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Triggered radiation, a monochromatic response of the magnetospheric plasma to a whistler prop- 
agating in it, is studied. The response is produced by the modulation of the distribution of parti- 
cles in Cherenkov resonance with the main wave. Phase mixing is absent because the particle 
velocity equals the group velocity of the response. It is shown that the experimentally observed 
amplitude and frequency characteristics of the response are in satisfactory agreement with the 
theory presented. 

INTRODUCTION 

It is well known that the magnetospheric plasma is a 
fairly good waveguide for electromagnetic waves with fre- 
quencies below the electron cyclotron frequency, the so- 
called whistlers, which propagate effectively along the geo- 
magnetic field. In many experiments (see, for example, Refs. 
1 and 2, a powerful terrestrial transmitter produced a whis- 
tler in the magnetosphere, and an electromagnetic signal was 
detected at the magnetically conjugate point. Besides the 
waveguide properties of the magnetosphere, various nonlin- 
ear effects produced by the interaction between the whistler 
and the magnetosphere plasma have been investigated. Some 
of these effects, such as the amplitude and frequency modu- 
lation of the electromagnetic signal, can be explained fairly 
readily by the appropriate nonlinear theory of the interac- 
tion of a wave with resonant particles (see Ref. 3 ), but the 
interpretation of some other experimental results has proved 
to be much more difficult. This applies particularly to the 
triggered emission phenomenon-the monochromatic re- 
sponse of the magnetosphere to a whistler propagating in it. 
It is generally observed together with the triggering wave at 
the magnetically conjugate point and it has a frequency that 
is modulated in time. Although this interesting pheno- 
menon, discovered in 1964 by Helliwell and his collabora- 
tors,' was subsequently the subject of detailed experimental 
investigation (see the reviews Refs. 4, 5 and the literature 
quoted in them), there is still no quantitative theory of it. 
Typical spectra of oscillations detected at the conjugate 
point are shown in Fig. 1. It can be clearly seen that besides 
the original signal, whose frequency spectrum is broadened 
by nonlinear effects by an amount Aw - 10-2w0, a mono- 
chromatic signal with monotonically increasing ( 1 ) or s- 
shaped (2)  frequency characteristic is also observed after a 
delay time of 0.5-1 sec, which is comparable to the time of 
propagation of a wave between the conjugate points. This is 
the triggered emission; the maximal deviation of its frequen- 
cy from that of the original signal is 1620%. 

Sudan and Ott6 proposed the following scheme for gen- 
eration of the triggered radiation. It is based on the triggered 
emission arising as a result of modulation of the distribution 
function of the resonance particles by the triggering wave. 
For a whistler propagating along the magnetic field (circu- 
larly polarized wave with the direction of polarization coin- 

cident with the direction of gyration of the electrons), reso- 
nance with electrons is possible only through the normal 
Doppler effect: w, - kov, = a,, where w, and ko(z) are the 
frequency and wave number of the wave, v, is the velocity of 
the electrons along the magnetic field, and w, (2) = eH,J 
mc is the cyclotron frequency. Since oo < w, for a whistler, 
v, < 0, i.e., the resonance particles propagate in the opposite 
direction to the wave. When such particles move in a nonuni- 
form magnetic field, bunching occurs, analogous to the well- 
known mechanism of klystron bunching (the particles that 
come into resonance later have a higher velocity and catch 
up with the ones in front of them). The blob which develops 
as a result of the bunching produces radiation, whose fre- 
quency increases as the bunch moves to a stronger magnetic 
field. A theory of such radiation was constructed in Refs. 6 
and 7, but although the main kinematic characteristics of the 
radiation spectrum reflect the characteristic features of the 
triggered emission, the radiation amplitude was found to be 
inadequate for satisfactory explanation of this phenomenon. 

In the present paper, we propose a different scheme for 
generation of triggered emission, applicable when the whis- 
tler is "oblique," i.e., propagates at an angle to the magnetic 
field. In this case, modulation of the electron distribution 
function by the triggering wave is also possible at Cherenkov 
resonance, 

in which case the resonance particles move in the same direc- 
tion as the wave. 

The modulation of the distribution function induces an 
electric field which can be represented as a superposition of 

FIG. 1 .  Time dependence of the frequency of signals detected at the conju- 
gate point; the triggering signal is shown by the hatching, the triggered 
emission by curves I and 2. 
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van Kampen harmonics with different frequencies w and 
wave numbers w/v, . The fundamental harmonic is the one 
whose wave number w/v, is equal to the characteristic wave 
number of the whistler, determined from the dispersion rela- 
tion 

k ,  (o, z )  =o/v,. (2)  

With increasing separation of the point of formation z of the 
response from the point of modulation z,, the macroscopic 
response field is rapidly damped by phase mixing of the van 
Kampen waves corresponding to different v,. However, 
such mixing does not occur for the group of resonant parti- 
cles, which remain in resonance with the van Kampen wave 
as its frequency is shifted, this, as readily seen from (2),  
consistent with the condition 

The finite width of this resonance is due to the growth rate of 
a whistler propagating in the radiation belt: Av, -y/k,, 
y = Imw. However, as usual in such plasma resonances, the 
small number of particles in resonance, An,, a y, is compen- 
sated by the large resonance contribution, a l/y, and the 
total response field does not depend on y. 

The calculations made below for typical parameters of 
the magnetosphere plasma show that the intensity ER of the 
electric field of the response is comparable to the intensity Eo 
of the triggering wave, whereas in the case of the klystron 
mechanism ER - E,n*/n,,, , where n* = n, (koL) -'I2 is 
the density of the bunching particles, L is the length of the 
magnetic field line, and n,, is the total density of the reso- 
nance particles (see Ref. 7 ) . 

If it is assumed that the triggered emission, like the trig- 
gering wave, propagates at a small angle to the magnetic 
field, k, (k,, then to determine the dependence k, (w) one 
can use the dispersion relation corresponding to longitudi- 
nal propagation of the whistler mode: 

Then from conditions (2)  and (3)  we find that the frequency 
of the response must be equal to the half-harmonic of the 
local cyclotron frequency at the point of formation of the 
response, 

o z ' / Z o H  ( z )  (4) 

in agreement with the well-known experimental condition 
for the existence of triggered emission (see, for example, 
Ref. 5). 

The mechanism considered here is a modification of the 
linear "echo" effect in an inhomogeneous plasma (see Ref. 
8), the absence of phase mixing being ensured by the reso- 
nance condition (3) .  The possibility of using an approxima- 
tion linear in the amplitude of the triggering wave to calcu- 
late the modulation of the distribution function simplifies 
the problem considerably. Let us consider the applicability 
of this approximation. 

For the existence of triggered emission, the particles 
must not come out of resonance with the wave too slowly, in 
order to avoid mixing as a result of phase oscillations of the 
resonance particles, which causes an ergodic distribution 

function to be established and the phase modulation to dis- 
appear. The corresponding condition entails a sufficiently 
rapid variation of the geomagnetic field, so that the length 
over which the particles come out of resonance, 

is appreciably less than the phase mixing length 1,-v2/fltr, 
i.e., 

In this condition, at, = (fl,w;/w, )'12u, /v, is the fre- 
quency of the phase oscillations of the trapped particles in 
Cherenkov resonance with the oblique whistler; this fre- 
quency determines the "nonlinear" width of the resonance: 
k, Av, =: fl,,; here, fl, = eH, /mc is the electron cyclotron 
frequency in the magnetic field of the triggering wave. Sub- 
stituting in condition (5)  in the neighborhood of the equa- 
torial plane Idw, /dzI -o,Sz/L ', where Sz is the dimension 
of the region in which the triggered emission is generated, 
Sz-L ISw I / w , ,  in which Sw = o - w, is the offset of the trig- 
gered emission frequency, we write (5)  in the form 

For typical magnetosphere conditions, the threshold value 
of the magnetic field of the wave determined by the condi- 
tion (6)  i sH>  lop7-3 x 10-'Oe. The condition (6) is the 
condition for the existence of triggered emission and, at the 
same time, the condition of applicability of the linear ap- 
proximation. In the opposite limiting case H, > H ": the 
nonlinear "rearrangement" of the distribution function and 
"spilling" of the resonance particles must be important. 

CALCULATION OF THE RESPONSE FIELD 

We consider an electromagnetic wave propagating at an 
angle to an external magnetic field Ho = H,(z)e, whose in- 
tensity varies over distances appreciably greater than the 
wavelength. We shall assume that the original wave has a 
fairly sharp leading edge, so that at each point of the field line 
when 

we have E = 0 and f = fo(v, , v, ), where f, is the equilibrium 
distribution function. For t > to(z), 

where Eo is the amplitude of the triggering wave, ER is the 
response field, and the correction to the equilibrium distri- 
bution function is found from the equation 

u z  
= P{ %[ cos 0( E, - - H,.) +sin 0( E ,  + 

m av, 

u dfo 
f - (H,, cos 0-H, sin 0) 

c du, 

+ [ ( I - -  27 ) i!: -+-- k a z u ~  dfo ] ( E ,  cos o+E., sin 6) 
o~ dv,  
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In this equation, 8 is the azimuthal angle in the velocity 
space. In writing down the equation we have used the fact 
that in the whistler mode E, = 0. To solve this equation, we 
perform a Laplace transformation with respect to the time, 

and a Fourier transformation with respect to the angle 8. 
Solving the resulting differential equation with respect to z 
using the obvious boundary condition f, (z -+So) = 0, we 
obtain the expression 

7. 

Here, Ep is the Laplace transform of the electric field of the 
response. In calculating the magnetic components of the re- 
sponse field, we have used relations that follow from Max- 
well's equations: 

Using these relations, from Maxwell's equations 
curl H = (4a/c)j (as usual, we ignore the displacement 
current in the whistler mode, since w(kc) we readily obtain 
the following system of equations for E b  = Epx + iEPy: 

Calculating by means of the distribution function (7)  the 
electron current on the right-hand side of Eqs. ( 9 ) ,  we write 
these equations in the form 

In Eqs. ( 10) we have used the fact that, because k : (k iz, 
E ,+ (E &, and we have used the notation 

p i - i n o ~  
x {i Je.. di+ik,rL - J - d i  

So I' v z  

The right-hand sides of Eqs. (10) are proportional to the 
current of the resonant particles which arises as a result of 
the modulation of the distribution function and creates the 
response in the form of the whistler propagating in the mag- 
netosphere. In calculating the integral overz' in this current, 
we used the method of steepest descent; the point z, is the 
point of stationary phase, determined from the equation 

The expressions for the operators g and + can be trans- 
formed by separating the contributions from the nonreson- 
ant (plasma) and resonant electrons. For the frist group, the 
conditions k, v, / l p  14 1 and k, v, /a, 4 1 holding, the inter- 
val of integration satisfies lz - z' I (k , ', and accordingly 
Ep (z') z Ep ( 2 ) .  For the second group, the integrals are cal- 
culated by the method of steepest descent in the neighbor- 
hood of the stationary point, whose coordinate is determined 
from Eq. ( 1 la)  with the substiiution k, -+ kpz . As a result, 
the integral operators 8 and h . are transformed into alge- 
braic expressionsg , and h * , and it is found that h + = h -. 
The results of the calculations can be represented in the form 
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EP ( z )  
X exp (ik,r,) - 

p f  i no ,  

(2n )  "e" ~ L V L  +- 
me" 

erp ( d 4 ) P  5 dv 0, ( =) L ( I , )  Rn-" 

EP ( 2 )  
X exp (ik,r,) - 

p f t n o ,  

(2n )  "ez  k ~ u ,  +- exp (:) p j dv U,J.+~ (=) 
me2 

In the terms that determine the current of the resonant parti- 
cles we have substituted 

I 

E p  (I) - exp ( i J kpzd6)  , 

where kpz is the longitudinal component of the wave vector 
of the response, calculated from the dispersion relation of 
the whistler mode: 

Ignoring the g and h the contribution of the resonant parti- 
cles and going to the limit of zero Larmor radius k, v,/ 
w, -+ 0 (at the same time h +. 0), we obtain from ( 13) the 
whistler dispersion relation in the hydrodynamic limit: 

FIG. 2. Contour of integration with respect to p in Eq. (15); 

In the case wp )kc  (purely electromagnetic oscillations) and 
Ipl gw, we obtain from this the standard equation 

Solving the system of equations ( 10) and making the inverse 
Laplace transformation, we obtain the following expression 
for electric field of the response: 

- ,  

1 - eZEo ER ( t ,  r) = - j ep'~,-  ( r )  dp=V2n - e3"'" j dpeYt 
2nz0-, me2 " - 1 -  

The integration contour is shown in Fig. 2; a > 0. The singu- 
larities of the integrand are poles on the imaginary axis at the 
points 

It is obvious that when 

the contour integration with respect t o p  in (15) can be 
closed in the right half-plane, where the integrand has no 
singularities, and, therefore, E, = 0. For givenvelocity v, of 
the resonant particles, a nonzero response arises only when 

i.e., at times greater than the time required for the triggering 
wave to move to the point z,, where the distribution function 
of the resonant particles is modulated, plus the time for these 
particles to move from the point z, to the point z at which the 
response is determined. Omitting in E, the contribution 
from the polep = - iw,, which corresponds to the response 
at the triggering-wave frequency, we obtain the following 
expression for the triggered emission part of the response, 
whose frequency must depend on the point z: 
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1 dk ,  -' 
- [ 2 k z ( -  v z  + -)] dm R ~ = ( ~ O ~  - w . ) / c ~  

Here, o *  = ip, , wherep, are the poles of E, , i.e., the points 
for which 

o'--n@a 
Dp(  kpz  = -) = 0; 

v z  

in calculating (16), we have used the hydrodynamic limit 
for D, determined by Eq. ( 14). 

In the integral over v, , all that is important is the resi- 
dues at the points 

The integral in the principal value sense for lz - zlI N U ,  / a H  
becomes zero fairly rapidly as a result of phase mixing in the 
integrand. The width of the resonance at the point of the 
residue is, as usual, - y / k ,  , and the change in the phase of 
the field for the integration over v, in the neighborhood of 
the resonance can be ignored provided 

Here, y is the growth rate with which the amplitude of the 
triggering wave changes. For typical parameters of magne- 
tospheric experiments with whistlers, this condition is equi- 
valent to the requirement that the width Sz = Iz - z, 1 of the 
resonance region be small compared with the length of the 
field line, i.e., it is certainly satisfied. 

Simple analysis shows that the resonance conditions 
( 17) can be satisfied only for n = 0 (Cherenkov resonance). 
For n = 1, 2 . . . (cyclotron resonance in the normal 
Doppler effect) the signs of k, and v, in ( 17) are opposite, 
and the resonance condition u, = dw*/dk, cannot be satis- 
fied. For n = - 1, - 2, - 3 . . . (anomalous Doppler ef- 
fect) the simultaneous fulfillment of the resonance condi- 
tions ( 17) is also impossible, since from Eqs. ( 14) for the 

whistler mode, we are considering dw*/dk, < b * / k ,  and 
w* < wH . For n = 0, the resonant conditions ( 17) imply that 
the group and phase velocities of the whistler are equal, 
which for k ,  /k ,  4 1 means that the response frequency must 
be equal to half the local cyclotron frequency. Retaining 
only the contribution of the Cherenkov resonance in ( 16) 
and integrating over v,, we obtain for the electric field of the 
response the expression 

The response initiates in the magnetosphere a packet of 
whistler waves, which can be represented in the form 

E ( t , z ) = j  d x ~ % e a p [  i( 1 k , ( x .  ~ ) d C , - s , t ) ] ,  (19) 
so 

where k, ( x ,  z)  is the longitudinal wave number of an indi- 
vidual harmonic of the packet, x is its value in the equatorial 
plane z = z,, and the frequency w, of the harmonic is deter- 
mined by the dispersion relation (14) of the whistler mode 
with the substitution ip --t w, ,  k,  --t x ,  z = z,. For the am- 
plitude of the packet initiated by the response field we then 
have the expression 

2' 

1 
& = - dz' E R [ t R  ( z ' ) ,  z ' l exp  [ -i k ,  ( x ,  c )  dt+iw.tR ( 2 ' )  ] 

2n 
8 0  

where tR (z) is the time of formation of the response at the 
point z. 

Substituting ER from Eq. ( 18) and integrating with re- 
spect toz' by the method of steepest descent, we arrive at the 
expression 

io, 

+u,. (2,-z.) + i  1 k , ( x ,  6 ) d S + i ( 0 . - 0 ~ )  to ( I , ) ]  . (21) 
1 2  

The coordinate z, of the point of stationary phase is deter- 
mined by the equation 
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In the neighborhood of the equatorial plane, the final term in 
this equation is small by a factor (z, - z,)'/L ,. Ignoring it, 
we find that the equation for k, is identical to the resonance 
condition ( 17) for n = 0 and z = z,, and therefore 

The integral over w, in Eq. (2 1 ) can also be readily calculat- 
ed by the method of steepest descent, the condition of sta- 
tionary phase making it possible to separate in the packet 
(21 ) the harmonic that is the main one at the point of obser- 
vation z at the time t (w, =at, ). This condition has the 
form 

. t = j d ~ ( * ) - ' + j $ +  dko. j d S  (2)-) (24) 
81 2, = 1 2  

Its meaning is rather obvious; the time of observation is the 
sum of the time required by the triggering wave to propagate 
to the point z,, where resonant particles with velocity v: un- 
dergo modulation without phase mixing, the time for these 
particles to move to the point z,, the point at which the re- 
sponse is formed, and, finally, the time required for the fun- 
damental harmonic of the packet initiated by the response to 
propagate to the point of observation z. 

Using the method of steepest descent to calculate the 
integral over w, in (2  1 ), we write down the final expression 
for the electric field at the point of observation: 

kz(<) = k, ( x ,  [) provided w, =a,,. This signal is re- 
ceived at the point of observation as triggered emission radi- 
ation with frequency that is modulated in time. The change 
in time of the coordinates of the modulation point z, of the 
distribution function and the point of formation z, of the 
response, and the change in the velocity v; of the resonance 
particles and the triggered emission frequency w,, are deter- 
mined from the system of equations consisting of (24) plus 
Eqs. ( I la),  ( 171, and (22). If we restrict ourselves to Cher- 
enkov resonance ( n  = 0)  and omit all small terms, these last 
equations can be rewritten in the form 

The last of these is equivalent to w,, = iwH (2,). 
The system of Eqs. (24) and (26) is the system we are 

seeking; it characterizes the kinematic properties of the trig- 
gered emission, i.e., the properties that determine the change 
in the signal frequency with time. Omitting here a detailed 
analysis of these equations, we restrict ourselves to a qualita- 
tive treatment, from which the basic possibility of obtaining 
triggered emission with either monotonically increasing or s- 
shaped frequency characteristic follows. Substituting in Eqs. 
(26) the expansions valid in the neighborhood of the equa- 
torial plane z = z,, where dk,/6Jzo = 0, d 'k, /dzi < 0: 

we can write down the following equation relating the devi- 
ation from the equatorial plane of the point of modulation, 
Sz, = z, - zo, and the point of formation of the response, 
8z2 = Z2 - zo: 

Here, v, = dw/dk, is the group velocity of the whistler 
waves. It then follows from (27) that Idz, 1 > (SZ,~. 

At the beginning of the triggered emission pulse 
( t  = to), the triggered emission frequency is equal to the fre- 
quency of the triggering wave. The points z, and 2, are found 
from the intersection of the field line with the line 
wo = (z), and one of the two following possibilities (see 
Fig. 3) can occur: 

1. At t = to, the points z, and z2 coincide. At t > to, the 
pointsz, and z2 sink below the line oo = hw, (z), as shown in 
Fig. 3a, and the frequency of the triggered emission increases 
monotonically with the time. 

2. At t = to, the points z, and z, are on opposite sides of 
the equatorial plane. With increasing time, the points z, and 

FIG. 3. Displacement along the field line of the resonance points z, and z, 
for monotonically (with the time) increasing (3a) and s-shaped (3b) 
frequency characteristics of the triggered emission. The horizontal line 
corresponds to lo, (z) = o,. 

17 Sov. Phys. JETP 62 (I), July 1985 Sagdeev et al. 1 7 



z, rise above the line w, = Iw, (z) (see Fig. 3b) and the 
triggered emission frequency w,, is less than w,. However, 
when the point z, passes through the equatorial plane the 
point z ,  begins to sink along the field line, as follows from Eq. 
(27). In this case a growth of the triggered emission frequen- 
cy with time begins; at a certain time t,, the two pointsz, and 
z, coincide, and w,, = w,. It is readily seen that t, > to, since 
the group velocity of the whistler is minimal at z = z,. Subse- 
quently ( t >  t,), the points z, and z, sink below the line 
w, = 40, (z), and the triggered emission frequency is higher 
than w, (s-shaped frequency characteristic of the triggered 
emission). Both possibilities are observed experimentally. 

We substitute in (25) the distribution function of the 
resonance electrons in the form of a two-temperature Max- 
wellian distribution, 

m ( 2 T , l ) ' h  ( muL" mu:) 
f o  ( ~ 1 ,  u,) =nres - - exp 

ZnT, 2T, 2T,, ' 
integrate over v , ,  and use the estimates 

I 

dk, k6z --- d2k, k,  L 
S,a-,-7 dz LZ z *  

where L is the length of the field line, and Sz = z, - z, is the 
width of the region in the neighborhood of the equatorial 
plane in which the response is formed. It follows from Eqs. 
(27) that 6z/L z Iw,, - wol/wo. We then obtain an approxi- 
mate expression for the amplitude of the triggered emission 
wave at the point of observation: 

It follows from (28) that for the real values of the param- 
eters of a magnetospheric experiment, 

n,es/no-10-4, 1 at,--oo(loo-lo-', 
koL-105, k12T,lmoHZ-'/3, v,*- (T , , /m)  '" , 

we have the estimate E,, ZE,. It is important that the trig- 
gered emission amplitude E ,, in (28 ) be proportional to Eo 
and (w,, - w,)-,. The first of these dependences may be 
associated with the delay in the time of arrival of the trig- 
gered emission with the arrival of the triggering wave (delay 
by the time of amplification of the original wave due to insta- 
bility in the radiation belt). It follows from the second de- 
pendence that for detectable triggered emission to occur its 
frequency must be close to the frequency of the triggering 
wave. 

We thank 0. A. Molchanov for discussing the results. 
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