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Optical spectroscopy methods were used to investigate the size quantization of the energy spec- 
trum of excitons in CuCl microcrystals dispersed in a transparent dielectric matrix. The size of 
microcrystals grown by diffusion-type precipitation of a new phase in a supersaturated solid 
solution was deliberately varied from tens to thousands of angstroms. It was found that the profile 
of a luminescence line of free excitons was due to the dispersion of the size of microcrystals 
described by the Lifshitz-Slezov distribution for the recondensation stage of the growth of micro- 
crystals. A theory of the size quantization of excitons allowing for the complex structure of the 
valence band was developed. A comparison with the experimental results yielded the energy band 
parameters describing the energy spectrum of excitons in a CuCl crystal. 

I. INTRODUCTION 

It has been recently demonstrated that ultradisperse 
semiconducting microcrystals can be grown inside a trans- 
parent dielectric matrix.' A method for the growth of micro- 
crystals by a diffusion-type precipitation of a new phase of a 
supersaturated solid solution developed by Golubkov et al.' 
makes it possible to control the size of the resultant particles 
over a wide range from tens to thousands of angstroms. The 
silicate glass matrix is transparent in a wide range of wave- 
lengths from ultraviolet to the near infrared part of the spec- 
trum, so that it is possible to use optical spectroscopy meth- 
ods for investigating the properties of microcrystals. 

Heterophase systems of this kind represent a new class 
of objects for investigating various "size" effects in semicon- 
ductors and, in particular, the quantum size effect. In fact, a 
semiconducting microcrystal in a dielectric matrix repre- 
sents a three-dimensional potential well of size which limits 
the region of motion of quasiparticles. Consequently, free 
motion of quasiparticles in a microcrystal is possible only for 
certain values of the energy and the energy spectrum in 
q~an t i zed . ' ~  

The problem of manifestation of the size quantization 
effect in the exciton and interband absorption spectra of 
spherical semiconducting microscrystals is considered 
theoretically in Ref. 5. It is shown that the influence of the 
quantum size effect on the absorption and luminescence 
spectra of microcrystals depends strongly on the ratio of the 
exciton radius a,, to the microcrystal radius a. In the case 
when a,, ( a ,  an exciton is quantized as a whole and the influ- 
ence of the boundaries of a microcrystal on the exciton bind- 
ing energy is exponentially small. In the other limiting case, 
when a,,%a, we can ignore the Coulomb interaction 
between electrons and holes. In the interband absorption 
case we should observe aperiodic oscillations associated 
with transitions between the size quantization levels of holes 
and electrons. 

The exciton size quantization effect was reported for 
CuCl microcrystals in Ref. 2 and preliminary results of an 
investigation of the effect were published in Ref. 3. The other 

limiting case ofa,,  )a was also studied using CdS microcrys- 
tals, which exhibited oscillations in the interband absorption 
spectrum due to the size quantization of the energy spectrum 
of free  electron^.^ 

In the case when a,, ( a  the position of the exciton line 
maximum considered as a function of the average radius of 
microcrystals ii is described by the following expression5: 

where Eg is the band gap; E,, is the binding energy of an 
exciton; M is the translational mass of an exciton; K is a 
numerical coefficient governed by the size distribution of 
microcrystals. However, the model of a simple exciton ener- 
gy band with a parabolic dispersion law considered in Ref. 5 
does not describe the real band structure of CuCl crystals 
and gives only the first approximation to the experimental 
situation. 

We shall report a detailed investigation of the depen- 
dences of the position and profile of the exciton lumines- 
cence and absorption lines of CuCl microcrystals on their 
size. We shall show that the shift and broadening of these 
lines are due to quantization of the energy spectrum of exci- 
tons and can be described allowing for the steady-state size 
distribution of microcrystals established during their 
growth. We shall develop a many-band theory of the size 
quantization effect allowing for the nonparabolicity of the 
exciton subband. We shall compare the experiment and the- 
ory to find the parameters of the energy band structure of 
CuCl crystals. 

II. INVESTIGATION OF THE DISPERSION OF THE 
MICROCRYSTAL SIZE 

Microcrystals of CuCl were grown in the interior of a 
silicate glass matrix to which compounds of copper and 
chlorine were added in concentrations of the order of 1% 
(Ref. 1). The microcrystals were grown by high-temperature 
annealing of such glasses via diffusion-type precipitation of a 
new phase in a supersaturated solid solution. The microcrys- 
tal size was varied deliberately by altering the annealing 
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(temperature and duration) conditions. The average micro- 
crystal radius and the concentration of the semiconducting 
phase in each sample were determined by the method of low- 
angle x-ray scattering and the approximation of monodis- 
perse spherical particles.' Since the annealing temperature 
was higher than the melting point of CuCl, it was natural to 
assume that the semiconducting phase particles were liquid 
during growth and spherical because of the surface tension. 
Therefore, we postulated that the microcrystals formed as a 
result of solidification of such drops were indeed near- 
spherical. 

Samples investigated in the present study were subject- 
ed to an additional low-temperature annealing. This resulted 
in a considerable narrowing of the exciton line and, in the 
final analysis, allowed us observe directly a manifestation of 
the size dispersion of microcrystals in the exciton lumines- 
cence spectra of these microcrystals. 

g 1. Luminescence spectra of CuCl microcrystals 

Crystals of CuCl have the cubic lattice. The valence 
band of these crystals is split by the spin-orbit interaction 
into a doubly degenerate subband I', and a quadruply degen- 
erate subband r,. In contrast to the usual diamondlike semi- 
conductors, the r, and r, valence subbands of CuCl crystals 
have an inverse distribution, i.e., the doubly degenerate sub- 
band is located "above" the quadruply degenerate ~ubband .~  
Therefore, the exciton lines observed in the luminescence 
spectra of these crystals are due to the annihilation of exci- 
tons associated with the simple (only spin degenerate) va- 
lence subband r,. 

Figure 1 shows the luminescence spectra of four sam- 
ples containing microcrystals with different values of the 
average radius, recorded at T = 4.2 K. The luminescence 
was excited by a krypton-laser emission line (A = 356.4 nm). 
It is clear from this figure that the spectra of the annealed 
samples containing microcrystals of sufficiently large size 
consisted of a narrow line with a maximum at fiw = 3.178 
eV, which was due to the annihilation of an exciton bound to 
a neutral acceptor., The position and width of this line were 
practically independent of the microcrystal size and its in- 
tensity fell rapidly on increase in the size. The luminescence 
spectrum included also a line due to the annihilation of free 

I, rel. units 

excitons. It is clear from the figure that a reduction in the 
microcrystal size caused this line to shift toward shorter 
wavelengths and, as in the case of the absorption spectra,*v3 
this was due to the quantum size effect. 

The difference between the behavior of the free and 
bound exciton lines was due to the fact that the wave func- 
tion of a bound exciton was localized near an impurity state 
and was insensitive to the presence of microcrystal boundar- 
ies. Therefore, the dependences of the positions of the free- 
and localized-exciton lines on the microcrystal size were 
fundamentally different. 

It is also clear from the same figure that the shift of the 
free-exciton line was accompanied by its considerable broad- 
ening. This broadening may be due to the dispersion of the 
size of microcrystals and the size distribution function can 
be found by analyzing the profile of the exciton line. Since 
this line is due to the annihilation of excitons associated with 
the simple valence subband, the profile can be described by 
the size quantization theory developed in Ref. 5. 

g 2. Exciton-line profile due to the size dispersion of 
microcrystals 

In a quantitative analysis of the experimental results on 
the size quantization it is necessary to know the actual form 
of the size distribution function of microcrystals. This is im- 
portant both to allow for the influence of the size dispersion 
on the optical spectra [coefficient K in Eq. (I)] and to deter- 
mine the average size of microcrystals from the data on low- 
angle x-ray scattering. 

As concluded in Ref. 1, the growth of microcrystals 
occurred during the recondensation stage of the process of 
diffusion-type precipitation of a phase in a saturated solid 
solution when the growth of large crystals was due to the 
dissolution of small ones and the concentration of the semi- 
conducting phase remained constant. This process was dis- 
cussed in greater detail in the theoretical paper of Lifshitz 
and S l e z ~ v , ~  who found a function P(a/Z) describing the 
steady-state size distribution of the new particles which was 
established during recondensation growth. The explicit 
form of this function was used in Ref. 5 to obtain an expres- 
sion for the exciton-spectrum intensity distribution resulting 
from the size variation of the microcrystals. An allowance 
for the "intrinsic" width of an exciton level made it possible 
to rewrite this expression as follows: 

'I. 

where D ( x )  is a Gaussian function describing the intrinsic 
width G of an exciton level and the dimensionless integration 
variable is u = a/Z. 

It follows therefore that the system (2) gives the position 
and profile of an exciton line determined by the size quanti- 

FIG. 1 .  Luminescence spectra of samples containing c u c l  microcrystals zation in the case when the size distribution of the micro- 
of different radii H @): 1 )  140; 2) 56; 3) 45; 4) 22. T = 4.2 K. crystals is governed by the Lifshitz-Slezov function. It must 
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I. rel. units A, rel. units 

FIG. 2. Comparison of the experimental (continuous curves) and theoreti- 
cal (points) profiles of the exciton luminescence lines of samples studibed at 
T = 4.2 K and containing CuCl microcrystals of different radii ii (A): 1 )  
56; 2) 32; 3) 22. 

be stressed that the only parameter that determines the size 
quantization of excitons in a simple parabolic energy band is 
their effective mass. 

Experimental profiles of the free-exciton luminescence 
lines determined for three samples differing in respect of the 
average particle radius are compared in Fig. 2 with the theo- 
retical results obtained by numerical integration of the sys- 
tem (2). The best agreement was obtained for the following 
values of the exciton mass in Eq. (2): 1) 1.9mo; 2) 1.9m0; 3) 
2.0m0 (m, is the mass of a free electron). The intrinsic width 
G of an exciton level does not affect the position of the exci- 
ton line maximum, but governs only its long-wavelength 
wing. The value of G was found to be independent of the 
microcrystal size and in the case of the spectra shown in Fig. 
2 the best agreement was obtained for the following values: 
1) G = 1.0 meV; 2) G = 2.5 meV; 3) G = 3.5 meV. The agree- 
ment between the experimental and calculated profiles con- 
firmed that the size distribution of microcrystals in the in- 
vestigated samples was described by the Lifshitz-Slezov 
distribution. 

It is shown in Ref. 5 that in the case of the Lifshitz- 
Slezov distribution the value of the coefficient K in Eq. (1) is 
K = 0.67. Moreover, since the intensity of the scattering of x 
rays is proportional to the square of the volume of a micro- 
crystal, an analysis of the results of the x-ray measurements 
carried out in the approximation of monodisperse particles 
overestimated somewhat the average microcrystal radius Z. 
A numerical analysis of the results of x-ray measurements 
carried out allowing for the size dispersion of microcrystals 
showed that the average (over the Lifshitz-Slezov distribu- 
tion) microcrystal radius was Z = 0.86a, where a is the value 
obtained in the monodisperse approximation. The values of 
the coefficients found in this way were used later in an analy- 
sis of the experimental results on the quantum size shift of 
exciton levels. 

Ill. SIZE QUANTIZATION OF EXCITONS IN A COMPLEX 
ENERGY BAND 

0 1. Experimental results 

In contrast to the luminescence spectra, we found two 
lines in the absorption spectra of CuCl microcrystals. The 
long-wavelength line 2, was due to the creation of excitons 

FIG. 3. Absorption spectra (here, A is the optical density) of samples 
~ontaining CuCl microcrystals of different radii: 1)  ii = 270 A; 2) H = 29 
~ ; 3 ) 1 = 2 2 A .  T=4 .2K.  

associated with the upper doubly degenerate valence sub- 
band I?,. The position of this line agreed resonantly, for all 
the microcrystal sizes, with the position of the free-exciton 
luminescence line considered in the preceding section. The 
short-wavelength line Z ,,, was due to the excitation of exci- 
tons associated with the quadruply degenerate valence sub- 
band r, and the dependence of its behavior on the micro- 
crystal size could not be described by the theory developed 
for a simple parabolic band.5 

Figure 3 shows the spectra of three samples, differing in 
respect of the average microcrystal radius, determined at 
T = 4.2 K. Clearly, an increase in the microcrystal size re- 
sulted in a short-wavelength shift of both lines. The shift of 
the exciton line associated with a quadruply degenerate va- 
lence band was much stronger. We plotted in Fig. 4 (points) 
the positions of the maxima of both lines as a function of the 
reciprocal of the square of the average microcrystal radius. 
At high values of the radius the positions of these lines 
hz, = 3.201 eV and &II,,,~ = 3.276 eV agreed well with the 
published experimental data.6 We also used the method of 
least squares to plot the straight lines approximating the ex- 
perimental points in Fig. 4. 

FIG. 4. Dependences of the positions of the maxima of the exciton absorp- 
tion lines Z ,,, and Z, at T = 4.2 K on the reciprocal of the square of the 
average radius of microcrystals. 
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The slope of the plot of the short-wavelength exciton- 
line shift associated with the upper doubly degenerate va- 
lence subband could be substituted in Eq. (1) to find, for a 
simple parabolic band, the effective mass of excitons which 
was M = (1.9 5 0.2)m0. This value was in good agreement 
with the published value M = (2.1 f 0. l)mo (Ref. 9). 

It is clear from Fig. 4 that the rate of the short-wave- 
length shift of the Z ,,, line was greater than that of the Z,  
line. This was surprising because the translation mass of one 
of the two excitons associated with the quadruply degenerate 
subband was greater than for the exciton associated with the 
doubly degenerate subband and, consequently, the quantum 

size shift of the Z ,,, line should have been less. The results 
obtained could be explained only by the theory of the size 
quantization of excitons that allowed for the real energy 
band structure of CuCl crystals. 

Q 2.1 heory 

The binding energy of excitons in CuCl is 200 meV and 
is considerably greater than the spin-orbit splitting A = 70 
meV. The Hamiltonian describing the translation of such an 
exciton in the case of low momentap, where the kinetic ener- 
gy of an exciton is much less than its binding energy, may be 
comparable with the value of A: 

~ = 1 ' 3 2 ~ ~ - ~ ,  pLz=p,2i- p,2, p-=px-ip,, It is clear from Eqs. (6b) and (7) that an increase in the mo- 
- - - -  

and the energy is measured from the position of the ground 
state of an exciton associated with the quadruply degenerate 
valence subband. This Hamiltonian is written down ignor- 
ing the electron spin, exchange electron-hole interaction, 
and longitudinal-transverse splitting. The numerical values 
of the Luttinger constants y, and y (Ref. 10) describe fully 
the dispersion law of the ground state of an exciton in such 
an energy band considered in the spherical approximation. 
The quantities y, and y may be associated with the values of 
the translation masses of excitons consisting of heavy and 
light holes from the r, band (M,, , M, ) and a hole from the r, 
band (M, ): 

In fact, Eq. (3) readily yields the dispersion law of an exciton 
in such a band: 

Eh= ( ~ ~ - 2 y ) p ~ / 2 m ~ ,  (54 

(5b) 
Hence, if yp2/mo(A, we can obtain the dispersion law of an 
exciton allowing for the weak nonparabolicity: 

which determines also the values of the translation masses at 
the bottom of the band given by Eq. (4). In the other limiting 
case, A( yp2/mo, we find that 

mentum p increases considerably the mass of an exciton 
formed from a hole in the spin-orbit split-off band. 

A theory of the size quantization of excitons in semi- 
conducting CuCl spheres can be developed assuming that 
the walls of a potential well are infinitely high at the well 
boundaries. Therefore, the wave function of an exciton on 
the surface of a well may be assumed to be zero. The wave 
functions of an exciton in a spherically symmetric well can 
be found if we begin by writing down the general form of 
spherically symmetric solutions of the Hamiltonian (3). In 
general, this can be done employing the results of Ref. 11. 
However, in describing our experiments it is sufficient (as 
shown below) to develop a theory of the size quantization in 
semiconductors with a&uadrupiy degenerate valence band 
r,. In the case of an exciton associated with the band r,, a 
theory of its size quantization allowing for the nonparaboli- 
city can be constructed using the Hamiltonian (3) only in the 
case of the states with the momentum 1 = 0, i.e., for those 
states which can be observed in the absorption and lumines- 
cence, in accordance with the selection rules of Ref. 5. 

The Hamiltonian describing the energy spectrum of 
carriers at the edge of a quadruply degenerate band r, con- 
sidered in the parabolic approximation can be deduced from 
Eq. (3) if we equate to zero the sixth and seventh columns and 
rows in this Hamiltonian. It is shown in Ref. 12 that spheri- 
cally symmetric solutions of this Hamiltonian can be classi- 
fied in accordance with the total momentum values F = 1/2, 
3/2,. . ., which are all good quantum numbers. The states 
with a given value of F are (2F + 1) - fold degenerate in 
respect of the projection of the moment M of the vector F. 
The wave functions of such spherically symmetric states 
with given F and M are1' 
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$= (2F+1)Ih r, (-l)'-""RF,, ( r )  
value of F. As in the case of a simple parabolic band, the 
value of k,,, can be represented in the form 

kF, n=qnF/a, (13) 
(8) where q, fl is the set of numerical coefficients dependent on 

the ratio of the masses of light and heavy quasiparticles 
where Y,,, ( 0 , ~  ) are the spherical (harmonic) functions; I and P = M, /&fh . In the case when j? = 1 (y = O), the set of 
m are the values of the orbital momentum and its projection; numbers q, f: is identical with the roots of the ~~~~~l func- 
p and XP are the eigenvalues and the eigenvectOrs the tions q,,,, (Ref. 5) (here, n is the serial number of the root of a 
operator modified Bessel function j, with I = F - 3/2), exactly as in 

"i the case of a simple parabolic band. If j?( 1, we can expand 

J z  = 
~ I z  0 the Bessel functions with small arguments as a series in Eq. 
0 -liz 0 
0 0 - 3 1 9 ,  

(1 1) and this gives 
6F-3 cp " 1 ( ) j~-a/s(qnF) 0. (2;;) are the 3 j Wigner symbols; M = m +p;  p = * 1/2 jF+'h(CPnF)  =-2~+8 - 

B-0 

and + 3/2. In the case of even (relative to the coordinate 
origin) solutions, the wave function for given values of F and (14) 

M contains two terms with I amounting to F + 1/2 and Hence, it is clear that when the difference between the 

F - 3/2. Using the system of equations for R 3/2,, from Ref. masses is large so that MI ( M ,  , the numbers q, are again 

12, we can readily show that the radial wave functions of the identical with the roots of a Bessel function j, shifted in re- 

even states of a spherically symmetric well should have the s p e c t ~ ~  the Iby 27 i.e.y with p ~ +  1/2,n. For 

form values of F and n this may increase considerably the roots of 
q, f on reduction in @. For example, for excitons with the 

RF F+1~,=AjF+1,2 ( k r )  +BjF+l,  (krp"2),  momentum F = 3/2 (which are the only ones that contribute 
(9)  to the exciton absorption in CuC1) the first root of Eq. (1 1) for 

RF,  F-  ,:=A1jF-3/? ( k r )  +BrjF-,,> (kr$") ,  F = 3/2 - p ;I2 varies approximately from 3.14 to 5.76, i.e., 

wherej, are the modified Bessel functions related to the Bes- it varies almost twofold. 

sel functions with the half-integer argument jl(z) = (T/ We shall now consider how the influence of the many- 

2 z ) ' I 2 ~ ,  + & (z); the energy of motion is band nature of the Hamiltonian (3) affects the size quantiza- 
tion levels of excitons associated with the valence subband 
r,. The general form of the wave function of an exciton de- 
scribed by the Hamiltonian (3) in a spherically symmetric 
potential well is as follows for the states with the momentum 
I = 0 (Ref. 11): 

whereas the ratio of the masses of the light and heavy parti- 
cles is j?= (y, - 2y)/(y1 + 2y). The vanishing of the wave 
function of an exciton at the boundary of a sphere of radius a 
yields the following system of equations for the determina- 
tion of the energy levels: 

\ \ 
Rp, F + I / ~  ( a )  =AjF+li, ( k ~ ,  .a) +BjF+~l, ( k ~ ,  nap '1 -8, 

(10) where R, (r) and R,(r) are the radial wave functions for 
. U F  . 

,F-vJI (a) = A  tg - I F  -:it ( kRVna)  -B ctg (kF,nap'h) =o, which we can obtain the following system of equations if we 
2 2 substitute Eq. (15) into Eq. (3): 

which can be solved if 

jp+g (kF,&)jF-v, (kF,napli2) 

We have used here the relationship 

tgz ( u F / ~ )  = (2F+3)/ (6F-3). 

Solving Eq. (1 1) for k,,, and then using the relationship + ---r2-+e+6 
between E and k, we can find the energy levels 2 rZ 8r ar 

where E = m,,E/fi2,6 = moA/#. Its solutions are the Bessel 
2, functions 

where n is the serial number of the root of Eq. (1 1) for a given Rh(r )  =C jz  ( k r )  , R, ( r )  =CJO ( k r ) ,  (17) 
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and the coefficients Ch and C, are related by the following 
system of equations: 

The condition for the solubility of the system (18) is given by 
the dispersion law of excitons, identical with Eq. (6b). On the 
other hand, for each value of the energy E there are two 
solutions of the (17) type differing in respect of k. In the 
energy range - A < E < 0 one of these values is imaginary 
and the square of the absolute value of k,,, is 

*{[2E(y i+y )  +A (71-27) 1'-4E(E+A) (TI -2y)  ("(+4"1}"'" I .  
(19) 

Then, the radial components of the wave functions of an 
exciton considered in this energy range are 

Rh(r)  =Chsj2 (k,r)  +Chh12 ( khr ) ,  

RS ( r )  =C870 (k,r) +C,hIo ( khr ) ,  
(20) 

where I, (2) are the modified Bessel functions with the com- 
plex argument, whereas the coefficients C f: are related by 

Using next the boundary condition Rh (a) = R, (a) = 0, we 
obtain the following equation for determination of the size 
quantization levels: 

io (k.a) I2 ( h a )  -i2 (k.a) I ,  (kha) 

~ ( ~ + 6 - ' / , y , k , ~ )  kh2/ ( ~ + 6 + ' / ~ y ~ k ~ "  kS2=0. P I  
We shall consider the case of a weak nonparabolicity 

when yk, 2tiz/mo(A. However, we have kh a) 1 and I,(kh a)/ 
I,,(kh a) -, 1. Next, applying the expansion (6b), we readily 
obtain from Eq. (22) that 

We shall solve this equation by the method of successive 
approximations. We shall find first the root of the equation 

For the ground state this root is g, O = k: a = IT. Next, we 
obtain the correction to this root: 

which gives Ak, = 12~ftiz/y,m&~A. Substituting the val- 
ue of Ak, into the expansion (6b), we obtain the correction to 
the size quantization levels of an exciton formed from a hole 
in the I?, band and related to its nonparabolicity: 

Therefore, the nonparabolicity of the exciton spectrum 
should be manifested as a deviation from the linear depen- 
dence of the short-wavelength shift of the exciton line on 1/ 
a2. 

5 3. Discussion of results 

In the preceding subsection we found theoretically the 
quantum-size shift of the exciton lines associated with the 
subbands r7 and r8 of a semiconductor sphere of radius a, 
described by Eqs. (28) and (12) or (13), respectively. The ex- 
perimental results agree with these formulas if we allow for 
the dispersion of the size of the spheres. We found experi- 
mentally (see Sec. 11) that the distribution of the particle size 
of such heterophase systems grown by recondensation is de- 
scribed by the Lifshitz-Slezov function.' Then, allowing for 
the dispersion of the size of the spheres in the way it was done 
in Ref. 5, we can determine the dependence of the profile and 
positions of both exciton lines on the radius ii averaged over 
the distribution. In the case of excitons associated with the 
valence subband r7 the position of the line maximum is de- 
scribed by the expression 

Here, the last term proportional to l/Z4 allows for the exci- 
ton spectrum nonparabolicity. We also see from Fig. 4 that 
the short-wavelength shift is a practically linear function of 
l/Z2. Hence, it follows that the nonparabolicity of the exci- 
tons associated with the subband I?, of CuCl is weak. There- 
fore, the exciton line shift is the same as for a simple parabol- 
ic energy band with an.effective mass M, = mdy,.  

The position of the maximum of the exciton line asso- 
ciated with the valence subband r, depends as follows on ii: 

Therefore, the short-wavelength shift of such an exciton 
with a fourfold degeneracy of the energy spectrum at k = 0 
is, as expected, inversely proportional to its "heavy" mass 
Mh = md(y1 - 2y). However, the dependence on the ener- 
gy band parameters includes also g, :I2 representing the first 
root of Eq. (1 1) corresponding to F = 3/2: 

Here, the parameterB = (y, - 2y)/(yl + 2y) depends on the 
ratio y/y,. Equation (29) replaces the corresponding equa- 
tion j0(p ) = 0 for a simple energy band and, therefore, in the 
case of a complex band the value of g, :" replaces the first 
root of the Bessel function jo(x), which is the number n in 
Eqs. ( I )  and (27). 
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FIG. 5. Dependence of the ratio of the shifts of the exciton absorption lines 
Z,,, and Z3 on the value of y/y,. 

In an analysis of the experimental results it is conven- 
ient to use not the absolute shift of the exciton lines 

A f i o z , ( Z )  =f iwz ,  ( a )  -E,+E,,, 

Af ioz , ,  , (a) =fioz,, , ( E )  4 , - A + & , ,  

but the ratio of the shifts which, in the parabolic approxima- 
tion, is of the form [see Eqs. (27) and (28)] 

i.e., it is independent of the microcrystal size and is governed 
only by the ratio of the band parameters y/y,. Figure 5 
shows a theoretical plot of this dependence. We found nu- 
merically the first root p :/' of Eq. (29). It is clear from this 
figure that the short-wavelength shift A h z l , ,  of the excitons 
associated with the valence subband r, is, because of the 
coefficient p :I2, greater than A h z 3  right up to y / y ,  ~ 0 . 3 5 .  
This is why the slope of the dependence h Z l t 2 ( Z )  in Fig. 4 is 
greater than that of hz3 (Z). 

Figure 4 can be used to find the ratio of the short-wave- 
length shifts AhZ1,2/AfiWZ3 = 1.4. It is clear from Fig. 5 

that this ratio corresponds to either y / y ,  = 0.13 or y/ 
y, = 0.28. We can use the mass Ms = 1.9m0 of the excitons 
associated with the valence subband r,, which corresponds 
to y,  = 0.53, and thus obtain two alternative values of the 
constant y: y = 0.07 or y = 0.15. It is clear from Eq. (27) that 
the value of y determines the degree of nonparabolicity of the 
exciton band associated with the r, valence subband and 
this makes it possible to select one of the values of y by com- 
parison with the experimental results. Figure 6 shows the 
dependences of the short-wavelength line shift Z, on the re- 
ciprocal of the square of the average radius of microcrystals 
plotted for both values of y. We can see that y = 0.07 indeed 
corresponds to a weak nonparabolicity and describes better 
the experimental points. 

The values of the Luttinger parameters y,  = 0.53 
f 0.06 and y = 0.070 f 0.007 obtained in this way from Eq. 
(4) can be used to determine the translation masses of exci- 

FIG. 6. Theoretical dependence of the position of the Z3 line on the reci- 
procal of the square of the average radius of microcrystals, plotted allow- 
ing for the nonparabolicity of the exciton energy band. The curves corre- 
spond to different values of the parameter y: 1) 0.07; 2) 0.15. The 
experimental results obtained at 4.2 K are represented by points. 

tons. For the excitons associated with the upper valence 
subband r, the mass is Ms = (1.9 + 0.2)mo, in good agree- 
ment with the published data.9 The excitons associated with 
the quadruply degenerate subband r, are characterized by 
the masses M, = (2.6 f 0.2)m0 and M, = (1.5 + (0.2)mo, 
which-to the best of our knowledge-were determined by 
us for the first time. 

It is therefore clear that an investigation of the depen- 
dences of the positions of the exciton lines on the size of 
microcrystals makes it possible to study the dispersion law of 
excitons in a wide range of values of the quasimomentum 
and it provides a new method for investigating the energy 
band structure of semiconductor crystals. 

The authors are deeply grateful to A. L. ~ f r o s  for valu- 
able discussions. 
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