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The effect of higher-order gradient terms in the free energy of nematic liquid crystals on the 
dynamics of the director is studied. These terms lead to a nonlinear equation of motion for the 
director, which has soliton solutions in several cases. The nature of the solutions is studied as a 
function of the initial conditions and the parameters of the problem. The possibility of an experi- 
mental observation of the predicted effects is discussed. 

I. INTRODUCTION 

Recent years have seen increased interest in the nonlin- 
ear dynamics of liquid crystals because of the numerous liq- 
uid-crystal systems which have been synthesized, with char- 
acteristic parameters over a broad range, making it possible 
to choose types of structures with the characteristics most 
suitable for observing nonlinear effects. 

Of particular interest are systems which permit soliton 
solutions in the distribution of the director of the liquid crys- 
tal, since such formations can easily be observed experimen- 
tally by optical methods. Lin et a/.' have offered a qualitative 
theory to explain the experimentally observed1 structure of a 
soliton type which arises in the distribution of the director of 
a nematic liquid crystal subjected to a shear flow. That 
study, however, was restricted to description of the struc- 
ture; it does not relate the resulting solutions to the initial 
data of the problem. The nonlinear dynamics of the director 
of a nematic liquid crystal in a static magnetic field, excited 
by a pulse of an electric or magnetic field, was studied in Ref. 
3. 1t-was shown there that, for certain relations among the 
parameters of the problem, the director distribution is of a 
soliton type. 

In the present paper we propose a new mechanism for 
the formation of solitons in a nematic liquid crystal on the 
basis of higher-order terms in the expansion of the free ener- 
gy in the gradients of the director n. The need for considering 
these terms has been dem~nst ra ted~-~  in several cases for 
other systems. With certain modifications, the results de- 
rived below can be used to describe the nonlinear dynamics 
of magnetic systems and of superfluid He3. We restrict the 
discussion here to the geometric situation in which all the 
changes in the director n are uniform in the plane perpendic- 
ular to some y axis. In this case the problem becomes effec- 
tively one-dimensional and analogous to the linear problem 
of the propagation of a twist-orientation wave. This formula- 
tion of the problem was studied in Ref. 3 and had the advan- 
tage that in this case the so-called reverse flows, which seri- 
ously complicate the problem, do not arise (but even in a 
geometry with reverse flows, the picture remains qualitative- 
ly the same7). Furthermore, this geometry is simple to ar- 
range experimentally. 

2. EQUATION OF MOTION 

Descriptions of nematic liquid crystals are usually re- 
stricted to those terms in the expansion of the free energy 

which are quadratic in the spatial derivatives. This approxi- 
mation is fully justified in a description of static effects and 
linear dynamic effects. In a description of the dynamics of 
the director, however, it may be necessary to consider high- 
er-order gradient terms in cases of very nonuniform initial 
distributions of the director or for the long-term dynamics, 
where even corrections which are small at the beginning of 
the motion lead to significant changes in the final distribu- 
tion. 

For nematic crystals of symmetry Dm,  the energy must 
be invariant under rotations arround the preferred direction 
of the director and under the replacement of n by - n, so 
that they energy cannot contain third-order gradient terms. 
It is necessary to consider those terms of fourth order which 
are invariant under these transformations. Analysis9 has 
shown that there are generally 52 such terms in the free ener- 
gy. The situation simplifies considerably in the geometry as- 
sumed here. In this case the number of independent invar- 
iants reduces to seven, which can be written explicitly: 

(An)', (nAn)', (Vinj)', (nAn) (Vinj) ', (n rot n)'(nAn), 
(n rot n)'(Vinj)', (n rot n)'. 

Consequently, in the case n = (sin p,  0, cos p ) ,  within gra- 
dient terms of fourth order, the free energy is given by 

Here K is the Frank rotational constant; A and B are combi- 
nations of coefficients of the fourth-order invariants; and the 
derivatives are taken with respect to the coordinate y. 

In writing free energy ( 1 ), we omitted nonlocal correc- 
tions which arise when fluctuations are taken into account. 
The role of fluctuations in the dynamics of nematic liquid 
crystals was studied in Ref. 4. It was shown that they cause a 
slight renormalization of the elastic constants and of the vis- 
cous coefficients. However, these corrections to the harmon- 
ic terms in the free energy must be smaller than the anhar- 
monic effects which are taken into account, for otherwise 
there might be substantial changes in the nature of the equa- 
tion of motion. 

It can be concluded from an analysis of these results 
that incorporating fluctuations changes the picture of 
events, slightly at least for high initial frequencies. 

It should also be noted that the very choice of a geome- 
try for the problem presupposes that it is one-dimensional 
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and essentially eliminates from consideration the fluctu- u=2 arctg e x p  [* ( y - w t f  yo)  I w2-1 fconst (4) 
ations Sn, which are the most "dangerous" in the sense ex- 
plained above. The physical meaning may be a suppression under the condition sign a = sign B. 
of fluctuations by virtue of boundary conditions or by an The velocity w of the solitary wave can have either sign 
orienting magnetic or electric field. and must satisfy the conditions 

The equation of motion for the director n which corre- I w I < ~  for a, B<O, 
sponds to a free energy in the form in ( 1 ) is 

IwI>1 for a, P O .  

where J i s  the moment of inertia of the director, and y, is the 
rotational viscosity. The dissipative term significantly com- 
plicates analysis of Eq. (2) ,  so we will ignore it below, as- 
suming that the scale times (7, ) of the problem are quite 
small (7, 4 J /y l ) .  

Generally speaking, in typical nematic liquid crystals 
the parameters are such that this condition holds only for an 
estimate of high frequencies (at the applicability limit of the 
hydrodynamic approximation). 

The value of J may be significantly larger in lyotropic 
liquid crystals, where the structural units responsible for the 
nematic order are not individual molecules but molecular 
clusters of cylindrical shape containing a larger number of 
molecules. It can also be expected that Eq. (2)  may be appli- 
cable to dilute nematics. At any rate, even if the dissipative 
term is small in comparison with the inertial term in a purely 
numerical sense, this approximation can be used to derive a 
qualitative picture. Dissipation can be dealt with by pertur- 
bation theory or numerical methods. 

Transforming to the dimensionless coordinates 
j = I ; Ify, i = clfi I - '"t, and introducing u ( j ,  i ) = [a/ 
B 1'/2q,(y, t ), wherec = ( K / J ) ' / ~ , ~ =  B / K , ~  = A/K, we 
find 

aZu aZu a4u 
L--- = - [1+6 ~ i g n  a (?)'I f  sign f~ - 

at2 ay2 3  Y dyk ' 
(3  

(2)  The characteristic size of the wave is - 1 w2 - 11 -'" (in di- 

Here and below, where it will cause no confusion, we will 
omit the tilde indicating the dimensionless variables. 

Equation ( 3 )  is very similar in form to the well-known 
equation of a nonlinear string (see Ref. 10 and the bibliogra- 
phy there) which has soliton solutions. A difference is that 
the nonlinearity in the equation for a nonlinear string, which 
stems from the second term in brackets, is proportional to 
the first power of du/dy. It seems quite likely that Eq. (3)  
may also have soliton solutions. 

3. SOLITON SOLUTIONS 

The nature of the solutions of Eq. (3)  is determined by 
the initial conditions of the problem. Let us assume that at 
the time t = 0 an initial perturbation which is uniform in the 
xz plane arises in some region of the sample. Depending on 
the magnitudes of the initial nonlinearity and the dispersion, 
Eq. (3) may correspond to either a very nonlinear regime 
(the case du/dyI, =,  - d 4 ~ / d y 4  I , = - 1 ), or a nearly linear 
regime (the case of small derivatives), with the nature of the 
solution being determined by the usual wave equation over a 
rather long time. 

In the first case, Eq. (3) has solutions of the solitary- 
wave type, as can be shown by direct substitution: 

mensional units, the wave velocity is cw, and its size is lP/ 
( w2 - 1 ) I I / ' ) .  The sign and magnitude of the velocity in (4) 
are determined by the initial conditions from du/dt 1 ,  =,  . 

In the case at hand, however, we can neither offer a 
systematic description of the derivation of solutions of type 
(4)  from arbitrary initial conditions nor (especially) de- 
scribe the interaction of the solitary waves. All that we can 
assert is that, if the initial data of the problem constitute a 
profile of u similar to that constructed from solutions (4), 
and if they satisfy auxiliary conditions (the initial coordi- 
nates of the centers of the waves, yo,, must be sufficiently far 
apart, and the corresponding velocities w, must be arranged 
in order of increasing ly/ ), then the solution of Eq. (3) will 
have the form of an initial profile which evolves in accor- 
dance with (4) .  

Such initial conditions are extremely special, of course, 
and they could hardly be arranged experimentally in the case 
of several solitary waves. 

It is thus interesting to examine the opposite case of 
small initial derivatives. Let us assume that the initial condi- 
tions are such that we have (&/ay) :=, (1, L -2-g 1 (L is the 
region in which the initial values are specified). In this case 
the non-linear term is small in comparison with unity, and 
the dispersive term is small in comparison with d 'u/dy2. In 
this approximation, Eq. (3)  becomes an ordinary wave 
equation, and its initial solution can be written as two waves: 
u = u,(y - t )  + u2(y + t ) .  

If the solution is to remain of this nature over large 
distances, u, and u, must vary slowly with y and t. If the 
conditions du,/dy, du2/dy( 1 (and thus du ,/at, du2/dt( 1 ) 
hold at distances 2 L, the meaning is that the waves have 
already moved apart and can subsequently be treated as in- 
dependent. For an initial perturbation which is symmetric 
along y, it is obviously sufficient to consider only one of the 
propagating waves. We consider that which is propagating 
in the positive y direction. Using the change of variables 
6 = S(y - t) ,  T = ~t (the parameters S, E( 1 make the de- 
rivatives small), we find from (3)  

where u = du,/d(. In the derivation of this equation we must 
assume E-S3, since other relations between these param- 
eters are given by equations which are of no physical interest. 

With no loss of generality we can set E = S3/2. By virtue 
of the arguments above, the parameter S is none other than 
the reciprocal scale length of the initial perturbation: 
S = L -'. Equation (5)  is the well-known modified 
Korteweg-de Vries equation, which can have soliton solu- 
tions and which can be solved by the method of the inverse 

61 Sov. Phys. JETP 62 (1), July 1985 V. G. Kamenskiland S. S. Rozhkov 61 



scattering problem. As initial data we must know 
v(6,r  = 0). 

We consider the following initial data for Eq. (3):  

u(y, t=O) =O, 
0, yc-1 

(6) 
0, Y'Z 

This choice is useful both for simplifying the calculations 
below and because it approximates the actual situation of a 
possible experiment. 

Let us assume that these initial data satisfy the restric- 
tions in terms of small derivatives specified above. From the 
condition 

we then find 

and from the relation 

we find 

The conditions that the nonlinearity and the dispersion 
for ul be weak in this case are ( d ~ , / d y ) ~  = gt  4 1, (21) -'(I. 
We thus have v({, r = 0)  d u , / 8 (  1, =,  = 21du1/ 
dylr = = - 2g01 for - 1 <{< 1 and 0 for other (. 

Before we seek solutions of Eq. (5)  with these initial 
values, we have a few general comments. It is clear from the 
form of (5) that this equation does not change when v is 
replaced by - u, and the solution is determined by the sign 
of the initial values. If a and B are positive, the equation is 

If a and p are negative, Eq. (5)  is put in form (7a) by the 
replacement T+ - T.  I f p >  0, a < 0, Eq. (5) is 

and if 0 < 0, a > 0 Eq. (5)  is again put in form (7b) by the 
replacement r-t - 7. It is thus necessary to study Eqs. (7a) 
and (7b). Equation (7b) may have no soliton solutions at 
all,lOso we will first write the complete solution of Eq. (7a) 
and then summarize the results for the continuous spectrum 
of (7b). Equation (7a) with v(f, O)=vo = - 2gol can be 
integrated in the region - 1 <(< 1 by means of the system of 
equations1' 

The solution of this system with the initial asymptotic be- 
havior 

determines the components of the scattering matrix a@) ,  
b (A ) . Knowing these components along with the zerosil, of 
the function a ( A )  and the coefficients b, , determined by the 
relation 

we can find the solution of Eq. (7a), v((, T), from its initial 
form. The zeros A, determine the nature of the solitons. 

Spectral problem (8)  for initial data of the type in (6)  
was solved in Ref. 3. It was shown that a(A) and b(A) are 
determined by the expressions 

b (A) =-2igolq-' s in  q, 

a (h) =q-' [TI cos q-ih, s in  q] exp (ih) , 

where7 = [ A 2  +4&12]1'2. Thezerosofa(A) are 

hj=i[4Z2gO2-x:] "z=i2gol cos xj, (10) 

and thexj are determined by the equation sin x = + x/21g0, 
which has solutions only if Igo).rr/4. The number N of roots 
which arise is determined by 

Soliton solutions were found in Ref. 11 for the case of 
reflectionless potentials, i.e., for b(A)=O. It was shown that 
for a single soliton the solution is 

where Y = IA1 1, p = In1 b "'(0) 1, and b "'(0) corresponds to 
the purely soliton solution. In our case we have b(A ) # 0, so 
that the solution of Eq. (7a) also contains a continuous spec- 
trum which stretches out toward negative y (Ref. 10) and 
which may have several solitons, depending on the value of 
goI. 

Ti, lakr into account the effect of the continuous spec- 
trum and ol'the other solitons on the characteristics of the 
soliton detc-rmined by the value A,, we use the method of 
Ref. 3. We single out the initial scattering values correspond- 
ing to this soliton, and then by virtue of the one-to-one corre- 
spondence its evolution follows from Eq. ( 1 1 ) . 

Let us assume that the time r is long enough that the 
solitons are far apart and far from the region of the contin- 
uous spectrum. We can then assume, with exponential accu- 
racy, that they are independent. We number the solitons in 
order of decreasing Y, (i.e., in order of decreasing velocity). 
We examine the behavior of the solution $, (6, A, ), which 
has in the limit 6-+- cu the asymptotic form $, 
= exp( - iA,6), as we go from left to right through the 
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region of the continuous spectrum and with the solitons 
numbered from n + 1 to N. To the left of the nth soliton, $, is 

hn-hi 
Qt=A(h)exp(-ih.S) fl 

i-n+l 

where A(A, ) is the part of a(A) which corresponds to the 
continuous spectrum. To the right of the nth soliton, by de- 
finition, we have 

In a similar way we examine the behavior of the function 
$2(6,An ) = exp(iA, 6) in the limit 6-oo . To the right of the 
nth soliton, this function is 

n-i 

An-ht 
h3 exp (ihnS) 

i-i 

Using the definition of the coefficient b, (T)  = b(A,, T), 
and referring the relations derived to the time T = 0, we fin- 
ally find 

The quantity A(& ) is given by 

where 
e4 

I COS xn 1 j (pZ+ cos2 xn) -I Qn= ---- 
n o  

Substituting b(A, , 0)  = i (  - 1)" and (13) into (12), we 
find 

n-1 N 

Knowing b LO'(0), and using Eq. (1 1)  with 
p, = In1 b L0)(O) 1 ,  we can now describe any soliton. 

The soliton velocities in the coordinate system 6, T are 
4v;, and their scale sizes are - ( 2 ~ )  - I .  We would also like 
to determine the distance between the centers of two adja- 
cent solitons: 

At estimate of this expression for large N% 1 and for n < N 
(i.e., for at least the first few solitons) yields, quite accurate- 
ly, 

Since for N%1 and at small values of n we can assume 
x ,  - m, and Y, - 2g01, we finally find 

The ratio of the distance between the centers of neighboring 
solitons to their scale sizess- ( 2 ~ )  -', determines the degree 
of overlap of the solitons. From ( 16) we find 

dn n-i dn n-i A =  ( .I 16n2gol (2n-1) r f 2  ln[ 
Sn Sn-i 

from which we see that for gal) 1 (N) 1 ) the overlap of soli- 
tons is weak even at TZO, and it decreases with increasing T. 
This result means that solitons are well separated along the 
coordinate in this case. 

For the solitons with n close to N, we have 

In this case the overlap is determined primarily by the first 
term, and it becomes small at T) (4goI) -'. 

These estimates show that in the casegol% 1 there are at 
least a few first solitons which may be regarded as indepen- 
dent essentially from the beginning of the motion. In the 
region in which they are localized the form of u (6, T) can 
thus be found by integrating ( 1 1 ) over 6 with the corre- 
sponding v, and then joining the solutions. Integrating 
( l l ) ,  we find 

un (E, r )  =2 arctg {exp [8vnSz-2vnS+6nI 1. (17) 

In terms of the dimensional variables y, t we would have, 
instead of ( 17), 

'I. 

pn (y, t )  =2 / $1 arctg{exp[sn (tv.-y+~) 11, ( 18) 

where 

sn=2 1 d 6 p  1 %  1 cos zn 1 ,  unCc ( 4  + c0S2 3 x n )  ' 

The final form of the function p( y, t )  is thus a series of steps 
of height TIP /a] ' I2 separated by boundaries which are nar- 
row, with a width of order s; '. The velocities (v, -c) at 
which the boundaries of the regions of constant p propagate 
are approximately equal, so that the size of the regions de- 
pends only slightly on the time and is described by ( 16). 

4. CONTINUOUS SPECTRUM 

As we mentioned earlier, Eq. (7a) has, in addition to 
soliton solutions, solutions corresponding to a continuous 
spectrum for arbitrary gal. In the limit T+W the continuous 
spectrum in the region - 6 % ~ ' ' ~  islo 

u (t, T) -- ( ~ T ) - " A - " C  sin 0, (19) 
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and @(A) is the phase shift, which can be calculated from 
the scattering data. Since we are not attempting to find a 
complete description of the continuous spectrum, we will 
content ourselves with a qualitative analysis of expression 
(19). Solution (19) is a rapidly oscillating function whose 
amplitude decreases -7-'I2. Consequently, after a suffi- 
ciently long time, the amplitude of the continuous spectrum 
becomes considerably less than unity throughout this re- 
gion. 

In the region 16 1 5 (37) 'I3 the solution is an extremely 
special function, but again its amplitude decreases over time. 

Finally, in the region <)(37) 'I3 the solution is 

u-b ( i A / 2 )  a-' ( i A / 2 )  A-'"T-'" exp ( - h A 3 ) .  (20) 

Analysis of this expression shows that solution (20) is 
small in the region in which the solitons which form and 
which have velocities < - A2 > 1 are localized. In the case 
lg,) 1, essentially all of the solitons which arise, except for 
the least few, have such velocities. Expression (20) can thus 
be ignored in a description of the soliton structure. 

In the case of Eq. (7b) the continuous spectrum is de- 
scribed by equations analogous to those above, but now a ( A  ) 
and b ( A )  in the scattering problem are determined for the 
system of equations 

which has no bound states and thus no soliton solutions. 
Figure 1 sketches the solutions of Eqs. (7a) and (7b). 

5. CONCLUSION 

The function p (y, t )  , shown in Fig. 1, could in principle 
be observed quite easily in an experiment. The regions of 
constant director deflection angles, separated by sharp soli- 
ton boundaries, would appear as fringes of different intensity 
in optical observations. The order and alternation of these 

fringes would be determined by the quantity /a 1 ' I2  (we 
recall that a rotation of the director through 7~ does not 
change the optical pattern). The regions of continuous spec- 
trum would contribute an average background because of 
the rapid oscillations. Experimental observations can thus 
provide information on the nature of a and P. 

An appropriate initial excitation can be provided by a 
pulse of a magnetic or electric field applied at some nonzero 
angle from the original direction of the director. The condi- 
tion for the appearance of soliton solutions, 

is satisfied even in a comparatively weak field, - lo2 Oe (in 
the estimates we used the parameter values J- 10-l4 g/cm 
and a-0- 10-l4 cm2). 

However, our model is extremely idealized. We have 
leaned heavily on the assumption that the dissipative term in 
the equation of motion of the director is small. In a real 
system, this condition would not be met. Consequently, for 
this solution to hold we would need to satisfy the auxiliary 
condition &(t  = 0)  > ( y l / J ) .  This assertion means that our 
analysis applies only at high initial director rotation rates 
and for short time (under the condition that the hydrody- 
namic approximation has become applicable). The subse- 
quent evolution must incorporate dissipation. Furthermore, 
our analysis has ignored higher-order gradient terms, which 
may become important in the final state of formation of the 
solitons. 

In summary, the results derived here should be thought 
of as basically qualitative results describing the initial stage 
of the motion of the director of a nematic liquid crystal. This 
question requires experimental study and numerical simula- 
tion. 
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FIG. 1. Sketch of the solutions of Eqs. (7a) (a and b) and (7b) (c  and d) .  Translated by Dave Parsons 
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