tures on the caustics of the Lagrange trajectories.19 In the 
course of time, however, separationj of the individual sites in 
these structures will certainly occur. This was first exhibited 
in the numerical experiments of Shandarin for the example 
of gravitational problems; see Ref. 2. This separation is due 
to the fact that the characteristic size of the structures grows 
exponentially in time, and even the low-probability trajec- 
tories, which we should take into account, move away in a 
time t to a distance that has only a power-law dependence on 
the time and therefore are unable to give rise asymptotically 
to the long-range correlations necessary for the formation of 
a cellular or network structure. 

The authors are grateful to V. I. Oseledets for stimulat- 
ing discussions and to V. I. TatarskiY for useful critical com- 
ments. 

"One can cite examples of distributions with peaks that are even less 
pronounced than a Gaussian peak, e.g., the potential distribution 
p ' / ( I  + p'), where q, is a Gaussian quantity. In this sense, for the 
characteristic of weak intermittency it is not sufficient to confine oneself 
to calculating or measuring the excess (n4) / (n2) ' .  The weak intermit- 
tency may appear mainly in the higher moments. 

* '  In the region there are N a  R ' correlation cells. The probability that a 
certain U,, is reached in one cell is of the order of P-exp( - U i / 2 a  '). 
The condition PN- 1 then gives the estimate of max U.  " This factor vanishes if, instead of a potential that isd-correlated in time, 
we consider apotential that is restored after acorrelation time T,,. In this 
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case all the growth rates calculated below increase correspondingly. It 
turns out that, in this way, the limits t--+ m ,  ro+ 0, and ro+ 0, t+ m 
lead to different results. We note that the solution without the factor 
exp( - o t / 2 )  is also obtained from ( 9 )  if one uses the approach of 
Stratonovi~h. '~ 
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