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The phase diagram with respect to the coupling constant in quantum electrodynamics (QED) and 
its relationship to spontaneous breakdown of chiral symmetry are discussed. A breakdown mech- 
anism based on the "collapse" phenomenon is considered, and on this basis the results of some 
recent computer calculations of QED on a lattice are interpreted. The existence problem for a 
nontrivial local limit in QED is analyzed and the following hypothesis is offered: in the zero 
charge case (renormalization constant Z ,  = 0) local QED for a certain fixed value of the priming 
coupling constant a"' = a, - 1 involves a non-trivial S-matrix. The physical meaning of the 
hypothetical local theory is discussed. 

51. INTRODUCTION 

The determination of the structure of the phase dia- 
gram with respect to the coupling constant is one of the most 
important problems of quantum field theory. In particular, 
it is closely connected with the existence problem for a non- 
trivial local limit (the ultraviolet cutoff parameter A-+w) in 
the asymptotic non-free theories. 

Recent computer studies of quantum electrodynamics 
(QED) on a lattice have obtained results touching on the 
spontaneous breakdown of chiral symmetry.' This paper 
aims to give a simple physical interpretation of these results 
and to apply it to the existence problem for a nontrivial local 
limit in quantum electrodynamics. 

In 1954 Gell-Mann and Low2 showed that a nontrivial 
local QED can exist only if the bare coupling constant a"' 
determined by the ultraviolet-stable zero of the renormaliza- 
tion group 0-function, 

wherep is the renormalization group parameter and Z,,  is 
the renormalization constant for the photon propagator. 
The existence problem for such a zero became especially 
acute after the appearance of papers by Landau and Pomer- 
anchuk3 and Fradkin4 arguing that the local limit in QED 
arises in the free theory, and in particular that in the limit 
A+CX for arbitrary values of the bare coupling constant 
vacuum polarization effects lead to the vanishing of the vari- 
able coupling constant a(r)  at all non-zero distances; a ( r )  = 0 
for r > 0 and a(0) = a"' (the zero charge case; the renormal- 
ization constant Z,,  = 0). Subsequently the possibility of a 
nontrivial zero of the function pq,, was investigated in a 
program of "finite" QED,' but without a definite answer. 
Recently, new arguments have been put forward, supporting 
the view that such a zero of thep-function (1) cannot exisL6 

This problem is closely related to the renormalization of 
the charge. References 2-5 used the relation 

ap=Zspa(0) ( A ) ,  

which is equivalent to (1). It has been proved in every order of 

perturbation theory and apparently should hold for the ex- 
act theory. However, as proved in Ref. 7, in the asymptotic 
nonfree field theories, for large values of the bare coupling 
constant the renormalization ratios may change essentially 
if we take account of the dynamical generation of particle 
masses. This notion originated in the mechanism of sponta- 
neous breakdown of chiral symmetry in massless QED pro- 
posed in Refs. 8 and 9 (reviewed in Ref. 10). For supercritical 
values a'O'(A) > a, - 1 of the bare coupling constant this 
mechanism leads to additional mass divergence (for more 
detail see $2). For renormalization group theory the critical 
value a, ,  separating the massless and massive phases, is the 
ultraviolet-stable fixed point. But this value is defined, not 
by the zero of the 0-function (1) related to the subcritical 
phase (a'O'(A) < a ,  ) but by the zero in the supercritical phase. 
The value of a, defines a local theory. 

Curiously, a similar phenomenon was observed1' in 
(2 + n - ')-dimensional p 4" + models (n > 1; in the classical 
limit these models are scale-invariant). 

In this paper we show that the basic results of computa- 
tions in lattice QED1 may be easily understood via the dy- 
namic mechanism of chiral symmetry breakdown. Also we 
discuss the extent to which a departure from the approxima- 
tion with "frozen" fermions used in Ref. 1 (an approxima- 
tion neglecting the contribution of the diagrams with fer- 
mion loops) may influence the results. This analysis leads us 
to the following unexpected possibility: the zero charge case 
(Z, ,  = 0) does not mean the theory is necessarily trivial in 
the local limit; the S-matrix of the local QED with a fixed 
value of the bare coupling constant can be nontrivial. A 
characteristic peculiarity of such a local theory is the appear- 
ance of a new induced vertex in the Yukawa-type interaction 
of fermions and antifermions with the constituent pseudos- 
calar boson. 

This paper has the following structure. In $2 we briefly 
consider the mechanism for dynamic breakdown of chiral 
symmetry in QED [Refs. 8-10] and the influence of this 
mechanism on the structure of renormalization. In $3 we 
discuss certain properties of it that are related to the singu- 
larities of the passage to the local limit in the theory. This is 
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important since anomalies of various kinds may affect the 
character of the breakdown. In particular we solve the well- 
known Goldstein problem in this way. In 54 we interpret the 
results of some computer calculations on lattice QED and 
discuss the existence problem for a nontrivial local limit in 
quantum electrodynamics. 

52. THE MECHANISM FOR SPONTANEOUS BREAKDOWN OF 
CHlRAL SYMMETRY IN QED 

The mechanism for spontaneous breakdown of chiral 
symmetry in QED [Refs. 7-10] starts from the analogy 
between this effect and the generation of electron-positron 
pairs in a supercritical Coulomb field. We known12 that for 
Z > Z, - 137 (a = Ze2/4ar > 1) the Dirac operator with 
Coulomb potential V(r) = - Ze2/4ar is poorly defined and 
needs correction at small distances." For instance, 

To show the role of the cutoff parameter A = r; ' in this 
problem we introduce an expression for the energy E'") of the 
nS,,,-levels for a light electron (mass m(l&(") 1)': 

where the energy of a massless electron is 
( " )  

co =aA(sin cp-i cos rp) exp{-nn/(a2--I) '"1, n=l .  2, . . . ; 

The generally accepted interpretation of the levels with 
R e  < 0 is that the level E(") defines a positron state with 
energy 

corresponding to an emitted positron waves2' In the limit the 
energy E'") diverges, representing the case of a falling in to 
the center, i.e., collapse. 

Reference 8 proposed the hypothesis that a similar 
phenomenon may occur in QED with a large enough value of 
the bare coupling constant, but here it leads to spontaneous 
breakdown of chiral ~ymmetry.~'  This hypothesis was em- 
ployed (with the ladder approximation) in Ref. 9; for detailed 
exposition see the survey in Ref. 10. For convenience we 
postpone to Appendix I:4' (a) the equations for the dynamic 
mass function of the fermion, m, (q2) = Bd (q2)/A (q2) (relat- 
ing to the spontaneous breakdown of chiral symmetry; for 
the fermion propagator we have S(q)  = [ - 4A (q2) 
+ B,  (q2)] -I);  and (b) the equations for the wave function of 

the Goldstone boson. Here we present the basic results: the 
chiral group is SU, (K ) xSU, (K), where K is the number of 
fermions. The dynamic mass m, is given by the equation 

where, for values of a"' near the critical, i.e., for 

we have 

f (ai") ~4 exp (-x/2?), y=1/2(a(~ ' /a , - l ) '~ .  (7) 

The Bethe-Salpeter (B-S) wave function for K - 1 Gold- 
stone bosons in the Euclidean region has the form 

whereAr is the (K - 1)-matrix of the fundamental represen- 
tation of the group SU(K ), q is the relative momentum of a 
fermion-antifermion pair becoming a boson, F is the hyper- 
geometric function, and the renormalization constant C can 
in principle be determined from the normalization of the 
wave function. 

Following Ref. 7, let us now consider the renormaliza- 
tion in this problem. In the local limit, A-cc, , a"' > a ,  = a/ 
3, the mass m, diverges, for the following reason: If we ex- 
pand the hypergeometric functionI4 we find that as q2-toc 
the function x(q2) has the form 

where 

and I? is Euler's gamma function. In the local limit, and for 
arbitrary mass m,, the wave function has an infinite number 
of zeroes. This is a typical symptom of "falling in to the 
center," i.e., collapse,13 in which the energy of the ground 
state is not bounded below and therefore the energy gap 
(mass gap) is infinite. 

To eliminate this divergence we need to renormalize the 
bare parameters. Taking account of the fact that m" ' r0  for 
the chiral-invariant Lagrangian bare mass we have a unique 
such parameter, the bare coupling constant a"'. The rela- 
tions (6) and (7) imply that the mass m, remains constant as 
A+, if the bare coupling constant is fixed: 

a'" ((,I) =a,+n2a,lln2 (4.2/md) - c(,=..r/3. 
A- rn 

(10) 

For the renormalization group, the ultraviolet-stable 
fixed point a, is a critical value separating the massless from 
the massive phases. The appearance of such a point in the 
ladder approximation is defined by the nonperturbative in- 
teraction dynamics. 

Note that the mass divergence (6) differs from the loop 
divergences in perturbation theory. The latter arise from 
processes in which the particle number is not conserved, 
while the divergence of (6) is related to the singularities in the 
short range behavior of the exchange interaction which con- 
serve particle number. Since such divergence in quantum 
mechanics (see, for instance, equation (5)) it is natural to call 
this a quantum-mechanical divergence. 

We note also the two following features: 
1) Since in the photon propagator the renormalization 

constant satisfies Z3/, = 1 in the ladder approximation, the 
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renormalization (10) violates the renormalization relation 
(21; 

2) in the local limit (10) the wave function satisfies 

and therefore the renormalization (10) changes the form of 
the wave function, and in particular the oscillations vanish 
[cf. Eq. (9)]. We recall that in standard renormalization the- 
ory the perturbations occur in an equation of the form 

GI" ( { q )  , a,,) =Z (Ll/l~, a,,) G'A' ( { q )  . a'") 
+ Small correction terms. (12) 

(G@) and G(") are Green's functions, the first renormalized 
and the second not). Therefore to within small correction 
terms of the form,u/A, q/A, etc., the renormalized and non- 
renormalized Green's functions have the same form as func- 
tions of ( q ]  . The breakdown of this property as a result of the 
renormalization (10) is easy to understand: assuming the cut- 
off and keeping the mass m, finite we eliminate the collapse 
and so eliminate its consequence, namely the oscillations. 

In this approximation the phase diagram with respect 
to the coupling constant for massless QED has the following 
form: for all subcritical values a"' < a, = r / 3  thep-function 
vanishes (there are no ultraviolet divergences) and all these 
values of a"' make a line of fixed points; in the mass phase, 
with a"' > a, we have the renormalized coupling constant, 
which leads to the ultraviolet-stable fixed point a"' = a,. In 
the exact theory the shape of the phase diagram depends on 
other renormalizations as well. This question will be dis- 
cussed in $4. Here we make the following observation: It is 
essential to note that our picture of the reconstruction of a 
vacuum is related to the collapse phenomenon, whose exis- 
tence in relativistic quantum mechanics follows immediate- 
ly from the uncertainty principle5'. Moreover, collapse for 
supercritical values of the coupling constant occurs in some 
exactly soluble two-dimensional models, in particular the 
sine-Gordon equation7-lo and as we noted in the Introduc- 
tion, in (2 + n - ')-dimensional p 4n + models1 with n) 1. 
These observations support the view that the phenomenon 
we are considering is not an artifact of the ladder approxima- 
tion. 

We shall return to a discussion of these questions in 54, 
but first we deal in the following section with some proper- 
ties of the dynamic breakdown of chiral symmetry in QED 
that are related to the properties of the passage to the local 
limit in the theory. 

53. THE LOCAL LIMIT AND THE NATURE OF THE 
BREAKDOWN OF CHIRAL SYMMETRY IN QED 

In field theory, anomalies signal a breakdown of sym- 
metry. The most widely known example is the Adler-Bell 
Jackiw (ABJ) anomaly in a singlet axial vector current. Even 
before the discovery of this anomaly it was known from "fin- 
ite" QED (Ref. 5) that in general the vanishing of the bare 

mass of a fermion does not guarantee the conservation of the 
axial vector currents in the local t h e ~ r y . ~ , ' ~  In the literature 
this is sometimes referred to as the Johnson-Pagels anomaly. 
In this section we shall show that it can be eliminated by a 
suitable procedure for passing to the local limit, as opposed 
to the ABJ anomaly. We shall also show that in this way we 
can solve the familiar Goldstein problem.16 

Consider a QED with K fermions. In the local limit 
K - 1 axial vector currents j <, = $y, ydr$ ,  
r = 1,2, ... K - 1, free of the ABJ anomaly, satisfy the equa- 
tion 

aPj5,' = lim m(') (A) ($y s h ' ~ )  A, 
A+ m 

where rn'O'(~) is the bare mass of the fermion. It is essential 
that the operator (&,Ar $), be expressible in terms of com- 
ponents and depend on the cutoff parameter A: 

where ($yjlr $), is the renormalized component operator. 
We find from (13) and (14) that the axial-vector currents are 
conserved if 

lim m(O) (A) Z,,-l=o. 
A+ m 

We show in Appendix I1 that in the ladder approxima- 
tion the renormalization constant satisfies the relations 

for subcritical values a''' < 1 ~ / 3  and 

for supercritical values of a"'. It is clear from this and from 
(15) that the vanishing of the bare mass in the local limit, 
m(O)=lim .,, rn'O'(~] = 0 does not guarantee the conserva- 
tion of the axial-vector currents. A sufficiently sharp de- 
crease (like O(Z,,,,)) in the excitation mass as A+co does 
provide such a guarantee. In particular, this condition is sat- 
isfied for rn'O'(A)=O, i.e., if the Lagrangian theory with cut- 
off is chosen to be chiral-invariant and the local theory is 
considered as a limit of it (as in $2). 

We support this conclusion by an immediate considera- 
tion of the equation for the mass function of the fermion [cf. 
App. 11, Eq. (II.3)]: 

m (q2) = m(O) (A) 

(for m"'(A) = 0, the mass satisfies m = m,). The solution of 
this equation has the same form as the solution of the equa- 
tion with m(O)(A) = 0: 

the normalizing constant is C = gm, where 6 is a numerical 
parameter; it must however satisfy another boundary condi- 
tion for q2 = A2 
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Using the asymptotic expansion of the hypergeometric 
function for m2/A24 1 (Ref. 14), we find from (19) the follow- 
ing equations: 

zmr (27 ' )  lr2 ('I,+ y f )  = ( ~ 1 ~ )  1 - 2 ~ r m ( 0 )  (A) (20) 

for a"' < 7r/3 and 
cth vy DL-1% ny 

for the supercritical values a"' > ~ / 3 .  
With the condition (15) in mind, we find from (16) and 

(20) that for the subcritical values a"' < n-/3 spontaneous 
breakdown of chiral symmetry (md #O) does not occur. On 
the other hand, we find from (15) and (17) that in the local 
limit, for a"' > 7~/3 Eq. (21) goes over into the equation with 
m'O'(A) = 0, and we return to the situation with the ultravio- 
let-stable fixed point a"' = a/3, which we considered in $2. 

The following observation is essential: for A = cc and 
m'O' = 0 the function 

satisfies the boundary condition (19) and therefore the equa- 
tion (18) for all values of a"'. Thus the condition for the 
conservation of axial-vector currents, which distinguishes 
the solution corresponding to the spontaneous breakdown of 
chiral symmetry, acts as a supplementary boundary condi- 
tion defining the local limit. In particlar, we can in this way 
obtain the solution of the Goldstein problemi6 Reference 16 
considers the B-S equation, the ladder approximation, for a 
massless parapositron (i.e., for a Goldstone boson). It is not 
difficult to show (see Appendix 11) that the replacement of 
the B-S wave function x(q2) by (q2 + m2)-'m, (q2) the equa- 
tion goes over into equation (19) with A = co and 
m'O'(A) 1, = , = 0. Since this equation formally has a solu- 
tion for all a"' we appear to have a paradox: a massless para- 
positron exists no matter how small the bare coupling con- 
stant. If, however, we take note of the behavior of the passage 
to the limit A-CC we conclude that in this approximation 
the massless parapositron exists only for the fixed value 
a"' = n-/3 of the coupling constant 6). 

64. THE COUPLING CONSTANT PHASE DIAGRAM IN OED 

In this section we discuss the results of some numerical 
QED calculations on a lattice', from the viewpoint of the 
mechanism we have discussed for the spontaneous break- 
down of chiral symmetry. We also consider the form of the 
phase diagram with respect to the coupling constant in QED 
and we discuss the possibility that a nontrivial local limit 
exists. 

The computerized calculations in Ref. 1 were made in 
an approximation with frozen fermions, i.e., they took no 
account of the contribution from fermion loops. The basic 
results are the following: 

1) In massless QED the ordering parameter 
(01($$), (0)  is different from zero (i.e., spontaneous break- 
down of chiral symmetry occurs) for all values of the bare 

coupling constant that exceed the critical value a, ~ 0 . 3 .  
The value of the parameter (0) $$lo) is sensitive to the short- 
range interaction dynamics. 

2) The calculations on an anisotropic lattice show no 
significant temperature dependence of the dynamics of 
spontaneous breakdown of chiral symmetry in QED. 

The first result is in qualitative agreement with the pic- 
ture developed in $2 for the dynamics of the spontaneous 
breakdown of chiral symmetry in QED and the associated 
appearance of collapse. Since the critical value of the cou- 
pling constant (as opposed to the critical index) depends es- 
sentially on the shape of the short range regularization, a 
direct comparison of the critical value of the coupling con- 
stant in the lattice theory with its value in the ladder approxi- 
mation in the theory based on a cutoff in momentum space 
does not yield an estimate of the contributions from nonlad- 
der diagrams. Nevertheless, the qualitative agreement 
between the results of the computer calculations and those 
obtained in the ladder approximation does support the view 
that the latter gives us the characteristic features of the dy- 
namics of spontaneous breakdown in chiral symmetry in 
QED, and therefore may be held to be a reasonable model for 
the study of the phenomenon. 

The second result of the computations can be easily un- 
derstood if we adopt the customary view that the critical 
temperature T,, at which symmetry is restored, can be ex- 
pressed via the distance r a t  which breakdown of chiral sym- 
metry begins, i.e., T, -r-'. At collapse, r-  A-I, and there- 
fore only for large values of the temperature T-A can 
spontaneous breakdown of chiral symmetry occur. 

Let us now discuss the existence problem for the local 
limit in QED. First we establish the following general asser- 
tion: if in the massless QED with cutoff for some fixed value 
of a"' = a, there exists a second order phase transition re- 
lated to the spontaneous breakdown of chiral symmetry, the 
local QED with a fixed value of the bare coupling constant 
has a nontrivial S-matrix, 

Our postulate implies that for supercritical values ofa"' 
the fermion has the dynamic mass m,. Since the theory al- 
lows a unique dimensional parameter A, this mass is given by 

where f (at0') is some function or other. The equation 

f (a'") =O (23) 

has a positive root coinciding with the critical value 
a"' = a, of the coupling constant. In the local limit 

lim m,/A= f (a"') + O  
A+ m 

it defines a local theory with a nontrivial S-matrix: the 
Bethe-Salpeter wave function for the Goldstone boson, cor- 
responding to the spontaneous breakdown of chiral symme- 
try, determines the effective vertex of the interaction 
between this boson and the fermion and antifermion. There- 
fore there must exist a pole in the fermiodantifermion scat- 
tering S-matrix corresponding to the Goldstone boson. The 
appearance of a sufficiently small bare fermion mass (in the 
case of partial conservation of the axial vector current) 
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should not essentially influence this picture. 
It follows that in proving the existence of a nontrivial 

local QED is suffices to prove the spontaneous breakdown of 
chiral symmetry for sufficiently large values of the bare cou- 
pling constant a"' in the theory with cutoff. 

The calculations in Ref. 1 assumed that the fermions 
were frozen. To compute the coupling-constant phase dia- 
gram in the exact theory we need to know how strongly the 
results are influenced by a departure from this approxima- 
tion, and above all, the effect of polarization of the vacuum. 
Later we shall argue that spontaneous breakdown of chiral 
symmetry in QED with a sufficiently large value of the bare 
coupling constant occurs even when the zero-charge case 
appears in a polarized v a ~ u u m . ~ . ~  

The analysis in the ladder approximation and with fro- 
zen fermions shows that the dynamics of spontaneous break- 
down of chiral symmetry in QED with a cutoff occur in the 
neighborhood where the variable coupling constant has a 
value a(r)  > a ,  - 1. On the other hand, if we accept the argu- 
ment of Landau and P~meranchuk,~ the equation 

where K is the number offermions, is qualitatively valid even 
for large values of a"'. Then it follows that the vacuum po- 
larization effects decrease the value of the variable coupling 
constant a ( r )  to a value near to 1 at distances r = p/A, where 
p > 1 (it follows from (24) thatp is not 1arge;p < 10 for K = 3). 
We can simulate these effects by bringing in a parameter for 
the infrared cutoff 6 = A/p, p > 1. Since the qualitative pic- 
ture of the breakdown of chiral symmetry in the ladder ap- 
proximation with frozen fermions appears to be a general 
one, we say suppose that the role of the cutoff parameter 6 
survives in the equations of the ladder approximation. The 
coupling constant in these equations will be interpreted as 
some mean value of the varying coupling constant a ( r )  in the 
interval A- ' < r <p/A. 

Reference 19 considers the B-S equation in a ladder ap- 
proximation with the infrared cutoff parameter 6 for Gold- 
stone bosons, although with aims that differ from ours. It 
follows from the results obtained there that the critical value 
of the coupling constant is given by the equation 

For our purposes it is essential that for S = A/p the value of 
a, ( p) defined by (25) remain finite for all p > 1 (a, ( p)+ co as 
p-tl). Moreover, since for S = A/p the parameter A disap- 
pears from this equation, it follows that without regard to 
the cuttoff of the interaction in the limit A+CO at all nonzero 
distances (r > O),(Ar = lim,,, AP1(p - 1) = 0) a spontane- 
ous breakdown of chiral symmetry will occur for a"' > a, ( p)  
even in the local limit. However (and this is important), the 
dynamic mass 

remains finite in this limit only for a fixed value of the bare 
coupling constant [cf. Eq. (6 ) ] .  

This analysis leads us to the following hypothesis. In the 

zero-charge situation the local QED may offer a nontrivial 
theory: the residual 8-function interaction (a(r) = 0 for r > 0 
and a"' = a(0))  can lead to the formation of a fermion-anti- 
fermion coupled Goldstone state and so to an induced fer- 
mion-antifermion-boson peak. 

In this case the coupling-constant phase diagram can be 
explained as follows: in the subcritical phase with a"' < a 
there is only the trivial infrared fixed point 
a, =a(r) 1, = 0 and therefore in the local limit there 
arises for all these values of a"' only the free theory (the 
standard zero-charge case394. In the supercritical phase there 
is an ultraviolet-stable fixed point a"' = a, which defines a 
nontrivial local theory with a Yukawa interaction among the 
fermions, antifermions, and residual Goldstone bosons. The 
appearance of a sufficiently small excitation mass in the fer- 
mion (the case of conservation of axial currents) should not 
significantly change the phase diagrame7' A numerical test of 
this hypothesis would be interesting. 

95. CONCLUSIONS 

The phenomenon of collapse in quantum field theory 
can have an effect on the structure of renormalization, i.e., 
the shape of the phase diagram with respect to the coupling 
constant (and does so in some two-dimensional models7.10). 

An analysis of chiral-invariant Lagrangian QED sug- 
gests the existence of a critical value of the coupling constant 
a, - 1 that separates the massless and massive phases of the 
theory. The critical constant a, is the field-theory analogue 
of the critical coupling constant Z,e2/47rz 1 in the Dirac 
equation with a Coulomb potential. We have presented ar- 
guments in support of the view that this value defines a non- 
trivial local theory. 

This dynamic picture allows us to give a clear interpre- 
tation of recent calculations for noncompact lattice QED 
(Ref. 1). Furthermore, our hypothesis on the existence of a 
nontrivial local QED, even in the zero-charge case, can in 
principle be tested soon by computer calculations. 

It would be of great interest to test the possibility of 
realizing the case in which a nontrivial local theory is deter- 
mined by the zero of the P-function of the supercritical 
phase, and for other asymptotically nonfree theories. Cur- 
rently a search is under way for the mechanism of the break- 
down of scale symmetry in finite supersymmetric theories." 
It would be interesting to see whether a breakdown mecha- 
nism related to the collapse phenomenon is possible in these 
theories. 

I thank D. V. Volkov, V. P. Gusynin, and P. I. Fomin 
for their helpful discussions. 

APPENDIX I 

In the spontaneous breakdown of chiral SU,(K) 
XSU, (K ) symmetry in massless QED the fermion propag- 
tor has the form 

s ~ ~ ( ~ )  =6iJ(-&4 ( q ' ) + B d ( q 2 )  )-', (1.1) 

where i, j = 1,2, ..., K. In the approximation with the bare 
photon propagator and with the photon-fermion-antifer- 
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mion vertex the Schwinger-Dyson equations for the photon 
propagator in the covariant calibration gauge with the gauge 
parameter d, have the following form in the Euclidean re- 
gion: 

A' 

0 ( q 2 - k Z )  + 0 ( k 2 - q 2 )  
k 2  

] k ' y  ( h 2 ) .  (I. lo) 
4n q2 

Comparing (1.10) with (1.3) and taking account of (1.9) we 
find that with the Landau gauge the ladder approximation 
corresponds to a linear version of equation (1.3) if ~ , ( q ~ )  in 
the denominator is replaced by mi.  

The equation (I. 10) can be solved in the following way: 
We differentiate it with respect to q2 and find 

d  d 3a'O' 
- { u ' 7 ~  dqz dq ( q 2 + m d 2 ) x ~ } + - 3 ; ~ ~ x = ~ .  (I. 11) 

d q'--[ ( q 2 + m d 2 ) ~ 1  I qz=n=O. (I. 12) 
dq2 

In the Landau gauge (di = 0) we have A (q2) = 1. Moreover, 
in this gauge equations (1.1) and (1.2) do not change if the 
vertex rPiii is written in the form 

where P, = q,, - q,, , and @ is an arbitrary Lorentz-invar- 
iant function. If @ = Bd(q:) - Bd(q:) the vertex (1.4) satisfies 
the Ward identity 

Let us now look at this identity for the vertex Ti, of the 
axial-vector current: 

PPr5p ' (q2 ,  q 1 )  = - y S ~ T ~ - l ( q i )  -8-1 ( q z )  y5kT. 

For spontaneous breakdown of chiral symmetry the peak 
r;, has a pole at zero with respect to the variable P 2; the 
residue at the pole can be calculated from the B-S wave func- 
t i o n ~  '(P,q) for the Goldstone boson (q = (q, + q2)/2): 

where the parameter f is determined by the equation 

Substituting (1.7) in (1.6) and passing to the limit P,--tO we 
find that 

In the ladder approximation (1.8) leads to the equation 

and the B-S equation for X(q2) in the Landau gauge has the 
form 

The solution of (I. 11) that satisfies the boundary condition 
(I. 12) has the form 

(I. 14) 

where F is the hypergeometric function. The normalizing 
constant C = gm,, where kY is a dimensionless parameter, 
can in principle be determined from the normalizing con- 
straint on the B-S wave function. The second boundary con- 
dition (1.13) determines the mass spectrum. An analytical 
result can be obtained if md2/A2(1. Then by using the con- 
nection formulas for the hypergeometric function [cf. Ref. 
141 we obtain from (I. 13) the equation 

A" 
~ i n [ ~ 1 n ~ + E ( y ) ] = O ,  md ~ ( ~ ) = a r g [  r2 ( l+iy  ) (I. 15) 

and this yields 

-nn 
m:"' exp ] - 4:iexp (y); 

7<<1 

n=1,2, . . .  . (I. 16) 

It can be shownI0 that only the maximum value my) yields a 
stable vacuum. 

APPENDIX I 1  

We know [Ref. 211 that the renormalization constant 
Z,, for the state operator ($y5 A '$), coincides with the re- 
normalization constant for the state operator ($$), (($$), 
= Z ,-,'($$),). From the equation 

(cf. Ref. 21) where mL is the renormalized current mass of 
the fermion, we obtain 

We stress the fact that both the masses m'O'(A) and rn; are 
related to the breakdown of chiral symmetry. To determine 
the ratio m'O'(A)/mf, we use the equation for the mass func- 
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tion m(q2) = B (q2)/A(q2) (the propagator 
S = ( - 4A + B ) - I ) .  In the ladder approximation with the 
Landau gauge (A (q2) = 1) this equation takes the form 

(compare with (1.3)) where m-md in the limit as m"'(A)-+0. 
The solution of this equation is the function 

(cf. (I. 14); y = 1 (3a"'/a - 1) and 6 is a numerical constant) 
and it satisfies the boundary condition 

for q2 = A2. 
Next we consider the supercritical phase a"' > a/3; the 

simpler subcritical case would be treated in the same way. 
Using the connection formulus for the hypergeometric func- 
tion with m2/A2(1, we find from (11.4) and (11.5) that 

' m L  ctli ny 1 L(-)" .I ny ~ i n [ ? y i n ~ + ~ ( y ) ] = m ' " ( . l ) :  / ) I  

m the imaginary part Im E'"' decreases and the stability of the system 
increases. Therefore there are in principle two ways to stabilize such a 
system: spontaneous shielding of the charge, and generation of fermion 
mass. In the Coulomb center problem, the formulation of the problem 
itself prevents any solution but the first. The hypothesis of Ref. 8 stated 
that in supercritical QED the second way--creation of ferrnion mass- 
could occur. 

4JThe equations are treated in the Landau gauge. This choice is not ran- 
dom; it is dictated by the following considerations. The very statement of 
the problem of spontaneous breakdown ofa symmetry in a given approx- 
imation can be made only if the approximation is compatible with the 
Ward identity that corresponds to the symmetry in question. As was 
shown in Appendix I, when this requirement is applied to the ladder 
approximation the Landau gauge is preferred. 

''In the relativistic theory the kinetic energy satisfies Ek = (q2 + m2)1'2 
- mzzq as q-+m. Therefore the energy satisfies E = m + Ek - a/ 

rzz(1 - a) / r  as r 4  (because of the uncertainty principle for the mo- 
mentum q- r- I), and collapse occurs for a > 1. 

61The behavior in the passage to the limit A+m occurs in other problems 
of QED. In Ref. 17 behavior ofthis kind is encountered in the problem of 
self-energy of the electron when gravity is taken into account. The need 
to supplement the local equations is not peculiar to QED; it is character- 
istic of problems of dynamic breakdown of symmetry in local gauge field 
theory. In quantum chromodynamics, taking account of the conditions 
for conservation of axial vector currents enables one to derive the 
asymptotic ultraviolet mass function for quarks as an immediate conse- 
quence of the equations for the Green's function, without using assump- 
tions about the validity of the operator expansion1'. 

7)Real QED, i.e. the phenomenological theory, with an ultraviolet cutoff 
parameter specifying the low-energy interaction of leptons and photons, 
appears to relate to the subcritical phase. In reality there exists no candi- 
date for the role of the Goldstone boson (or "almost" Goldstone boson) 
consisting of leptons. Moreover, if QED is to be part of a grand unified 
theory the variable electrodynamic coupling constant must be small at 
all distances (for instance, in SU(5) theory a(r)<0.02). 

Since spontaneous breakdown of chiral symmetry occurs for 
a"' > ~ / 3 ,  the mass m = m(q2) 1 = ,2 has the form m = md 
+ m,, where the current mass is given by m,-mi 1, = , . 
For our purposes we need consider only the case mc(md 
(partial conservation of axial current). Then we find from 
(11.6) that 

m(0) (A) 
Z ~ Z r n ~ I p = m = ~  

Then it follows that for p)md we find 

for the renormalization constant. 

''In other words, in the relativistic theory a fall into the center (collapse) 
appears for such a value of the p~tential". '~ and the system has no 
ground state (is a vacuum). 

"The appearance of such quasistationary levels is interpreted as the cre- 
ation of an electron-positron pair from a v a c ~ u m ' ~ .  The electron is cou- 
pled to the center, which shields it, and the positron recedes to infinity. 
The process is repeated until the central charge falls to the subcritical 
level. 

3'The role of the fermion mass in the problem of the supercritical Cou- 
lomb center can be discerned in equations (4) and (5). With the growth of 
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