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Results are given of a numerical solution of the dispersion equation for cyclotron waves in Bi in 
the electron cyclotron resonance region. The case of wave propagation along the C, axis in a 
magnetic field H J J  C, is considered. An ellipsoidal model of the Bi Fermi surface is employed in the 
calculations. It is shown that, in the intermediate wavelength region (kR) 1, where R is the 
cyclotron radius) the frequency is an oscillatory function of the wave vector k. Asymptotic formu- 
las are presented that describe the behavior of the wave dispersion law for kR) 1 with a high 
degree of accuracy. Comparison of experimental data with the calculations suggests that the 
properties of a nonlinear signal that is reflected from the bismuth sample surface can be interpret- 
ed as being due to the boundary of the longitudinal cyclotron wave spectrum. 

INTRODUCTION 

In metals near cyclotron resonances cyclotron waves 
are found which propagate perpendicularly to the external 
magnetic field (klH). Depending on the relative orientation 
of the electric field E and the external field H of the wave, we 
distinguish ordinary (EIIH) and extraordinary (ElH)  cyclo- 
tron waves. Theoretical investigations of the properties of 
cyclotron waves have shown that in metals with a spherical 
Fermi surface, both short (kR% 1) and long (kR 1) cyclotron 
waves can be excited (here R is the Larmor radius). 

In the limiting case kR) 1, which is considered in Ref. 1, 
the extraordinary mode splits into longitudinal (Ellk, E lH)  
and transverse (Elk, E lH)  modes. The ordinary wave (Elk, 
EIIH) is transverse. All three waves are linearly polarized. 
The spectra of the transverse waves exhibit normal disper- 
sion (the frequency increases as a function of k )  and ap- 
proach the cyclotron resonance line from the high-magnet- 
ic-field side. The longitudinal wave spectrum exhibits 
anomalous dispersion and is localized close to the cyclotron 
resonance on the low-field side. 

In the other limiting case kR g 1, which is considered in 
Ref. 2, the ordinary wave is linearly polarized while the ex- 
traordinary wave is elliptically polarized in a plane perpen- 
dicular to the magnetic field. Both waves exhibit anomalous 
dispersion and lie near the cyclotron resonance line on the 
high-magnetic-field side. In the intermediate case kR 2 1, in 
a spherical model for the ordinary and extraordinary waves, 
the frequency is observed to be an oscillatory function of the 
wave vector. 

The waves that are most accessible to observation are 
those in the region of weak spatial dispersion kR( 1. Their 
wavelengths are comparable with the thicknes of the sample, 
and as the field H changes the surface resistance of the metal 
6 (H) experiences oscillations, brought about by the excita- 
tion of standing waves. The long-wavelength cyclotron 
waves were studied experimentally in alkali metalszs5 and in 
bismuth, near electron"' and holeg cyclotron resonances. 
The features associated with the oscillatory character of the 
dispersion curve at kR 2 1 were observed only in silver1' and 

potassium. ' 
In the present work, we present the results of a numeri- 

cal solution of the dispersion equation of cyclotron waves in 
Bi in the geometry HIJC,, kllC,. The region of the first cyclo- 
tron resonance of electrons having large mass is considered 
in detail. An experiment is discussed in which nonlinear re- 
flected signals from the surface of a Bi sample (at the fre- 
quency of the second harmonic) are recorded as a function of 
the external field H. The location of the features observed in 
this experiment at certain values of the field Ha re  identical 
with the boundaries of the spectrum of longitudinal cyclo- 
tron waves in Bi. 

THEORY 

Let an electromagnetic wave of frequency be incident 
normally on a sample of bismuth placed in a constant mag- 
netic field H parallel to its surface. We choose a rectangular 
xyz system of coordinates in which the z axis is directed 
along H and they axis coincides with the normal to the sur- 
face of the sample. The propagation of the electromagnetic 
wave in the unbounded metal is described by Maxwell's 
equations, in which we can neglect the displacement current 
for w ~ w , ,  where wo is the plasma frequency. After elimina- 
tion of the variable magnetic field and the longitudinal com- 
ponent of the electric field, Maxwell's equations, written in 
the Fourier representation, lead to a set of linear homogen- 
eous equations for the transverse components of the electric 
field. Setting the determinant of this system equal to zero, we 
obtain the dispersion equation of the propagating waves: 

(1) 

where 0,. (k,w) are the Fourier components of the conductiv- 
ity tensor. In the field H, the expression for the elements of 
the tensor uv, for an arbitrary carrier dispersion law, has the 
following form: 
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where 

1 2" 

v,. = - l d q v j  2n 0 (9) exp -ing] . (3) 

Here v, is the component of the velocity vector on the Fermi 
 surface,^, is the projection of the momentum on thez axis, e, 
is the phase of the periodic motion along the trajectory in the 
constant magnetic field, and v is the collision frequency. The 
first sum in (2) corresponds to summation over all types of 
carriers. 

The Fermi surface of bismuth consists of three electron 
surfaces and one hole surface, very similar in shape to ellip- 
soidal. In Appendix A, we calculate the components of the 
conductivity tensor for an ellipsoid oriented arbitrarily with 
respect to the x ,  y, z axes. 

We now consider the case HIICIIIz, kllC311y, C211x. The 
electron ellipsoids of bismuth are quite extended and are in- 
clined to the trigonal plane at an angle of about 6". The ener- 
gy of the electrons of one of the ellipsoids can be represented 
in the form 

wherep, , p, ,p, are the components of the momentum vec- 
tor along the binary C,, the trigonal C, and the bisector C, 
axes, and mo is the mass of a free electron. The values of the 
elements of the reciprocal mass tensor and the Fermi surface 
of the electrons are taken from Ref. 13: 

a,=166.7; a2=89.5; as=1.8; 

a,=9.4; ~ = 2 . 7 5 -  10-'' erg. 

The ellipsoid (4) we call ellipsoid (a). The dispersion law of 
the other two ellipsoids (b ) and (c) is obtained by rotating 
ellipsoid (a) by 120" around the trigonal axis. The hole zone 
of bismuth represents an ellipsoid of rotation (d ) around the 
trigonal axis. The energy of the hole is 

~d (p) =pTZ/2MI+pu2/2M3+pZ2/2Ml ,  (5) 

where, according to Ref. 14, MI  = 0.063m0; M, = 0.65m0; 
E~ = 1.875x 10-l4 erg. 

The use of the Fermi surface parameters given above 
leads to excellent quantitative agreement of the experimen- 
tal and calculated spectra of the long-wavelength cyclotron 
waves in Bi.'v9 In this geometry, the cyclotron masses of the 
electrons of ellipsoids (b ) and (c) are equal, and are twice the 
mass of the electrons of ellipsoid (a): 

The cyclotron mass of the holes is much greater than the 
cyclotron mass of the electrons: 

We are interested in the spectrum of the cyclotron wave 
in magnetic fields that are larger than the field of the first 
order cyclotron resonance of the electrons of ellipsoids (b ) 
and (c). In what follows, the indices (b ) and (c), which indicate 

equal electron masses, radii and frequencies for these elec- 
trons, will be omitted. 

In the general case, to determine the dependence of kR 
on R/w it is necessary to solve the complicated dispersion 
equation (I),  in which the elements of the conductivity tensor 
are obtained as a result of calculating the aii components for 
each species of carriers in Bi according to formulas (A4) and 
(A5) of Appendix A and subsequently summarizing the con- 
tributions from the different species. In the absence of colli- 
sions (R/v + a), for arbitrary kR, the wave spectrum was 
calculated numerically directly from the general equation 
(1). In expression (A5), we took into account the first fifteen 
terms of the sum (n,,, = 15), and the Bessel functions and 
their integrals were calculated to an accuracy of The 
result of the calculation of the cyclotron wave spectrum in 
the interval O<kT<8, 1 ( W w ~ 2 . 5  are shown in Fig. 1. We 
emphasize that the dependence of kR on n/w is obtained for 
the frequency w / 2 ~  = 9.3 GHz. We consider the origin of 
the different branches of the spectrum of the cyclotron 
waves in limiting cases ofweak and strong spatial dispersion. 

In the long-wavelength region (kR < I), the expressions 
for the elements of the conductivity tensor are easily re- 
placed by their asymptotic expansions. To within terms of 
order (kR )2, the non-Hall off-diagonal terms are small in 
comparison with the remaining elements of the conductivity 
tensor. In this approximation, the dispersion equation (1) 
breaks up into a system of two equations which are analo- 
gous to the equations that determine the propagation of ordi- 
nary and extraordinary cyclotron waves in the case of a 
spherical Fermi ~u r f ace .~  In Bi, for the HIIC,, kl(C, geome- 
try we are considering, for both types of waves, the quantity 
kR increases monotonically as the magnetic field decreases, 
so that, near resonance, waves with small values of k do not 
exist. In the ordinary wave case (the o branch in Fig. 1) a 
region 1.5 < W w ~ 2 . 3 2  exists sufficiently close to resonance, 
in which O<kR < 1 and use of the approximation kR( 1 is 
valid. For the extraordinary wave, there is no such region in 
this interval 1 < R/w < 2.5, and we can only note that the 
branch b in Fig. 1 is a continuation of the dispersion curve of 
the wave with ElH, Elk, described by Eq. (9) in the case 
kR > 1 (see below). 

In the short-wavelength region (kR > I), the spectrum 

FIG. 1. Spectrum of cyclotron waves in Bi in the region of the first elec- 
tron cyclotron resonance, obtained on the basis of a solution of the general 
dispersion equation (1); HIIC,, kllC,, o/2r = 9.3 GHz, Cl/v + m. 
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shown in Fig. 1 contains two oscillatory branches, squeezed 
toward the right side of the fl/w = 1 line with increasing k, 
and also branches, lying to the left of the high-order hole 
resonances. In accord with (7), the hole resonances of orders 
5<n< 12 are located in the interval 1 < fl/w < 2.5. Their lo- 
cation coincides with the vertical cuts on Fig. 1 (the n = 12 
resonance is not oberved). 

In the case kR> 1, as follows from Appendix B, where 
the asymptotic expressions are calculated for the compo- 
nents a,-, the dispersion equation (1) decomposes into three 
equations that determine the propagation of linearly polar- 
ized waves: 

k2- ( 4 n i a / c 2 )  (5,,=0, (8) 

(5,,=0. ( 10) 

The solutions of Eqs. (8) and (9), which are found with 
the use of the approximate expressions (B7) and (B8), deter- 
mine the oscillatory spectrum of the transverse waves. At 
kR > 8, the dispersion curves rapidly approach the cyclotron 
resonance line R/w = 1. Comparing Fig. 1 with the spec- 
trum calculated from (8) and (9), it is easy to see that the 
oscillatory branch at the right in Fig. 1 corresponds to the 
ordinary wave (8), while the one on the left is determined by 
the solution of Eq. (9). The accuracy of the asymptotic calcu- 
lation is equal to 1.5% in fl/w at kR = 8. At kR = 3.9, the 
solution of the general equation (1) determines the turning 
point (fl/w), = 1.45 (Fig. I), while at kR = 3.9, the solution 
(8) with, the help of (B7) and (B8), gives the value (a/ 
w), = 1.40 for the boundary of the spectrum of the ordinary 
wave. 

The branches associated with the hole resonances on 
Fig. 1 are described by Eq. (10). The existence of the longitu- 
dinal wave in magnetic fields greater than the field of the first 
resonance of the ellipsoid (b ) electrons is governed by the 
presence in Bi of the hole ellipsoid (in the model of a spheri- 
cal Fermi surface in this range of fields, Eq. (10) has no solu- 
tions). In Fig. 1, we denote the turning points of the longitu- 
dinal wave spectrum by the symbol di near the 
corresponding orders of the hole resonances; we have, in 
units of R/w, d, = 2.24; d, = 1.9 1; d7 = 1.65; d, = 1.46; 
d, = 1.30. 

As an example of an oscillating solution of Eq. (10) we 
show the spectrum of the longitudinal wave (Fig. 2) in the 
region of the first hole resonance, where the oscillations are 
more clearly expressed. The dashed curve corresponds to the 
numerical solution of the general equation (1). 

The physical reason for the appearance of oscillations in 
Fig. 1 and 2 is analogous to the origin of oscillations of the 
ultrasonic absorption coefficient in metals.15 The electron 
interacts most effectively with the field of short waves at 
those portions of the trajectory in which it is moving almost 
parallel to the plane at constant wave phase. If an even num- 
ber of half waves is included in the diameter of the orbit, then 
the absorption of the energy of the wave by the electron will 
be minimal. Consequently, in a fixed magnetic field, propa- 
gation of the wave is found to be possible at points kR differ- 
ing by T. Actually, as follows from Fig. 1 and 2, in the region 

FIG. 2. Dispersion curve of a longitudinal cyclotron wave in Bi near the 
first hole cyclotron resonance. HI C,,  kllC,. The solid curve is the solution 
of Eq. (10); the dashed curve is the solution of the general equation (1). 

kR> 1, near the first-order electron and hole cyclotron re- 
sonances, the dependences of kR on (fl/w) are described by 
oscillating curves, while the period of the oscillation of kR is 
approximately T. 

COMPARISON WITH EXPERIMENT 

The waves are usually observed as follows. A metal 
plate is placed in an external magnetic field H and is irradiat- 
ed by an electromagnetic field of frequency w. For excitation 
of a wave of a particular polarization in the sample, it is 
necessary to orient the field H appropriately relative to the 
direction of the electric field in the incident wave. When a 
weakly damped wave with given polarization is excited in a 
thin plate with impedance < (H) ,  successive maxima and 
minima appear, because the resonance relations between the 
wavelength A and the plate thickness d are satisfied. Here A 
should be comparable in magnitude with d, and, since d>R, 
A = 2 ~ / k > R .  Thus, long (kRg 1) waves are observed experi- 
mentally through the oscillations of the impedance of the 
plate. In this fashion, the spectrum of cyclotron waves in 
alkali metals has been investigated in detaiL5 

Long-wavelength ordinary waves have been observed 
in samples of Bi with normal nllC, at HIIEIIC,, at a frequency 
w/2~=:9.5 GHz in the range 1 < n/w < 2.3 of interest to us. 
Subsequent7 experiments in this geometry were completed 
on samples of a different thickness. Moreover, the depen- 
dence of k on fl/w was found in Ref. 7 with the use of an 
ellipsoidal model of the Fermi surface. In the interval 
1.5 < R/w < 2.3, this dependence, expressed as a function of 
kR on Ww, corresponds to the initial (kR < 1) portion of the 
spectrum of the ordinary wave in Fig. 1. 

As follows from Fig. 1, at fl/w < (fl/w), = 1.45, the dis- 
persion curve of the ordinary wave becomes a multivalued 
function of kR. In this connection, we note that an addi- 
tional series of oscillations ofthe derivativedc /dH, observed 
on one of the samples of Bi in fields fl/w < 1.45 (Fig. 1 of Ref. 
7) evidently results from beating between waves of different 
k. 

In the region kR > 1, the dividing points of the spectrum 
in Fig. 1 are the boundary (turning) points, where dw/dk = 0 
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and wave propagation ceases. It is natural to assume that, 
since sharp changes in the structure of the wave take place at 
these points, then, depending on 5 (H ), features appear in the 
field H corresponding to the location of the boundaries of the 
spectrum of cyclotron waves. Thus, for example, in silver,1° 
the turning points appear in the form of minima of the signal 
dJ/dH. The numerically calculated form of d[/dH as a 
function o f H  lo contains singularities, the location and form 
of which agree completely with experiment." 

In measurements of the surface impedance of bismuth 
in separate experiments (at frequencies - 10 GHz, l6 Fig. 8 of 
Ref. 17 and at higher frequencies,18s19 Fig. 4 from Ref. 20), 
additional singularities have been observed in the cyclotron 
resonance region. It is possible that some of these singulari- 
ties are connected with the excitation of short wavelength 
cyclotron waves, although detailed investigations of this 
question were not given in Refs. 16-20. We have attempted 
to find the short-wavelength boundaries of the spectrum 
since the method of second harmonic generation is highly 
sensitive to the bulk properties of Bi under cyclotron reso- 
nance  condition^.'^ 

The Bi sample in the shape of a disk of diameter 17.8 
mm with normal nllC, was irradiated by an electromagnetic 
wave of frequency d / 2 ~  = 9.3 GHz. The power of the re- 
flected signal P,, at the double frequency 2 0  was measured 
as a function of the external magnetic field HIIC,, applied 
parallel to the surface of the sample. The methodology of the 
experiment is described in detail in Refs. 21 and 22. We only 
point out that at the frequency w, the TM,,, mode is excited 
in a bimodal cylindrical cavity, the bottom of which is 
formed by the Bi sample. The lines of force of the electric 
field of this mode are perpendicular to the surface of the 
sample, but, because of the finite conductivity of Bi, a trans- 
verse component of the electric field appears, having a radial 
direction and vanishing at the center of the sample. The am- 
plitude of the variable magnetic field reaches the maximum 
H- at the periphery of the sample. Measurements have been 
carried out on several samples of Bi of thickness between 0.6 

I I I I I l l  I I l l  I /  
40 80 120 H, Oe 

FIG. 3. Recordings of the signal of the second harmonic P,, (H) on sam- 
ples of Bi: n/lC,, HIIC,, w / 2 r  = 9.3 GHz, T = 1.5 K. The horizontal lines 
to the right of the curves indicate the zero levels P,, = 0 and also the 
amplitudes of the oscillatorv field H . The sensitivitv on all three curves 

and 2 mm. 
Figure 3 shows characteristic recordings of the P,, (H ) 

signal. Cyclotron resonances are observed in this signal, de- 
termined by the condition 

Because of the different shape of integer ( n / 2  = integer) and 
half-integer  resonance^,'^ it is more accurate to separate the 
relation (1 1) into the condition for observing linear (integer) 
cyclotron resonances. 

having the form of maxima of the generated signal P,, and 
the condition for nonlinear (half-integer) resonances 

that appear in the form of drops in the radiation. 
The values (12) and (13) of the resonance fields of the 

electrons of ellipsoid (b ) are shown in Fig. 3 by the vertical 
lines. The maximum at 2 is greater than the amplitude of the 
first resonance, since resonance 1 of the (a) electrons also 
appears in the field of resonance 2 of the (b ) and (c) electrons. 

In the doubled magnetic field, the first (b ) and (c) reson- 
ances and the 1/2 resonance of the (a) electrons appear with 
different forms. This causes a decrease in the amplitude of 
resonance 1 and a small shift in the maximum of the signal. 
We also note that, near the 1 and 3 lines on the highfield side 
there is an additional structure of the same shape. In all 
probability the minima indicated with arrows in Fig. 3, 
which are found in a magnetic field that differs in magnitude 
by a factor of two, are due to the appearance of cyclotron 
resonance of the electrons from the vicinity of the reference 
point. 

We now consider the range of magnetic fields R/w > 1. 
The positions of the boundaries of the spectrum of longitudi- 
nal cyclotron fields are shown by vertical lines and the sym- 
bols di , corresponding to Fig. 1. As is seen from Fig. 3, the 
minima in thep,, (H ) signal correspond to these boundaries. 
The location of these features does not depend on the thick- 
ness of the sample. They had the same form on all the sam- 
ples investigated. When the temperature increased to 
T = 4.2 K, the amplitudes of the minima fell off sharply but 
their location did not shift with the magnetic field. 

The narrow lines d, = (1.64 + O.Ol)(R/w) and d, 
= (1.46 f O.Ol)(R/w) were always very clearly seen. As fol- 

lows from Fig. 1, in the field corresponding to the boundary 
d,, several waves are excited with various, but not very dif- 
ferent, k. It is possible that such a multiple excitation 
smoothes out the d, singularity. The turning points of the 
spectrum in the region 1 < R/w < d, (Fig. 1) do not appear in 
the recording of P,, (H ), since they are found in the immedi- 
ate vicinity of the first cyclotron resonance. The minima d, 
and especially d, are much broader in comparison, for exam- 
ple, with d,. Thus, in the signal P,, (H ), the boundaries of the 
spectrum are found to be isolated in a finite and rather short 
interval over which the quantity kR varies. The appearance 
of the longitudinal wave spectrum can be assisted by a strong 

is different. 
- 

electric field normal to the surface of the sample. However, it 
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FIG. 5. Numerical solution of Eq. (1) in the interval between the first and 
second cyclotron resonances at a frequency of 18.6 GHz; HIIC,, kllC3, a/ 
v +  m. 

FIG. 4. Small deflections of the magnetic field H relative to the C, axis in a 
plane perpendicular to the C, axis; n(lC3, o / 2 ~  = 9.3 GHz, T= 1.5 K, 
H-  = 2.3 Oe. 

has not been possible to make clear the wave excitation 
mechanism in the present experiment. 

The location and shape of the peaks did not change 
when the magnetic field was directed at a small angle from 
the C, axis. In Fig. 4 the minimad, and d, keep their position 
for x S: 3", where x is the angle between H and C,. With 
increasing X, the left peak shifts in the direction of larger 
magnetic fields. The value of this shift is much smaller than 
the shift of the first cyclotron resonance, which by xz6" 
reaches a regime in which the peaks are relocated which 
leads ultimately to their disappearance. 

The increase in the amplitude of the oscillatory field 
H- from 0.3 to 10 Oe leads only to a small broadening of the 
observed singularities and in practice has no effect on their 
shape and location. 

Thus, a comparison with the calculation of the spec- 
trum of cyclotron waves in Bi (Fig. 1) enables us to identify 
the minima (Fig. 3) in the P,(H ) signal as the boundary of the 
spectrum of longitudinal waves. We note that this compari- 
son was carried out for the frequency w / 2 ~  = 9.3 GHz, 
while the location of the cyclotron resonances was deter- 
mined by conditions (12) and (1 3). The relation (1 I )  is equiva- 
lent to these two conditions. Therefore, a comparison of the 
experimentally observed picture with the spectrum of waves 
at the frequency 2w is of interest, but in the region of magnet- 
ic fields between the first and second cyclotron resonances of 
the electrons of the (b ) ellipsoid. This spectrum, obtained by 
numerical solution of the general dispersion equation (2), is 
given in Fig. 5 in the interval 0 < kR < 8. The approximate 
expressions (B7) and (B8) and their use in the calculation of 
Eqs. (8)-(10) allow us to differentiate the different branches 
of the spectrum in Fig. 5. Thus, the I branch is described by 
Eq. (10) and is a longitudinal cyclotron wave, squeezed to the 
left at the line of the first electron cyclotron resonance: the o 

branch corresponds to the solution (8), an ordinary wave, 
while the other branch, which, just as in the case of curve o, 
approaches the line of second resonance as kR increases, is 
described by Eq. (9). It is seen from Fig. 5 that the turning 
points of the spectrum of cyclotron waves at the doubled 
frequency 2m do not correspond to the observed minima in 
the signal P,, (H). The longitudinal waves, propagating in 
the region 0.5 < fl/w < 1 near the hole resonances with 
numbers 1 3 0 ~ 2 4 ,  exist for kR > 10. However, it is clear 
just from (7) that the boundaries of these waves do not appear 
in our present experiment. 

The author sincerely thanks V. F. Gantmakher, V. Ya. 
Demikhovskii, E. A. Kaner and G. I. Leviev for useful dis- 
cussions and interest in the work, and I. D. ZhukovskiT for 
help in carrying out the numerical calculations. 

APPENDIX A 

We consider the following dependence of the carrier 
energy on the momentum 

2e =ax,p,~a,,p,3+a,,p,2+2a,,pXpB+2azZpIpi+2a~IpYp. (Al)  

Solving the equation of motion in a constant magnetic 
field 

we express the components of the momentum in terms of the 
variables E,  p and p: 

p,=-m2Ap,+p ( A  cos cp-B sin v ) ,  

pi,-mLrpz-p (C  cos cp-D sin 9) , 
(A21 

where 
1n= (az,ayy-axy2) -', 

A=a,l,~r~-aliraxli, B=aU,lm, 
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From (Al )  and (A2), we get the following for the projec- Here we have introduced the variable 0 = arccos[(y/ 
tions of the velocity vector: 2~)''~~,], and J,  and J ;  and the Bessel function of order n 

p P and its derivative with respect to its argument. u, = -(D cos cp+C sin c p ) ,  v ,  = -(B cos c p f  A sin c p ) ,  (A3) 
m m 

P v ,  = - (A2+BZ) cos cp+~p> 
avu APPENDIX B 

We substitute the expressions (A3) in Eqs. (3) and (2), We not obtain the asymptotic expressions for the ele- 
and find the of the conductivity tensor for any ments of the tensor gl, in the limit 1, basing the calcula- 
single group of carriers with the dispersion law (Al) :  tion of the components of the susceptibility tensor of a de- 

a.u2 1 generate Fermi gas on the treatment given in Ref. 4. 
om=-a, +- a3, ( ~ , ~ = a , , a ~ ,  

auu mZavv We introduce the designations kR = x, w / i 2  = y for the 

a,,Z A2m2 electrons of ellipsoid (b ) and write the quantities a, from (A5) 
ozz  = - a,  + - a,+ya,, as Y + 0 in a form convenient for calculations in the limiting 

avu 
(A41 

case x)  1. Using the addition theorem for Bessel  function^'^ 
o,,,=cc,,a,--ia,/m, o,,=o,,', and the relation 

n,r=ayial+iAma?r ozu=~riz'r rn 

where 
n/2 

N n' J d8 sin 8Jn2(kR  s in  0 )  , 
a ' = ( k ~ ) i  v-i(o-nQ) , 

X 1 dB sin2 el,, ( k R  sin 0 )  I,,' ( k R  sin 0 ) .  

a , = N E  I J d0 sin3 0 J n f 2 ( k R  sin 0 ) .  
v - i ( o - n Q )  , 

a.=N E : I 1 dB sin 0 cosz 0Jn2 ( k R  sin 0 ) ,  
v - i ( o - n Q )  

we obtain 

iNyz  
a,=- - [ l+2iy j dB s in  8 J dte"utIo ( 2 2  s in  0 sin t )  1, 

o x Z  0 0 

a2=- .. 2*yz J' de sin2 0 J dtezlu'sin t J ,  ( 2 r  sin 0 s in  t )  , (Bl)  
ox 0 0 

~ N Y  a, = - J' d0 sin3 8 J' dte"Yt cos 2 t lo  ( 2 x  sin 0 sin t )  -al,  
o o  0 

~ N Y  a, = - 1 d0 sin 0 cosz 0 1 dtez i~ 'Jo (2, s in  0 s in  t )  . 
0 0 

At X) 1, the basic contribution to the integrals in the 
variable t is made by values of t close to 
t ,  ~ m n - ( m  = 0,1,2, . . . ). Calculation of the quantities ai 
from (Bl)  reduces to finding the sum 

i ctg n y  
(y<x s in  8 )  ( 2 ( x 2  s i i  0- y2) lh 

J dtezlvtmJo ( 2 r  sin 8 s in  f )  = I 

I = ' J' e-i(u-nlt 

y-n i , at, 

( y>x  s in  8 )  

The a, thus obtained determine the chief terms in the expansion of the components of uu from (A4) in powers of l/x, but 
do not contain terms oscillating in x, which are responsible for oscillations of the spectrum in Fig. 1. To find the correction 
components to the expressions for ai we use the  relation^^^,^^ 

1 
l n 2 ( z )  = - j 1, (21  sin p )  cos 2np  d p ,  J ~ + ,  ( 2 )  = 

zw+l J 1, ( z  s in  p )  sin rp  C O S ' ~ + ' ~  drp, 
0 2"r(p+I ) ,  

'" zn 1 ( )  J ( 1  = c ( o  in^^+^ d J ~ .  ( i)  = - cos ( z  s in  +) cos 2 n i  d+ 
0 

(B3) 
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and rewrite (A5) in the form 

I 
where a z = G [ - l ;  iNy2 1  

1 i x-Y 

I ,  ( n ,  T) = J lin ( ? X U )  du, z2 (n. x )  = I?,, ( ~ x u )  uZ du. 
o + (&) (cos ix+sin 2 x )  cosec n y  , 

0 I 
Since 

m 

cos ( z  sin 8 )  = I,. ( n )  exp (-2inO), 
n=-m 

while from the second formula of (B3)  we have iNy 
2 0 s  x  

a , = - [ Y + + ( n c t p n y + ~ n -  
n/2 n f z  

"-Y 

1  1  n '" J J1 (2. sin 0 sin t )  sin2 O d0 = -[ J Jo ( 2 x  sin 0 sin 1)  - -( -) (cos 2x+sin 2 s )  cosec n y  1, (B7)  
2 s  s ~ n  t 2x 2x o 

x sin 0 do-cos ( 2 x  sin t )  , I 
we obtain the following immediately from ( B l )  and (B4):  

iNy2 J,, ( 2 s )  - I ,  ( n ,  x )  
a z = - - ; z  20x 

Y-" 
(B5)  

The integrals I l ( n ,  x )  and 12(n, x )  are expressed in terms of 
the Lommel functions S,,, ( z ) ~ ~  with the help of the formula 

The Lommel functions for z ) l  have the asymptote 
S,,, ( z )  z z  ,- ' . The oscillations of the dispersion curve in the 
case of large x are due to the oscillatory dependence on x of 
the principal term of the asymptotic expansion of the func- 
tion J , ,  (2x) .  

We determine the oscillating correction to the expres- 
sions fora, , [which latter are obtained by substitution of (B2) 
in ( B  I ) ]  by use of (B4)  and (B5),  and with the help of (B6)  and 
the relation 

(-1)"' -= n cosecny.  
Y-n 

As a result of summation in the case x > y, we obtain 

while at x < y, 

i N y  [ y + l l n E ( I  -$)I . (B8) a3=ai = - 
2 0 2  s 2  y-x 

As in seen from (B7)  and (B8),  the period Ax of the oscilla- 
tions of the functions a, ( x )  is given by Ax = T, while the 
amplitude of the oscillations falls off with increase in x .  

The expressions (B7) and (B8)  were obtained for the 
electrons of the (b ) and (c) ellipsoids. Taking into account the 
change in the quantities N, x ,  y, similar relations can be writ- 
ten down for the electrons of the ellipsoid (a) and for the 
holes. Summing the contributions from all the carriers in 
(B7) and (B8) and substituting ai in (A4), we obtain the ele- 
ments of the tensor uU. If we include terms up to x-3i2 in the 
components ox, and a,, , then at x )  1, the dispersion equa- 
tion (1) decomposes into Eqs. (8) ,  (9) and (10). 
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