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Theoretical formulas that take the interaction of the electrons into account are obtained for the 
high-frequency hopping electrical conductivity of the relaxation type. Two-dimensional systems 
with a comparatively small localization length are considered. It is shown that the existence of the 
Coulomb gap has a substantial effect on the real and imaginary parts of the electrical conductiv- 
ity. Measurement of the electrical conductivity in certain frequency and temperature ranges 
makes it possible to determine the localization length. 

1. According to current ideas, the electron states in dis- 
ordered two-dimensional systems are localized at  sufficient- 
ly low temperatures. In the case of weak disorder (weak 
localization) the localization length is large in comparison 
with the electron wavelength. In this case the localization 
affects the electrical conductivity only in the region of very 
low temperatures and very low frequencies, while outside 
this region the Drude formula is valid. In the case of strong 
disorder (or  strong localization) the wavefunction contains 
one charcteristic length, called the localization length, and 
the electrical conductivity has a hopping character in a wide 
range of frequencies and temperatures. 

The present paper is devoted to the theory of the high- 
frequency hopping electrical conductivity for strong disor- 
der. The term "high-frequency conductivity" is used here 
only in the sense that Rea (w)<Ima(w) .  For the hopping 
conductivity this condition is fulfilled when Rea(w)  )a,, , 
where a,, is the static hopping conductivity. 

High-frequency hopping conduction' occurs by elec- 
tronic transitions between localized states with close ener- 
gies. The states that are optimal for such transitions form 
compact pairs lying at a considerable distance from each 
other. There are no transitions between pairs, so that the 
pairs cannot give rise to transport of current in a static field, 
although a high-frequency field effects transitions within 
pairs, thereby producing polarization. Transitions within 
pairs can occur both with and without the help of phonons. 
In the former case, called the relaxation case, the energy R 
required for the transition of an electron within a pair is on 
the order of kT, while in the latter, no-phonon case, this 
energy is equal to the energy fin of a quantum of the field. At 
frequencies w < w,, and &I < kT,  where w,, is the charac- 
teristic phonon frequency order of 10"-10" secp', relaxa- 
tion absorption dominates, and we shall be discussing pre- 
cisely this case. It should be kept in mind, however, that the 
no-phonon absorption does not lead to substatially different 
results. 

In relaxation absorption the distance r, between local- 
ized states within one pair is determined from the condition 
that the field frequency w is of the order of the frequency 
w,, exp( - 2r, /a) of the transitions within the pair. It fol- 
lows from this that 

where a is the localization length. As shown in Ref. 2, when 
calculating the conductivity one must take into account the 
interaction between the electrons. If e2/xr, > A, where A is 
the width of the Coulomb gap, it is sufficient to take into 
account the intrapair interaction, which changes the result 
substantially for e2/1tr, > kT. (Here e is the electron charge 
and K is the dielectric permittivity.) But if e2/xr, < A, the 
states responsible for the conduction are found inside the 
Coulomb gap and it is necessary to take into account the 
interaction of all the electrons with energies close to the Fer- 
mi level. For a three-dimensional system the conductivity in 
the presence of electron-electron interaction was considered 
in Refs. 2-5. For two-dimensional systems, to our knowl- 
edge, such an analysis has not been carried out. 

2. The dipole moment per unit area can be represented 
in the form 

where d(w,R,r)  is the dipole moment of a pair in the electric 
field E, w is the frequency of the field, R is the energy neces- 
sary for an electronic transition within the pair, r is the two- 
dimensional moment arm linking the centers of the localized 
states of the pair ( the separation of the pair), and F(f2,r) is 
the distribution function of the number of pairs per unit area 
with respect to R and r. According to Ref. 2, 

We shall calculate the function F ( R , r )  in the two-dimen- 
sional case. For this it is necessary to specify the system to be 
considered. We shall assume that, when the electron-elec- 
tron interaction is not taken into account, the density of elec- 
tron states does not depend on the energy and is equal tog, in 
an energy range greater than the width A of the Coulomb 
gap. Then, when the Coulomb interaction is taken into ac- 
count, the density of states g ( ~ )  has the form (see Ref. 6)  

1057 Sov. Phys. JETP 62 (5), November 1985 0038-5646/85/111057-03$04.00 C 1986 American Institute of Phys~cs 1057 



g ( e ) = g o ,  I e l B A .  ( 5  
Here E is the energy of the localized states, measured from 
the Fermi level. The dielectric permittivity x describes the 
medium in which the two-dimensional system is placed; it is 
assumed that the metallic surface is far from the system (in 
comparison with r ,  , as will be seen from the following). The 
Coulomb-gap width satisfies 

We note that the form ofg(&) for l ~ l  ( A  does not depend on 
the model of the disordered system. The function F ( R ,  r )  at 
zero temperature is calculated from the formula7 

m 0 

e Z  
F ( R , r ) =  j g ( r l ) d r l  j g ( ~ ~ ) d ~ ~ b ( e ~ - e ~ - - -  Q  

0 - cc x r  

Substituting ( 5 )  into ( 7 ) ,  we obtain for R + e2 /x r<A  

and for R + e2 /x r>A  

F(R, r ) = g o 2 ( Q  +f-). xr  ( 9 )  

Formulas ( 8 )  and ( 9 )  are valid if R + e2 /x r>kT .  In the 
calculation of the integrals in formula ( 2 )  values of R of the 
order of k T  and values of r  of the order of r, are important. 
Therefore, we can use formulas ( 8  ) and ( 9 )  under the condi- 
tion 

3. Substituting ( 3 )  into ( 2 )  and replacing F ( R ,  r )  by 
F ( 0 ,  r ) = F ( r ) ,  we perform the integration over R and the 
angles of the vector r. We obtain 

It should be noted that it is possible to add the contributions 
from all pairs only if the pairs interact weakly with each 
other. We shall check that this condition is fulfilled in the 
most important case, when the separation r  of the pairs satis- 
fies the condition e 2 / x r ( A .  According to ( 8 ) ,  the number of 
pairs per unit area that have separation of order r  and energy 
of order k T  can be estimated as kTx/e2r .  The average dis- 
tance between them is 

and r / E  = ( k T x r / e 2 )  ' I 2 <  1 .  Then their interaction energy is 

which, in the case under consideration, is smaller than the 
pair energy kT .  We note that in the three-dimensional case 
the interaction energy is of order of kT ,  and this gives rise in 
the theory to the serious difficulties to which attention was 
drawn in Ref. 4.  

Using formula ( 4 )  to replace r  by the variable r in the 

integral ( 11 ), one can see without difficulty that the product 
F(r ) r"  can be taken outside the integral for r  = r , .  In the 
calculation of I m a  the integration over 7 must be restricted 
to the region r > w;', and so it is not possible to determine 
the number under the logarithm. To within this number, we 
obtain 

7E 
Re o  = - eZaorU3F ( r , )  , 

8 
( 1 2 )  

;Z W P ~  
11n o  = - e2aorm3F ( r , )  In - . 

4 o 
( 1 3 )  

Substitutinginto ( 1 2 )  and ( 1 3 )  theexpressions ( 8 )  and ( 9 ) ,  
we find that, for e2 /x r ,  < A ,  when the states responsible for 
the conduction lie inside the Coulomb gap, 

and the loss angle IC, is small: 

,$=--- 
I m o  2 

At a nonzero temperature the regime with small loss angle is 
destroyed at sufficiently low frequencies, when r, becomes 
comparable to the hopping length r ,  of the static hopping 
conductivity. At still lower frequencies the hopping occurs 
not through isolated pairs but along percolation paths (see 
Ref. 6 )  penetrating the entire system. The conductivity in 
such conditions ceases to depend on the frequency and 
reaches its static limit. According to Ref. 6 ,  in Coulomb-gap 
conditions the length r ,  is of the order of a ( T o / T )  ' I 2 ,  where 
To = e2 /xa ,  SO that r ,  = r ,  for w = w,,exp{ - T , / T ) ' / ~ .  
According to ( 14 ) ,  at this frequency Ream exp( - To/ 
T } " ~ ,  

F'or sufficiently high frequencies, e2 /x r ,  )A. In this re- 
gime, according to ( 9 )  and (121,  (131 ,  

nZ a o e 4  n 2  
Re o  = - - rO2goZ = - ( x o a )  - 

8 x 8 ( )  ( 1 7 )  

2 o p h  
I m o  =-In-Re o, 

n 
( 1 8 )  

and the loss angle is determined by formula ( 16) .  
Finally, in the high-temperature case ( k T ) e 2 / x r , ,  

k T >  A ) ,  the electron-electron interaction turns out to be 
unimportant. According to Ref. 2, in this case 

Substituting ( 3 )  and ( 1 9 )  into ( 2 ) ,  we obtain 

and the loss angle is determined, as before, by formula ( 1 6 ) .  
Formula ( 2 0 )  is the two-dimensional analog of the Austin- 
Mott formula.* Formulas ( 1 7 ) - ( 2 0 ) ,  unlike formulas ( 14 ) ,  
( 1 5 ) ,  depend on the model of the disordered system, since 
they contain the quantity go. If the spread of the levels is 
associated entirely with the Coulomb interaction at dis- 
tances large in comparison with the lattice constant there are 
no grounds to suppose that the density of states will be inde- 
pendent of the energy in any range of energies. In this case 
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the entire spread of the levels is of the order of the Coulomb- 
gap width A. Nevertheless, the formulas ( 17) and ( 18) re- 
main valid in order of magnitude. The quantity g, must be 
regarded as of order nxe2/n ' I 2 ,  where n is the surface density 
of charged centers. However, the formula (20), which is 
valid in the case k -A ,  has no region of applicability if the 
spread of the level is of the order of A. 

The most interesting of the regimes considered is the 
Coulomb-gap regime, which is described by formulas ( 14)- 
( 16). Measurements in this regime make it possible to check 
ideas about the Coulomb gap and to determine the localiza- 
tion length directly. It is probable that transition to this re- 
gime, i.e., fulfillment of the condition e 2 / x r ,  < A, can be 
realized more easily by increasing the localization length (as 
a result of an increase in the concentration of electrons in the 
structure) than by lowering the frequency. 
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