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A theory is proposed which explains in a unified manner the thermal conductivity of glassy 
dielectrics from ultralow temperatures to temperatures of the order of the Debye temperature. At 
low temperatures the thermal conductivity x is due to thermal phonons which are scattered in a 
resonance manner by two-level systems (TLS):x a T 2. At temperatures of 10-20 K the x ( T )  
dependence has a plateau which is due to resonance scattering of thermal phonons by anharmonic 
oscillators, the density of states of which exhibits a van Hove singularity. At still higher tempera- 
tures the growth of the thermal conductivity, x a T, is mainly due to "prethermal" phonons with 
energies which are much lower than the temperature, scattered resonantly by the TLS. On the 
other hand, the thermal phonons are scattered resonantly and elastically by quasilocal harmonic- 
type oscillations (in the present theory their existence in glasses is found to be genetically related 
to the existence of the TLS); the contribution of these phonons to the thermal conductivity is 
independent of the temperature. It is shown that this approach can be used to explain the anoma- 
lously high values of the phonon-TLS coupling constants observed experimentally. 

51. INTRODUCTION 

As is well known, the thermal conductivity of many 
amorphous dielectrics, semiconductor and metallic glasses, 
some polymers and superionics at low temperatures, T S  1 
K, is proportional to T (Refs. 1-10). This is explained by 
the scattering of phonons by so-called two-level systems 
(TLS), the concept of which was introduced independently 
by Anderson et a1 " and by Phillips12 (The AHVP model). 
According to this model there are atoms or groups of atoms 
in glasses which can exist in two stable equilibrium positions 
separated by a barrier. This barrier is overcome at low tem- 
peratures by quantum-mechanical tunneling. 

The AHVP model, in spite of the lack of understanding 
of the microscopic structure of the TLS, has been very fruit- 
ful. It has been possible to explain with its help a whole range 
of properties of glasses at low temperatures, T S  1 K (see the 
reviewsI3-15): The specific heat, thermal conductivity, the 
attenuation, and change of velocity with temperature of ul- 
trasonics, the absorption of microwave radiation, saturation 
phenomena, echoes, and others. Explanations have been 
found within the framework of this model for analogous 
properties of other disordered systems in which TLS have 
been found: polymers,9~16~'7 superionic c ~ n d u c t o r s , ' ~ ~ ' ~ ~ ' ~  
neutron-irradiated q ~ a r t z , ~ ' - ~ ~  crystals with point de- 
f e c t ~ ~ ~ - ~ ~  and others (see also Ref. 27). 

However, a whole range of universal (i.e. observed in 
many materials) properties of glasses at higher tempera- 
tures-up to several tens of degrees-have so far not re- 
ceived a satisfactory explanation. In particular we refer to 
the excess specific heat of glasses in comparison with the 
Debye value and the plateau in the temperature dependence 
of the thermal conductivity at T- 10-20 K (Ref. 14) (Fig. 1). 
The physical reason why the thermal conductivity increases 
further with temperature at T k  20 K, according to an ap- 
proximately linear law, up to temperatures of the order of 
100 K, is also unexplained. 

Jones et ~ 1 , ~ ~  have recently proposed an explanation of 
the observed variations by Rayleigh scattering of phonons 
for strong dispersion in the transverse acoustic branch. The 
existence of such dispersion would also explain the correla- 
tion between the plateau in the thermal conductivity and the 
peak in the reduced specific heat c(T)/T (see Fig. 1). How- 
ever, dispersion of high-frequency transverse acoustic phon- 
ons was not found by the latest experiments of Rothen- 
fusser29 for frequencies up to 450 GHz. It follows from this 
that the excess specific heat of glasses c(T), compared with 
the Debye value, and the plateau in the thermal conductivity 
are due to other causes (see also Ref. 30). 

In the present work we propose a theory which explains 
in a unified manner the thermal conductivity of dielectric 
glasses from infralow temperatures T <  1 K up to tempera- 
tures of the order of the Debye temperature." Both TLS and 
additional excitations limiting the high-frequency phonon 
mean free path come out of it naturally. The additional exci- 
tations are quasilocalized harmonic oscillations, the exis- 

FIG. 1. a) The temperaure dependence of the reduced specific heat c / T 3  of 
amorphous SiO,: b) The temperature dependence of the thermal conduc- 
tivity of the same material. 
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tence of which in glasses is found to be genetically related to 
the existence of TLS. 

Our approach is based on considerations of the appre- 
ciable role of anharmonicity of local atomic potentials in 
amorphous systems. Under certain conditions, anharmoni- 
city leads to local atomic potentials becoming double-welled 
and TLS are created. As will be seen, these conditions corre- 
spond precisely to the empirical criterion E 5 1 K (where E is 
the gap between the levels) for the TLS model to be adequate. 
However, the approach described enables the region of large 
E to be considered, when the TLS model does not work. 

52. LOCAL ATOMIC POTENTIALS IN AMORPHOUS SYSTEMS 

When considering topologically identical structural 
units of disordered atomic systems, account must be taken of 
the fluctuation in their parameters. One may be discussing 
fluctuations of interatomic distances, valence angles etc. The 
mean values of these parameters, as shown for example by 
results of x-ray analysis,33 usually do not differ much from 
the corresponding values in crystals. The main part of the 
local atomic potentials in amorphous materials therefore 
differs little from the crystalline prototype, and has in parti- 
cular quasielastic constants k- k, = Mu;,  where M and w ,  
are the characteristic atomic mass and Debye frequency. 
However, relatively rare fluctuations are possible for which 
the local structural parameters are appreciably different 
from their mean values. Fluctuations with k(k, for local 
modes of atomic motion are of particular interest. The corre- 
sponding atomic potentials were named ~ r i t i c a l . ~ ~ . ~ ~  Consid- 
ering that the magnitude of k is in fact determined by the 
second derivative of the local potential with respect to the 
corresponding mode of atomic motion, the existence of fluc- 
tuations with k < 0 must also be postulated. 

For lk I (k, the anharmonicity of the local atomic po- 
tentials plays a uniquely important role. The anomalously 
strong influence of anharmonic effects in amorphous sys- 
tems compared with crystals, mentioned above, is deter- 
mined by this. 

The critical atomic potentials can be considered effec- 
tively single-mode, since the smallness of I k I gk,, being a 
rare event, is realized as a rule for one of the local modes. The 
rapid oscillations of the other modes (with k - k,) are aver- 
aged out and only lead to some renormalization of the pa- 
rameters of the slow motion of the critical mode.34 As a re- 
sult, the critical ("soft") atomic potential can be described by 
the first terms in the expansion, 

where x is a generalized coordinate characterizing the mo- 
tion, a is a characteristic length of the order of atomic size 
( -  1 A), 8, is the energy of an atom (8,- ( M  )v2- 30 eV, 
( M )  is the mean mass of the atoms of the glass, v is the 
velocity of sound). The dimensionless parameters 7 and tare 
considered random quantities and fluctuate from one real- 
ization to another. Their distribution functions are shown 
schematically in Fig. 2. The distribution in t is taken as even, 

FIG. 2. The distribution functions of the random parameters 7 and t of an 
anharmonic oscillator. Shown shaded on the distribution curve @(7) is the 
region with width of the order of 7, of the characteristic scale in 7 in the 
problem of the TLS spectrum. The dashed line in the F ( t )  distribution 
curve represents an alternative F ( t  ) dependence (full line). 

since there are no preferred directions in a glass. The distri- 
bution in y corresponds to the hypothesis expounded about 
the existence, in a glass, of quasilocalized modes with small 
and even negative values of the local quasielastic constants. 
The possibility of limiting the expansion of Eq. (2.1) to the 
first three terms is due to the smallness of the value ofx/a for 
the characteristic values of the parameters y and t [see Eq. 
(2.3) below] and is related in the final analysis to the softness 
of the potential V(x). 

We note that the random parameters 7 and t are as- 
sumed to be statistically independent. Two other parameters 
figure in the AHVP model, the asymmetry of the double- 
welled potential A and the height of the barrier A, which 
were also considered to be statistically independent. In the 
approach described, A and A can be expressed in terms of 7 
and t [see Eqs. (3.2), (3.3), (3.5) and (3.7)]. The existence of 
two random parameters and their statistical independence 
can be looked on as the empirical requirement of any TLS 
model. 

The spectrum of the potential V(x) is determined from 
the Schrodinger equation 

where M is the effective mass of the moving object, of the 
order of magnitude of the mean mass of the atoms of the 
glass ( M  ). Enumeration of the energy eigenvalues is in the 
order of their increase. In order to elucidate the characteris- 
tic scale of energies, atomic displacements x and of the pa- 
rameters y and t ,  we go over to dimensionless variables in 
Eq. (2.2) (their characteristic values are of the order of unity) 

where 

In the new variables, Eq. (2.2) is transformed into 

where 

with the characteristic energy 
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The En spectrum of Eq. (2.2) is related to the En spectrum of 
Eq. (2.5) by the relation 

The scale of energies2' in the potential of Eq. (2.5) is thus 
w-30 K; the characteristic atomic displacements x/ 
~ - ~ 2 ' ~ - 0 . 1 .  

The boundary lines of the regions for values of the pa- 
rameters which correspond to different forms of the poten- 
tial V(x) in the a ,  p plane are shown in Fig. 3. The unshaded 
region inside the parabola a = 9p 2/32 corresponds to sin- 
gle-welled potentials (SP). The shaded region corresponds to 
double-welled potentials (DP). On the parabola a = 9P2/32 

the random parameters 77 and t. The question of the scales of 
the fall of these distributions, Sq and St are specially impor- 
tant. If they are large in the sense that SV)~], and St)&-, 
then (P(7) and F (t ) can be considered practically uniform dis- 
tributions, since the wave functions and energies of the po- 
tential of Eq. (2.1) change noticeably by an amount of the 
order of 77L on change of 77 and t [see Eqs. (2.3) and (2.5)]. 

Within the framework of the approach described, the 
scales of Sq and St should be connected with the characteris- 
tic fluctuations of the local structural parameters. Empirical 
data (see Refs. 33, 36) show that the relative magnitudes of 
these, 8, do not exceed several percent. However, this does 
not mean that the quantities 677 and St are all that small. We 
shall show that 

and on the /3 axis, single-welled potentials with a point of 
for the condition that the fluctuations in 77 and tare statisti- inflection (SWI) are realized. Finally, on the parabola 
cally independent. 

a = p2/4  and on the semiaxis a <O symmetrical double- 
Since small t 2( 1 are principally realized, it is natural to 

P~~~~~~~~~ ISDP) are the barrier height of assume in Eq. (2.1) that there are no systematic reasons for 
which increases with distance from the origin of coordinates. 

asymmetry and it is a result of the action of weak random There are naturally points in the region shaded in Fig. 3 at 
which the form of the potential V(x) is one and the same, fields 

corresponding to one and the same spectrum.3' These points 
are connected by the transformations3' 

a, '= i / ,B [9 /32-32a~3P (9pZ-32a ) "2 ] ,  

P i f = ' / , [ +  (9P2-32a) '"-PI, (2.9) 

P f = - p .  (2.10) 

Using these transformations (see Fig. 3), any point of the 
shaded region in Fig. 3 (corresponding to DP) can be trans- 
lated into the quadrant a < 0, p > 0. This simplifies apprecia- 
bly the analysis of the spectrum of the potential V(x) (Ref. 
31). 

It is clear that the observed properties of the quasilocal 
vibrations considered are determined not only by the spec- 
trum and the structure of the states of the potential of Eq. 
(2. l), but also by the form of the probability distribution of 

We will start from the expression 

which coincides with Eq. (2.1) for t = 0. We add the potential 
(2.12) in Eq. (2.13) and then move the reference point for x so 
that the coefficient of the linear term should become zero. 
The value Sx of the necessary shift in the reference point 
satisfies the equation 

As a result of the shift made, we obtain the potential in the 
form of Eq. (2. l), in which 

FIG. 3. Lines in the a, B plane which separate regions 
with values of the parameters corresponding to differ- 
ent forms of the potential V(x) (shown schematically in 
the insets). Points 1,2 and 3 correspond to one and the 
same form of potential V(x). The inset on the right 
shows by what transformations (see Eq. (2.9) and how 
the points 1,2 and 3 in the a, fi plane are related among 
themselves. The open circles l', 2' and 3' are obtained 
from 1, 2 and 3 by an inversion transformation 
B- -6 
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If 1 7 ' / < j O  I2l3, then it follows from Eq. (2.14) that 
/ax 1 - 16' 1 'I3. In the opposite case 17'/ % 10 ['I3 we obtain 
lSx/-lO/7'l(lO j'/'.~scanbeseenfrom~~.(2.15), theval- 
ues of 7 and t can be considered to be statistically indepen- 
dent when fluctuations of the parameter 7' (arising from oth- 
er reasons than fluctuations in Sx) are larger than or of the 
order of fluctuations of the quantity (ax)'. Equation (2.11) 
also follows from this. 

§3. THE TLS SPECTRUM 

Low-frequency phonons, which determine the thermal 
conductivity of glasses at low temperatures ( T S  1 K), are 
efficiently scattered by TLS corresponding to the two lowest 
levels of the potential of Eq. (2.1). We shall adduce qualita- 
tive considerations establishing the conditions for a TLS to 
be realized in the potential V(x). Suppose at first that 
7 = t = 0, i.e., V = $,(x/u)~. The first of several interlevel 
gaps are then of the same order of magnitude ( - w). We now, 
by reducing the parameter 7 (for t = 0), push out the bottom 
of the well, forming a barrier. Since the density I $ ,  l 2  in the 
potential x4 is a maximum for x = 0, while 1 $, 1 ' = 0, the 
first level rapidly approaches the second as the barrier 
grows. The gap between them becomes small (compared 
with the distance to the third level), when the height of the 
barrier becomes of the order of or greater than the distance 
between the first two levels in the potential V(x) for 
7 = t = 0, i.e of the order of w - 30 K. The third level then 
moves up by an amount of the order of w. The condition for a 
TLS to be formed (unimportance of the third and higher 
levels) thus has the form 

Ezl-E2-El<w. (3.1) 

We note that the condition of Eq. (3.1) corresponds precisely 
to the empirical criterion E,, S 1 K for adequacy of the TLS 
model. 

An analytical dependence of the distance g=zZl 
between the first two levels on the parameters of the poten- 
tial of Eq. (2.6) a andP under the condition in Eq. (3.1) can be 
obtained if it is noticed that, for P = 0 and a < 0, the poten- 
tial v( y )  (Eq. (2.6) is an SDP with barrier height a2/4 and 
distance (21a1)'/' between the minima. In this case the dis- 
tance between the first two levels is determined by the tunnel 
splitting KO, which for /a/)  1 is equal (in units of w) to 

to an accuracy up to the pre-exponential factor. 
For la/ = - a) 1, the potential n x )  remains double- 

welled but weakly asymmetric and in the case of finite but 
sufficiently small values, IP 1 < la 1 -3/2.  The energy differ- 
ence between the minima is less than S T =  2-'/21p 1 
To a first approximation the distance between the levels of 
the ground state energies in isolated wells (the asymmetry &) 
coincides with SF. Then 

SDP are realized on the a ,  P plane not only on the se- 
miaxis a < 0, but also on the parabola a = P '/4 (see Fig. 3). 

The points A and A ' in the a ,  P plane (Fig. 3), in which the 
form of the potential of Eq. (2.6) is one and the same, are 
connected by the relation of Eq. (2.9) with the plus sign. The 
point A on the parabola a = P '/4 corresponds to point A ' 
situated on the negative semiaxis a ,  with coordinates 

The tunnel splitting at lP/ ) 1 is in this case, according to Eq. 
(3.2), equal to 

If the point A is situated near the parabola a = 2/4, then 
the weakly asymmetric D W with 

corresponds to it. For IR I < P -', a remains constant and is 
determined by Eq. (3.4). In this case the asymmetry can be 
represented in the form [see Eq. (3.3)] 

We will call two-level systems realized on the semiaxis 
a < 1 type-I TLS and those on the parabolaa = P 2/4 type-I1 
TLS.34 For both types of TLS the distance between levels is 

The dependences of & and $ on the parameters of the TLS 
are determined by Eqs. (3.2) and (3.3) for a type-I system and 
by Eqs. (3.5) and (3.7) for type-I1 systems. 

54. THE COUPLING BETWEEN TLS AND PHONONS. THE TLS 
DEFORMATION POTENTIAL 

The Hamiltonian of an anharmonic oscillator interact- 
ing with phonons and with the low-frequency deformation 
field E, can be written in the form 

where v0 and to are the bare (in the absence of coupling) 
values of the parameters 7 and t ,  E, is the deformation of 
frequency low compared with w/fi, ~7~ is the phonon field of 
frequency high compared with w/fi, which for T(w/fi is the 
so-called zero-point oscillations of the atoms of the glass, d, 
and b,,, are dimensionless tensors with numerical compo- 
nents of the order of unity or of a few units. The last two 
terms in Eq. (4.1) are the interaction Hamiltonian Hint of an 
anharmonic oscillator with a deformation field. There is no 
harmonic component of the interaction X E ; ~  in the Hamil- 
tonian unrenormalized by phonons, since x is a normal mode 
of atomic motion. 

We average Hint over the high-frequency oscillations. 
The possibility of such averaging is associated with the fact 
that the motion in soft potentials is slow and takes place with 
a characteristic frequency of the order of w/fi(w, . Remem- 
bering that 
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and introducing the notation 

where b is a number, we obtain 

The second term in Eq. (4.4) can be removed by shifting the 
origin for measuring x and redefining the parameters 77, and 
to: 

= w [ a ( y - 6 ) ' +  9 ( ~ - 6 ) ~ f  ( ~ - 6 ) ~ ]  + const, (4.5) 

where a, = 7 7 , , / ~ ~ ,  PO = t,,/~;'~, y = x/a~; '~. The shift S is 
determined from the equation 

where the renormalization parameters a andp are related to 
the sources by the equations 

Equation (4.6) determines S as a function of the renormaliza- 
tion parameters a and p (i.e 77 and t ), just for which the 
distribution of Fig. 2 occurs. 

It can be verified that for both type I and type I1 TLS 
(corresponding to la1 > 1 and 1 >I),  the second term in Eq. 
(4.6) is appreciably greater than the third or fourth. As a 
result, it follows from Eq. (4.6) that 

This relation can be used directly for type-I TLS, but for 
type-I1 TLS it must be expressed in terms of the variables fl 
and R = a  -p2/4. 

Finally, the interaction Hamiltonian Vi,, of an anhar- 
monic oscillator with a low-frequency (compared with w/fi) 
deformation field E, is obtained from the first term in Eq. 
(4.4), which can be rewritten in the form wy2dik/rlL. Per- 
forming the substitution y-y + 6, we obtain 

Vi,f=wP,,t, P,, ,=~L-' ( y2+26y)  dike* (4.9) 

This Hamiltonian describes the interaction of a TLS with the 
low-frequency deformation field E~~ and leads to the follow- 
ing dependences of the parameters a andB of an anharmonic 
oscillator [Eq. (2.6)] on tzik (for E~~ -+ 0): 

These expressions can be used directly for type-I TLS, 
by substituting S from Eq. (4.8) into them. The quantity 

is also required for type-I1 TLS. 
Kinetic phenomena in glasses at low temperatures are 

determined by the deformation potentialsi3 

The first characterizes the change E in the energy of a TLS in 
a deformation field E,, and the second the strength of the 
coupling of the ground and excited states in a two-level sys- 
tem in a varying deformation field E,. It can be shown by 
using Eqs. (3.2), (3.3), (3.5), (3.7) and (4.10) and (4.11) togeth- 
er with (4.8), that both for type-I and for type-I1 TLS, the 
first term in Eqs. (4.12a,b) is w/E times larger than the sec- 
ond. This means that all kinetic phenomena in glasses at low 
temperatures are determined by the single deformation-po- 
tential tensor 

which characterizes the change in the TLS asymmetry in the 
deformation field. Through it we can express (cf. Ref. 15) 

Differentiating Eq. (3.3) with respect to4' B and using 
Eqs. (4.10) and (4.8), we obtain for a type-I TLS 

An order of magnitude estimate of y ' is w/v, -0.3 eV, 
which agrees with values of the deformation potential ob- 
tained from experiments on thermal conductivity and sound 
attenuation.4937 

We obtain for a type I1 TLS in a similar way, by differ- 
entiating Eq. (3.7) with respect to R and using Eq. (4.11) 

93 

i l = d i h  ( ) ' ( 1  ) sign R. 

The ratio of the deformation potentials for types I and 
I1 TLS is 

yikI1 3 W -=- ln-. 

For w/A, = 600, which corresponds to an actual splitting 
A,-0.05 K (or to a frequency f- 1 GHz), the numerical 
factor in the numerator of Eq. (4.17) is -20, and it is not 
impossible that type-I1 TLS (for not too large b ) are coupled 
appreciably more strongly to phonons than type-I TLS. This 
confirms the hypothesis, proposed on empirical foundations 
by Halperin and B l a ~ k , ~ '  about the existence of two types of 
TLS in glasses with different interactions with phonons. 

We also note that because of the signum functions 
which enter Eqs. (4.15) and (4.16), TLS with different signs of 
deformation potential yik should exist in glasses. By this 
means experiments on the "non-lifting" of the TLS spec- 
trum at high pressures39 can be explained, and also the con- 
tradictions which arise on trying to apply the AHVP model 
to explain the low-temperature thermal expansion of 
g l a s ~ e s ~ ~ ~ ~ ~  can be removed. 
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55. THERMAL CONDUCTIVITY AT LOW TEMPERATURES 
T ~ w  

On the assumption that the heat is transported by phon- 
ons, we have the following expression for the thermal con- 
du~tivity:~' 

ce 

where L, and L, are the mean free paths of longitudinal and 
transverse phonons, v, and v, are the longitudinal and trans- 
verse velocities of sound. In anisotropic glass we have the 
following expression13 for the mean free path of phonons of 
frequency w, scattered in a resonance fashion by TLS with 
E = h ,  

where p is the density, s = ( I ,  t ) and the summation in Eq. 
(5.2) is carried out over the TLS in unit volume. The value of 
2 is expressed in terms of the components of the deforma- 
tion potential tensor yik of one TLS:43,44 

It is convenient to go over to the variables E andp for carry- 
ing out the summation over TLS in Eq. (5.2): 

In terms of these variables the density of states N,,,, (E,p) of 
TLS type I and I1 is 

where j = I, I1 and 

The characteristic values of the parameters q and tj are 
weakly (logarithmically) dependent on E and p [see Eqs. 
(3.2), (3.3), (3.5) and (3.7)]. In what follows we will consider 
the quantities Gj constant in view of the smoothness of the 
distributions in 7 and t. 

Integration according to Eq. (5.2) with weight of (5.5) 
gives 

4n wda2 w -' La-' = ---- w th- 
P U , ~ ~ ~ ' ~  ( ) [ ( 1 -) f t  0 + G , ~ ] .  (5.7) 

where the first and second terms reflect the contribution 
from scattering by TLS types I and 11. The quantities d 3 are 
determined by the relations [see Eq. (5.3)] 

1 1 
dlZ= -< (Sp d)'+2 Sp d2>, dl2 = - 3  Sp d2- (Sp d)'>, (5.8) 

15 30 

where the angular brackets denote averaging over the TLS 
ensemble with the given value of the energy E = fiw. In de- 
riving Eq. (5.7) it was assumed that the parameters d, are 
not correlated with 7 and t. 

Substituting Eq. (5.7) into Eq. (5.1) and integrating over 

w, we arrive at the following expression for the thermal con- 
ductivity (at low temperatures T S  1 K): 

Equation (5.9) is valid up to a coefficient of the order of unity 
in the logarithmic term. The temperature dependence in Eq. 
(5.9) only differs from the results of the AHVP model (which 
leads to the x a T ' law) in the last factors, which depend 
logarithmically on temperature. It is possible that they cause 
the experimentally observed weak departure of the tempera- 
ture dependence of the thermal conductivity from the T 2  

56. QUASILOCALIZED HARMONIC VIBRATIONS IN GLASSES 

Equation (2.1) predicts, besides the existence of strongly 
anharmonic potentials in which TLS are realized, also the 
existence of quasilocalized harmonic modes with small 
quasielastic constants and relatively small anharmonic ef- 
fects. In the a ,  p plane (Fig. 3) the regions near the a and P 
axes correspond to these modes for, respectively, a% 1 and 
p '% 1. Following the terminology introduced above, they 
can be called quasilocalized harmonic oscillations of the first 
(I) and second (11) types. The quasielastic constants 

correspond to them. In the harmonic approximation such 
potentials have equidistant spectra with interlevel gaps 

and density of states 

R J 1 ( E )  =2 1 dl 1 d t b  (11) F ( t )  6 (E-E1.I1). (6.3) 

It must be taken into account, when integrating in Eq. (6.3), 
that the effects of anharmonicity become appreciable near 
the line 7 = t '/4 in the 7, t plane (Fig. 3). Therefore, N1." (E ) 
can be evaluated by limiting the integration overt in Eq. (6.3) 
in case I to the limits from zero to 277"', and in the second 
case integrating over 7 in the limits from zero to t '/4. As a 
result we obtain for sufficiently smooth @(v) and F (t ) distri- 
butions 

where G = @(O)F(O). The density N" ( N ' ,  so that in what 
follows we limit ourselves by considering only type I quasilo- 
cal harmonic modes. 

For E z  w the density N' coincides to an order of mag- 
nitude with the density of TLS states which is independent of 
energy [see Eq. (5.5)], as should be expected starting from the 
continuity of N (E ). We note that the existence of quasiloca- 
lized harmonic vibrations in glasses is, in the framework of 
the approach described, genetically related to the existence 
of TLS. 
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97. THE INTERACTION OF PHONONS WITH 
QUASILOCALIZED HARMONIC VIBRATIONS. THE THERMAL 
CONDUCTIVITY AT HIGH TEMPERATURES T> w 

It is natural to suppose that the quasilocalized harmon- 
ic vibrations limit the mean free path of high-frequency 
phonons with fw > w in glasses, decreasing their contribu- 
tion to the thermal conductivity at T> w. The possibility of 
the existence of weakly attenuated quasilocal harmonic os- 
cillations in imperfect crystals, with frequency falling within 
the allowed phonon frequency spectrum, had already been 
predicted theoretically by Kagan and 10silevskii.~~~ The rea- 
son for their appearance is either a large mass for the impuri- 
ty atom or a small quasielastic constant. In glasses it is just 
the second possibility which is realized. The coupling 
between soft quasilocalized modes and phonons in crystals 
has been considered by Krivoglaz and P i n k e ~ i c h . ~ ~  The 
mechanism of this coupling in glasses does not differ in prin- 
ciple from that in crystals. Its essence, briefly, comes down 
to the following. 

A soft quasilocal mode is an atom or group of atoms of 
the glass which are in some degree of freedom weakly bound 
to the surroundings-the neighboring atoms. The latter are 
bound together by strong elastic couplings. Therefore as an 
elastic wave with wavelength appreciably greater than the 
dimensions of the "softened region" traverse the glass, they 
move as one unit. The whole construction recalls a harmonic 
oscillator with a vibrating point of attachment. When the 
frequency of the sound wave enters into resonance with the 
frequency of the quasilocal mode, its scattering cross section 
also grows in a resonant manner. 

From what has been said, the Hamiltonian of a soft 
quasilocal mode interacting with phonons in a inertial frame 
of reference can be written as 

where u(t ) is the displacement ofthe atoms at the point where 
the quasilocal mode occurs, produced by the phonons, < is a 
dimensionless vector characterizing its spacial orientation. 
The absolute value ofg depends on the actual structure ofthe 
center and can be of the order of unity or a few units (cf. Ref. 
46). To first order in u the interaction considered is described 
by the Hamiltonian 

which for type I harmonic quasilocalized modes is of the 
form 

H,,t=- k1xXu. (7.3) 

For harmonic high-frequency quasilocal modes with 
E > w, Eq. (7.3) is the main interaction and is much more 
effective than interaction by means of the deformation po- 
tential, considered in $4. On the other hand, for TLS with 
appreciably anharmonic soft potentials, the interaction of 
Eq. (7.2) is negligibly small compared with that considered in 
$4. This follows from the identity 

where In) and Im) are states in the potential V ( x ) .  It can be 
seen from Eq. (7.4) that the contribution to the transition 
probability from the interaction of Eq. (7.2) is small through 
the parameter E /w(  1 ,  where E is the small energy gap of the 
TLS, compared with the contribution from the interaction of 
Eq. (4.9) which was evaluated earlier. The interactions of 
Eqs. (4.9) and (7.2) give a contribution which is the same to 
an order of magnitude to the transition probability for E -  w. 

The inverse relaxation time 

can be determined by using Eq. (7.3) characterizing the re- 
laxation in the level populations of a harmonic oscillator 
[Eq. (7. I ) ]  for interaction with phonons. It follows from Eq. 
(7.5) that the quasilocal harmonic modes are well defined, 
i.e., f i / rE4 1 ,  when ( E / & ~ , ) ~ g l .  

The mean free path of high-frequency phonons with 
w)w/ f i  (but w ~ w , )  produced by the interaction of Eq. (7.3) 
is independent of T, and taking Eq. (6.4) into account is 

The L, (w) relation is the same as for Rayleigh scatter- 
ing, cc oP4 .  However, in our case this is due to the quadratic 
dependence of the density of states on energy [Eq. (6.4)] of 
quasilocal harmonic modes, and in the sense of the deriva- 
tion of Eq. (6.4) is valid to 

where ST and St are the scales of the fall-off in the distribu- 
tions Q(7) and F (t ). 

For E < &OD and the actual values of the parameters in 
Eq. (7.6) the ratio of the phonon mean free path to L is much 
less than unity, i.e., phonons with less than the Debye fre- 
quency remain well defined excitations in relation to reso- 
nance scattering by quasilocal harmonic modes. The expres- 
sions for L ; ' [Eqs. (7.6) and (5.7)] are of the same order of 
magnitude for fw - w - T. 

Equation (7.6) corresponds to inelastic resonance inter- 
action of phonons with quasilocal vibrations. As well as 
these, it is also important to take account of elastic scattering 
of phonons by microscopic regions for which the local quasi- 
elastic constants k are appreciably less than the mean value 
(k ) -Mu;,  while the local vibrations are far from reso- 
nance with phonons. Each such region is characterized by a 
scattering cross section4* 

where R, is of the order of the characteristic interatomic 
distance. Equation (7.7) describes the usual Rayleigh scatter- 
ing by fluctuations in force constants. The mean free path 
corresponding to this mechanism is determined by the rela- 
tion 

m .x 
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Here No is the characteristic concentration of regions with 
k < (k ). Because of the increase in the function @(v) with an 
increase in 77 (see Fig. 2), Rayleigh scattering [Eq. (7.8)] can 
be more effective than Eq. (7.6). As a result, the coefficient of 
w4 in the L -'(w) dependence is noticeably greater than in Eq. 
(7.6). Its magnitude is determined by the form of @(v) for 
7 7 % ~ ~ .  According to rough estimates, taking account of 
Rayleigh scattering can lead to an increase in L ; '(a) by two 
orders of magnitude compared with Eq. (7.6). Since Eqs. 
(7.6) and (7.8) have the same frequency dependences, it will 
be convenient in what follows to take Rayleigh scattering 
into account by introducing an appropriate dimensionless 
coefficient ,u into Eq. (7.6). 

The calculation of the thermal conductivity at high 
temperatures is an incomparably more complicated problem 
than at low temperature where the TLS model works. We are 
not aware of an analytical form for the phonon mean free 
path L (a ,  T )  for o- w/fi, i.e., for energies where both rear- 
rangement of the spectrum [Eq. (2. I)] and the mechanism of 
interaction with phonons take place. However, being inter- 
ested in orders of magnitude estimates and the form of the 
temperature dependence of the thermal conductivity x(T),  
we can proceed in the following way. We divide into two the 
region of integration in Eq. (5.1): the low frequency region 
with w < w/fi and the high-frequency with w > w/fi. We will 
use the expression for L (a) in Eq. (5.7) for the first region, 
corresponding to scattering of phonons by the TLS, while in 
the second region we use Eq. (7.6) multipled by the coeffi- 
c i e n t ~ ;  this now represents scattering by harmonic quasilo- 
cal modes and Rayleigh scattering. In accordance with this, 
we write . ( T )  =xi ( T )  +xz ( T )  . 

The first region with T )w gives a contribution 

corresponding to heat transport by prethermal phonons 
fiw < w. The origin of the x, cc T relation lies in the fact that 
prethermal phonons are scattered by TLS with level popula- 
tion differences which decrease with increasing T propor- 
tionally with T -'. The mean free path then grows linearly 
with increasing T [see Eq. (5.7) for h ( T ]  and their contri- 
bution to the thermal conductivity varies in the same way. 
The contribution from the high-frequency region fiw - T )w 
(from thermal phonons) is independent of temperature: 

and is mainly determined by phonons with energy of the 
order of " w. For T- w and p 5 lo2, as should be expected, 
x,  -x2 and agree to order of magnitude with Eq. (5.9). 

The linear increase in thermal conductivity with tem- 
perature, [Eq. (7.7)] for T >  w, produced by the contribution 
of prethermal phonons, corresponds with experimental re- 
sults. For example, it is observed in the temperature range 
20-100 K in g-SiO, (Ref. 2). The departure from the linear 
law for x (T)  at higher temperatures T >  100 K may be asso- 
ciated with the growth in the role of anharmonic processes 

for propagating low-frequency phonons with fiw < w inter- 
acting with thermal phonons.47,48 

The arguments advanced determined x ( T )  in two limit- 
ing cases: Tgw and T )w. In the intermediate region T-w, 
resonance scattering of phonons by anharmonic oscillators 
[Eq. (2. I)] with interlevel gaps E- w is important. These os- 
cillators are realized for Ir] I - t - 77,. As has been shown,,' 
the density of states in the potential of Eq. (2.1) has a van 
Hove singularity at energies E- w. The function E2,(q, t ), 
where E,, is the first interlevel gap, has saddle points in the 
77, t plane which, as shown by a numerical cal~ulation,~' oc- 
cur for 77 = 0, t = + 1.89r12/2. The energy E,, = 2 . 1 8 ~  cor- 
responds to them. The function E,,(?;1, t ), where E,, is the 
distance between the first and third levels, has also, apart 
from two saddle points at 77 = 0, t = + 2.15~2 '~  to which 
the energy E,, = 5 . 2 7 ~  corresponds, points of absolute min- 
imum at 77 = - 3.9577,, t = 0 and g = 7.977,, 
t = f 5.62772". The energy E,, = 3 . 6 5 ~  corresponds to all 
of them. A logarithmic divergence of the density of states 
corresponds to the saddle points and a finite jump in this 
quantity (from zero) to the points of absolute minimum. 
Only by using numerical methods can the effect of these fea- 
tures on the thermal conductivity be evaluated quantitative- 
ly. However, there is no doubt that the features of the density 
of states lead to an appreciable reduction in thermal conduc- 
tivity x (T)  in a narrow temperature region. We consider that 
this effect is responsible for the existence of the more or less 
well marked plateau in the x ( T )  relation observed in amor- 
phous materials. It follows then from numerical values of the 
energies at which the van Hove singularities occurs that both 
the position of the plateau and its extent must be of the order 
of w. This prediction agrees with experimental results., 

58. CONCLUSIONS 

We have shown that within the framework of the ap- 
proach described it is possible to describe the temperature 
dependence x ( T )  of the thermal conductivity of amorphous 
systems over a wide temperature range, practically up to 
T 5  100 K. It is significant that at all T considered, the ther- 
mal conductivity is determined by one-phonon scattering 
processes (an alternative point of view is described in Ref. 
49). The complicated form of this dependence is then due to 
the existence of different groups of phonon scatterers, each 
of which gives its contribution to x(T).  Within the frame- 
work of the theory described, all these scatteres are de- 
scribed in a unified way as quantized oscillations in critical 
(soft) atomic potentials. 

We note that the form x ( T )  cc T could be explained on 
the traditional AHVP model",'2 only for very low T 5  1 K. 
However, even in this temperature region the AHVP inter- 
pretation was incomplete, in that the constant of the defor- 
mation potential, y, which appears in it remained an empiri- 
cal parameter, the high value of which ( -  1 ev) was not 
explained. In the model we have used, a deformation poten- 
tial of such an order of magnitude arises naturally. Its large 
value is a consequence of the softness of the anharmonic 
potentials for which TLS are realized. 

We emphasize that we can go beyond the limits of appli- 

131 5 Sov. Phys. JETP 61 (6), June 1985 V. G. Karpov and D. A. Parshin 1315 



cability of the AHVP model within the framework of the 
ideas presented, and describe a whole range of phenomena 
which were not realizable for that model. Among their num- 
ber we must count the deduction contained in the present 
work of the existence of two types of TLS interacting differ- 
ently with phonons, the existence in amorphous systems of 
quasilocal harmonic oscillations, the existence of a universal 
characteristic energy w(- 30 K) in the spectrum of vibra- 
tional states, the explanation of thermal conductivity pro- 
cesses at T >  w, the excess specific heat for T- w , ~ '  the fea- 
tures of Raman scattering of light,50 and also the anomalous 
thermal expansion of gla~ses.~'  In addition, the ideas of soft 
atomic potentials leads to agreement with experiment in the 
picture of electronic properties of glassy semiconduc- 
t o r ~ . ~ ~ . ~ '  

We assume that the existence of soft (critical atomic 
potentials is a consequence of the excess volume per atom in 
the materials considered. Apart from the model concepts,53 
this point of view is confirmed by experimental results of the 
study of small noncentral ions in crystals. Spectroscopic re- 
sults show that for these the characteristic energy gaps 
between the levels of isolated wells are of the order of w (see, 
for example, Ref. 54), which is evidence of the softness of the 
atomic  potential^.^^ 

We note that the free volume hypothesis applicable to 
the nature of TLS was first formulated by Cohen and 
Crest.56 However, these authors assumed hat the free vol- 
ume is realized in the form of isolated macroscopic inclu- 
sions, at the boundaries of which nonsingle-welled atomic 
potentials arise. Our point of view takes the excess free vol- 
ume as dispersed more or less uniformly in the amorphous 
system and has only microscopic local fluctuations. This 
point of view agrees with the results of recent  experiment^,^' 
in which the excess free volume in amorphous Ge was varied 
by the conditions of preparing the specimens. Two-level sys- 
tems arose in appreciable quantities only in specimens with 
the lowest density. It was shown experimentally in other 

that TLS effects appear in amorphous Ge on intro- 
ducing large concentrations of oxygen. The oxygen atoms 
have smaller dimensions than germanium atoms and on re- 
placing the latter excess free volume is formed. 

We thank Yu. M. Gal'perin, V. L. Gurevich and V. I. 
Kozub for valuable discussions of the results of this work. 

"Some results of the present work have been briefly noted 
"The quantity w characterizes the energy scale of the levels in the poten- 
tial l , ( ~ / a ) ~  for 7 = t = 0 in Eq. (2.1). 

3'The potential at these points differ in a shift by a constant: 
V(x) - V(x + C). 

4'Differentiating Eq. (3.3) with respect to a leads to the appearance in y,, 
of small terms in the parameters E /w<l. 

"This means that in calculating this contribution, both types of interac- 
tion [Eqs. (4.9) and (7.2)] must be taken into account and the magnitude 
of (7.10) is several times greater. 

6'The authors are grateful to M. A. Il'in for carrying out these calcula- 
tions. 
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