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The pressure-induced transformation of a multicomponent spectrum is discussed. A non-Marko- 
vian kinetic equation is obtained for the evolution of the dipole moment operator of an active 
molecule in the binary approximation. The relative motion of the colliding particles is discussed 
classically. The transition to the kinetic equation of the Markovian theory (MT) is demonstrated. 
Two variants of the theory are compared with the formalism of the familiar impact theory. The 
simple example of two interacting transitions (lines separated by 6 in the spectrum) is used to 
show that the differences between the descriptions of the spectrum provided by the three theories 
can be neglected in the nonadiabatic limit 67,( 1, where T, is the collision time. In the intermedi- 
ate situation corresponding to ST, - 1, the non-Markovian theory alone provides the correct 
description of the non-Lorentzian wings of the lines, their shifts and widths, and the appearance 
of forbidden transitions. Under highly nonadiabatic conditions, for which 6r,) 1, only the secu- 
larized form of MT can be used, which is then identical with the impact theory. 

INTRODUCTION 

It is well known that collisions between particles in a 
gas not only broaden and shift the individual lines in the 
multicomponent spectrum but, in general, also give rise to 
interference between the lines. When the splitting 6 of the 
components of the spectrum is small in comparison with T; ' 
(where T, is the collision time), the broadening of the spec- 
trum is nonadiabatic in character, and interference mani- 
fests itself as a spectral transfer or migration of frequency 
(polarization) between the components. The rate of transfer 
is proportional to the collision frequency r; ', which in- 
creases with increasing gas pressure. When it becomes 
greater than 6, the structure is found to collapse, and partial 
or complete compression of the spectrum by pressure be- 
comes possible. This effect has been examined in detail with- 
in the so-called impact in which collisions are 
looked upon as instantaneous interaction events, so that, for 
all t > T, = 0, the relaxation of the density matrix, or of the 
dipole moment of the system, is described by differential ki- 
netic equations. The result of a collision is repres:nted in 
these equations by the time-independent operator P, which 
acts in the space of the lines and whose off-diagonal elements 
characterize the rate of spectral transfer. 

The above picture of nonadiabatic transformation of 
spectra is now generally accepted. It explains the pressure- 
averaging of the hyperfine structure of NMR and ESR spec- 
tra,4 the fine structure of atomic ~pec t r a ,~  and the rotational 
structure of the vibrational spectra of  molecule^.^ In many of 
these applications of the impact theory, the line splitting 6 
rises from 10' to 1012 s-' while remaining less than 7;' - 1013 s-I. However, recent has extended this the- 
ory to vibrational spectroscopy where S>T;' is not infre- 
quent. This type of direct extrapolation of the simple inter- 
ference picture to the region where collision broadening is 
qualitatively different (adiabatic) is, at the very least, un- 
justified. 

From the point of view of impact theory, this extrapola- 
tion is unacceptable because spectral transfer is excluded by 
this theory when the broadening becomes adiabatic (67, 
) 1 ). On the other hand, impact theory itself is hardly valid 
in this region. Since it ignores the development of the process 
during the collision time (for t < T, ), it cannot describe the 
distant wings of lines separated from resonance by the 
amount IAoi > T; ' (Refs. 9 and lo) ,  i.e., it cannot describe 
the interference between spectral components separated by 
6 > T; ' from one another. l '  The problem of this interference 
and its consequences can be solved only within the frame- 
work of a more general, binary, non-Markovian theory capa- 
ble of describing the development of this process both 
between and during collisions. 

The conclusion that there is no adiabatic spectral trans- 
fer has recently been disputed1' from the standpoint of the 
more general theory. Some grounds for this are provided by 
the analysis of the Markovian variant of this theory, which is 
obtained from it by taking a particular limit, and is regarded 
valid for t s r , .  Comparison of this with impact theory, valid 
in the same range, shows that there is a formal identity 
between tkem in all respects except for the definition of the 
operator P. The nonsecular part of this operator, which is 
responsible for transfer and vanishes in impact theory in the 
limit of adiabatic broadening, remains in MT to the same 
extent as the secular part. It is not obvious, however, 
whether it follows generally that MT can be obtained from 
the non-Markovian theory if it is intended to use it subse- 
quently to calculate the distant periphery of spectral compo- 
nents. 

To elucidate this question, and to compare adiabatic 
and nonadiabatic transformations of the spectrum, we un- 
dertake below a revision of existing ideas on line interference 
by considering the example of the well-studied four-level 
model. The results can be briefly summarized as follows. 
The non-Markovian theory can alone describe the spectrum 
in all its details, including the appearance of forbidden (sti- 
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mulated by collisions) components. The two asymptotic 
theories provide only an approximate description of the 
shape of the spectrum, but the impact theory is indicated by 
these results to be preferable to MT, and we provide a formal 
kinetic and physical explanation of this. 

1. NON-MARKOVIAN GAS-KINETIC EQUATION 

The criterion for the validity of the binary approxima- 
tion in gases and gaseous mixtures is r,/rO( 1. When this is 
satisfied, the kinetic equation for the density matrix can be 
obtained by the very general method developed in Ref. 13. It 
allows a non-Markovian formulation of the theory, which 
retains first-order corrections in the parameter rc/r0. This 
theory was developed in Ref. 14, but was applied to liquid 
solutions in which particles approached one another in hops 
or by interdiffusion. Gas analogs of this theory have been 
known for a considerable timeI5 but, for our purposes, it will 
be convenient to derive the gas-kinetic equation in a form 
familiar in encounter theory,14 in which the approach of par- 
ticles to one another is looked upon as a process that is inde- 
pendent of their interaction V ( r ) ,  i.e., the separation 
between the particles r ( t )  is considered to be a given or ran- 
dom function of time. In impact theory, this corresponds to 
the approximation of rectilinear trajectories, which differ 
only by initial velocities and impact parameters. 

Let d ( t )  by the Heisenberg operator responsible for the 
absorption of light, for example, the dipole moment of an 
active molecule. It obeys the Schrodinger equation which 
takes into account only the interaction with the nearest 
partner for a particula? instance of a collision: 

d , ( t ) = i [ ~ , ,  d,(t)]  + i [  V(s+t), d,(t) 1. (1.1) 

Since any collision begins at - cc and ends at + cc , its main 
characteristic is the times between the beginning of observa- 
tions ( t  = 0)  and the instant of closest approach (maximum 
interaction). We now proceed to the interaction picture - 

d, ( t )  =e-~~o'd, (t) e'liot, 

and introduce the evolution operator R (s,t,t I ) ,  defined by 

where 

and T is the chronological operator. 
According to formula (2.6) in Ref. 14, the non-Marko- 

vian kinetic equation for the quantity d( t )  averaged over all 
the collisions is 

- 
$(i) = N { i  [ r . - l J f o t  ( V  (S + t ) )  e l f f  '. 11 ( t ) ]  

where N is the density of perturbing particles. '' The averag- 
ing (. . .) in ( 1.4) involves integration over the initial posi- 
tions of the particle on the trajectory and summation over all 

the parameters defining the trajectory. After some rearran- 
gement, the final gas-kinetic equation assumes the form 

+ rn 

-I d ~ f ' ( r ) e ' * d ( t - ~ ) ~ - ~ ~ ~ 7 } .  (1.5) 
0 

The kernel of this equation 

has already been averaged over s, and the angle brackets 
imply only averaging over the collision parameters: 

just as in the usual impact operator. However, in contrast to 
the ippact theory, ( 1.5) is an integro-differential equation 
and r(r) contains information on the evolution of the sys- 
tem over times comparable with and less than r,. In (1.6), 
U(t,t ') = U(O,t,t ' ) and the definition of the operator Ugiv- 
en by ( 1.3) differs from the generally accepted definition of 
the evolution operator in the interaction picture by the fact 
that i has been replaced with - i. 

2. ABSORPTION SPECTRUM 

According to the fluctuation-dissipation theorem, the 
absorption of light at frequency w is described byI7 

m 

I ( o )  =b (o) ~e J dt e-'"' Sp (p,dd (t) ) , 
0 

wherep, is the equilibrium density matrix. Only the spectral 
function 

expressed in terms of the Laplace transform of the observed 
function 

m 

d (0)  = je-iwtd ( t )  dt 

need be calculated. If we use (1.5) to calculate it, we find 
that 

where 
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The evaluation of the spectrum is thus reduced to the inver- 
sion of the matrix G(w) and its convolution according to the 
recipe given by (2.2). 

The impact analog of the operator R (0) does not de- 
pend on frequency and its off-diagonal elements are inter- 
preted as the rates of spectral transfer between the corre- 
sponding lines in the multicomponent spectrum. I? the 
non-Markovian theory, the off-diagonal elements of R (w) 
cannot be looked upon as the rates of transfer because they 
depend on the continuous variable o which, in general, is not 
equal to the eigenfrequencies qf the system. To compare im- 
pact theory with the non-Markovian theory, we ~ u s t  begin 
by freeing ourselves of the frequency dependence R (w ), i.e., 
pass to the so-called Markov limit. 

In the literature there is complete unanimity on how 
this transition can be carried out ~ o r r e c t l y . ' ~ - ' ~ ~ ' ~  It is con- 
sidered that the transition to the interaction picture in accor- 
dance with the formula - 
d( t -T)  =exp [ iH,( t -T)]  d ( t - ~ ) e x p  [-iH,(t-T) ] (2.5) 

completely removes fast motion with eigenfrequencies Ho 
from d ( t  - r ) ,  leaving behind only slow attenuation on the 
scale of the mean free time T ~ .  Because of this, d ( t )  can be 
taken out from under the integral sign in (1.5), since the 
other cofactor T ( r )  is attenuated much more rapidly, i.e., in 
a time r, (To. If these ideas can be regarded as undisputed, 
we are equally entitled to use the following equation instead 
of (1.5): 

This is still a non-Markovian equation, but its solutions have 
an exponential asymptotic form, and it is sufficient to extend 
the integration over r to + cc in order to describe it. This 
leads to the basic equation of the Markovian theory with the 
time-independent relaxation operator - 

m 

i. (0) = j i. ( T )  dT. 
0 

When this is used to find d(w ) and to calculate the spectrum, 
the latter can differ from (2.2) only by the different defini- 
tion of the matrix 6: 

It is precisely this matrix that must be compared with its 
impact analog, since their frequency dependence is the same. 

Actually, according to impact t h e ~ r y , ' - ~ ~ ' ~ * "  

Gik. I ~ = = F , ~ ,  im+i (u-uim) 6ii6rnk7 (2.8) 

where 
P ,  l m = , l n , - ~ l * ~ k m ,  l m - i A m 6 i m  (2.9) 

is calculated in the S-matrix formalism with 
S = U (  + a, - cc ) .  The impact theory and MT will be 

identical for f ' (0)  = p. However, this is not the case in gen- 
eral. The two theories become identical when the factor 
exp [ i (w,  + w,, )s]  in (1.6) is omitted, assuming1' that it is 
close to unity. The integrals with respect to s and r a r e  then 
trivial, and the evolution matrices becomes S-matrices. This 
reduction of r ( 0 )  to y is justified if (w,  + w,, )r,( 1. The 
situation is different when this inequality is reversed. Ac- 
cording to ( 1.6), the secular parts of f ' (0) and y are then 
identical, as before, but their off-diagonal elements are dif- 
ferently defined in MT and in impact theory. To elucidate 
this difference and to explore its consequences, we shall exa- 
mine the spectra of a simple system that has already been 
used to illustrate line interference. We shall have to explain 
the changes that occur as we pass from nonadiabatic to adia- 
batic broadening, the extent to which the non-Markovian 
description of the phenomenon is more complete, and which 
asymptotic theory is in better agreement with it. ., 

3. FOUR-LEVEL SYSTEM. PERTURBATION THEORY 

Consider the four-level idealization of the actual spec- 
trum of a system, assuming that the splitting of the upper 
and lower doublets is small in comparison with the separa- 
tion between them (Fig. 1 ) .  We shall investigate the spec- 
trum consisting of four high-frequency transitions between 
the doublets, two of which are allowed and two forbidden by 
selection rules for a free system. 

The shape of the spectrum is determined by the opera- 
tor R ( a ) ,  which we shall calculate from perturbation the- 
ory, assuming that the nonzero matrix elements are 

v,, ( t )  =V,, ( t )  = V ( t ) ,  Im V ( t )  =O. (3.1) 

This implies that the perturbations of both low-frequency 
transitions occur in phase and have the same time depen- 
dence. In this important special case, all the results become 
much simpler. In second-order perturbation theory, every- 
thing is expressed in terms of the correlation function 

+=o + rn 

K ( ~ ) ~ = " = K ( T )  J d t < V 2 ( t ) )  = J d t ( V ( t ) V ( t - r ) ) ,  (3 .2)  
- m -0)  

where V 2  is the variance of the perturbation. The operator 
R (w ), calculated from ( 1.6) and (2.4) in this approxima- 
tion, has the following form in the basis of the lines 
{ik,lm) = {41,32): 

FIG. 1. The four-level system. The frequency is measured from o, = 1/2 
(u4, + a,,)-the central frequency. 
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R(o)=R(o)  [ -I], R(w)=R'(w)+iRu(w), (3.3) 
-1 1 

where 
OD 

~ ( o ) = P [ F ( o - e )  + ~ ( o + e )  1, ~ ( o ) =  d r ~ ( r ) e - ' * ~ .  

A more specific representation of the real and imaginary 
parts of F(w) can be obtained by considering the example of 
the functionI9 ? 

K (7) = ( 2 ~ ~ / n ) ~ [ ~ ~ +  ( 2 ~ , / n ) ~ ]  -', 
which corresponds to the long-range interaction - r -2 ,  
which, in turn, justifies the application of perturbation the- 
ory. We then have 

i 
F ( o )  =r. {e- lx '  + - [ e z  Ei ( - r )  -e-x Ei* (r) ] 

n 

The real and imaginary parts of this expression are shown in 
Fig. 2. The imaginary part o fF ( r )  has the following asymp- 
totic behavior: 

We note that the high-frequency asymptotic behavior de- 
scribed by (3.6b) is independent ofthe choice ofthe function 
K( r ) .  

To go over to MT, we must determine the matrix f'(0) 
in (2.7). This matrix is not in simple correspondence with 
the frequency-dependent operator (3.3) of the non-Marko- 
vian theory. The latter operator can be transformed into it 
through an element-by-elemen: transformation, the recipe 
for which is clear from (2.4a) : rik,Im (0) = kik,lm (alm ). The 
final result is 

where 

r=P [ ~ e  F (e-612) + ~ e  F (e+8/2)] ='/Z(Wsa+Wiz), (3.8) 
A = V 2  [Im F (E-612) -1m F (e+6/2)], (3.9) 

and 

w i 2 = 7  J dr  K ( r )  e-iotfi, ~,.=l" J dr K ( r )  e-iwsr 

FIG. 2. Real and imaginary parts of the function F ( x ) ,  where 
x = h7,/?T. 

can be interpreted as the probability of a transition between 
the levels in the bottom and top doublets, respectively. 

It is readily verified that, for nonadiabatic broadening, 
for which 

6~,<1,  ~ r , 9 1 ,  (3.10) 

the non-Markovian theory, the impact theory, and MT yield 
the same result if we neglect the frequency dependvce of 
F(w) and put F ( o )  = F(0) .  We then have W,,  = W,, = Wo 
and 

where W, is the probability of frequency transfer between 
the lines. This formulation of the problem is customary for 
low-frequency magnetic spectroscopy and its solution, first 
obtained by M c C ~ n n e l l , ~ ~  was subsequently frequently re- 
produced in another ~on tex t ' -~ . ' ~  until it found an applica- 
tion in vibrational spectroscopy.7s8 However, it is in this last 

a case that the conditions for nonadiabatic broadening (3.10) 
may be violated, and we must now investigate the conse- 
quences of this. 

4. INTERFERENCE BETWEEN LINES IN ADIABATIC 
COLLISIONS 

When at least one of the inequalities (3.10) is violated, 
the frequency dependence F(w ) begins to play a significant 
role. In the non-Markovian theory, the spectrum then ac- 
quires both allowed lines (at frequencies + 6/2) and forbid- 
den components at frequencies + E,  whose relative integrat- 
ed intensity is proportional to rc/rO (Ref. 21). The 
appearance of these components is due to the kinetic descrip- 
tion of the system during the collision time, when the optical 
selection rules are lifted due to interaction between the parti- 
cles. This is the principal difference and advantage of the 
non-Markovian theory as compared with its asymptotic var- 
iants. Moreover, the non-Markovian theory gives the cor- 
rect description of the wings of allowed lines: 
F (o)  ~ ~ o - ~ e - ~ ~ ~ .  

Let us begin with the situation where ~ 7 ,  ) 1 and ST, 1, 
as before (Fig. 3a). This is the characteristic situation for 
vibrational spectroscopy. If the allowed lines are due to cold 
and hot vibrational transitions, they can take part in ex- 
change as a result of collisions that excite and deactivate the 
low-frequency mode,' where the splitting S of these lines can 
be as small as desired. Since, in this case, collisions are adia- 
batic, the probabilities (3.8) that they will induce transitions 
are exponentially small. However, apart from this, there are 
no other significant changes. The quantity 

is negligible in comparison with S which, in turn, is so small 
in comparison with E that the presence of satellites on the 
periphery of the spectrum can be neglected, and we can con- 
fine our attention to the asymptotic description of the col- 
lapse of allowed lines, in which we can use either the impact 
theory or MT with equal success. 

It is interesting to examine the case where both inequal- 
ities in (3.10) are reversed, and one of the doublets becomes 
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FIG. 3. Different types of four-level system: a) ST,< 1, ET,> 1; b )  E = &/2, 
& ~ , > 1 ; ~ ) & = 0 , S 7 , > 1 .  

degenerate, i.e., E = S/2 (Fig. 3b). Transitions within this 
doublet are nonadiabatic with maximum probability 
W,, = 2 7 r c  = W,, which is exponentially greater than 
the small probability W,, in the other doublet, so that the 
latter can be simply neglected. We are thus dealing with 
mixed broadening, which is simultaneously (although in dif- 
ferent channels) adiabatic and nonadiabatic. However, 
judging by (3.8), this has no effect on MT if we do not take 
into account the change in the absolute magnitude of the 
probability as compared with (3.1 1 ) : 

We note that, if we were to turn off the 1-2 transition, not by 
increasing the detuning w,, but simply putting V,,  = 0, then 
MT would give (4.3) and not (4.2). The physically equiva- 
lent situations ( W,,=O or W,, z 0) are described by MT in a 
qualitatively different manner. On the contrary, in impact 
theory, the absence of transitions in the split doublet signi- 
fies that the corresponding element Sy is zero, which imme- 
diately 1eads.to the secularization of P in (2.9), so that 

The consequence of this difference is that, in MT, the spec- 
trum has been subjected to collapse and compression by 
pressure, whereas, in impact theory, it has been subjected to 
monotonic broadening alone. Unfortunately, there is no 
clear criterion for discriminating against either of these the- 
ories, since the region of collapse for 67,) 1 lies outside the 
range of validity of the binary approximation (T,(T,). 
Without going outside these limits, we can analyze only the 
well-resolved spectrum: 6 ;  T Let us put 
P y  =p:  = 1/2, dl, = d2, = 1, so that, using (3.3) and 
(2.2), we obtain the following expression for the spectrum in 
the non-Markov theory: 

F(o)= 
R' ( a )  S z  (4.4) 

2[62/4-02-20R" ( o )  ]2+802R1z(o) 

FIG. 4. The spectral function F ( w ) ,  calculated in second-order pertur- 
bation theory for the system shown in Fig. 3b. The parameters are: ST, 
= P, V2<  = ~ / 8 .  Non-Markovian theory-solidcurve, impact theory- 

dashed curve, MT-broken curve. 

It is immediately clear that the intensity of the center is ex- 
ponentially small because R ' (0 )  = 2 7 Re F ( E )  wexp 
( - ST,/T). Neither asymptotic theory can, in principle, 
cover this central region of the spectrum, which lies at a 
distance greater than 1/rC from the two resonances (Fig. 4) .  
From this point of view, the differences between the asymp- 
totic theories are of fundamental rather than practical char- 
acter, because the retention of the nonsecular terms in (4.2) 
takes us outside the range of validity of MT. 

All these conclusions are only strengthened as we pass 
on to the next situation in which E = 0 and ST,, 1 (Fig. 3c). 
This arises when two-quantum vibrational-rotational transi- 
tions, which simulate the mirror components of the P- and 
R-branches of the I R  spectrum of a diatomic molecule, are 
allowed. Forbidden lines then belong to the Q-branch and lie 
at the center of the spectrum. When the vibrational-rota- 
tional coupling is neglected, their frequencies are equal and 
the spectrum transforms into a triplet with a forbidden, dou- 
bly degenerate line at the center. To describe it, we must turn 
to the non-Markov theory which, when the second order in 
the interaction V is taken into account, redefines (3.4) so 
that 

~ ' ( o )  +iR" ( o )  = 2 p ~ ( o ) .  (4.5) 

Substituting this in (4.41, we find that the central portion of 
the peak duplicates the shape of Re F ( w )  and then decays 
exponentially on either side with a decay constant T; ' (Fig. 
5 ) .  The intensity at the center is 

FIG. 5. Spectral function 9 ( w  ), calculated in second-order perturbation 
theory for the system shown in Fig. 3c. The parameters are the same as in 
Fig. 4. Non-Markovian theory-solid line, MT--dotted line. 
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9 (0) = 8 7  R e  F (0) /62 (4.6) 
and increases linearly with the collision frequency because 
v2- v2rC/r0 (v is a parameter characterizing the strength of 
the coupling). 

The integrated intensity of the forbidden line, 
9 ( 0 ) / r C ,  is smaller by the factor (v2/S2) ( rC/r0)  than that 
of the allowed components. If the coupling were strong, the 
difference between the intensities would decrease to rc/r0. 
The relative intensity would then be equal to the fraction of 
time spent by the molecule in the collision. The selection 
rules for a free rotator, which forbid the Q-band, are sus- 
pended during this time. The interaction produces an orient- 
ing field capable of transforming the motion of the molecule 
into small-amplitude vibrations whose spectral manifesta- 
tion is the Stark splitting of the spectrum with the strong Q- 
band at its center.22 In the binary theory, this structure is 
looked upon as the "induced spectrum that exists only dur- 
ing the time of the collision." However, in a liquid, rc>r0 
and it is precisely this previously forbidden Q-band that ac- 
quires an intensity comparable with or even exceeding the 
intensity of the other lines. At any rate, the transformation 
of the IR spectrum of HCl in buffer gases as their pressure 
increases is of this kind.21-23 It can only be treated by the 
non-Markovian theory, whether it be the perturbation the- 
ory21 or the binary theory examined here. It is important to 
emphasize that, in adiabatic collisions, the for forbidden line 
is sharper and therefore better defined in the spectrum than 
in the case of the discontinuous and fundamentally nonadia- 
batic perturbations examined in Refs. 21 and 23. 

In conclusion, we draw attention to the special case 
where one of the two interfering lines is forbidden right from 
the outset (for example, d2, = 0) .  According to (3.3) and 
(2.2), in this case, 

(4.7) 
We have already expressed the view that, because of the 
transfer between allowed and forbidden components, the lat- 
ter become partly allowed and may appear in the spec- 
t r u m . ' ~ ~ ~  In actual fact, this is not so: the forbidden line man- 
ifests itself as a valley in the wing of the allowed line. In 
particular, it is clear that, at the center of the valley, the 
absorption intensity is F,,, = 0. The same result is ob- 
tained in the nonadiabatic impact theory as well. If, instead 
of it, we use MT, it turns out that 

which leads to the physically meaningless result Fmi, 
= F(w,, + A )  < 0. 

5. CONCLUSION 

We have verified that the transition from MT to the 
non-Markovian theory leads to the unexpected appearance 
of line interference, a better description of the periphery of 
the spectrum, and, finally, to negative intensity at the valley 
minimum on the forbidden component. In our view, these 
difficulties originate in the unjustified removal of d ( t  - T),  

defined in (2.51, from under the integral sign in (1.5). This 
procedure converts the non-Markovian kinetic equation to 
(.26), which has a Markovian asymptotic behavior. It is jus- 
tified only when d (  t )  varies slowly on the scale of T,. How- 
ever, it is readily verified that this is not the case in the pres- 
ence of interference. 

To demonstrate this aposteriori, we use the Markovian 
version of (2.6) in its general form, and determine the be- 
havior of d(?).  For two interfering lines, we have 

Assuming that y, y14S, we write the solution of (4.1) in the 
interaction picture: 

i,. (t) = [ d , .  (0) - idz3 (0) g] e-"+idz3 (0) e - ~ - ' ~ ' ,  
6 

(5.2) 

;Iz, (t) = - i d , .  (0) L~-T~+"' + [ d, ,  (0) + i d , .  (0) 21 e-7t  
6 6 '  

As can be seen, d(?)  contains terms that oscillate with the 
frequency of the line splitting S which, in the adiabatic situa- 
tion, is much greater than 7; '. Consequently, it is precisely 
in the adiabatic limit that we make the mistake of passing 
from ( 1.5) to (2.6). On the other hand, when there is no 
interference, ( y' = 0) ,  the procedure for taking out d ( t  - r) 
is undisputed, and the kinetic equation is equally valid in the 
form of either (1.5) or (2.6). 

The following recommendations can be based on the 
above discussion: ( 1 ) only the secular form of MT can be 
legitimately used in the case of adiabatic broadening (this 
has already been pointed out in Ref. 13, (2)  the integral form 
of the non-Markovian theory must be used in any detailed 
description of the spectra that includes the periphery of the 
resonances and forbidden lines, and (3  ) impact theory is the 
preferred choice for the simplified description of the spectra. 

"A more general derivation of an equation analogous to ( 1.4), which uses 
only the binary nature of the interaction in tenuous gases, is given in Ref. 
16. 
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