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The phase and voltage in a Josephson junction fluctuate in full analogy with the motion of a 
Brownian particle in a tilted periodic potential. It is shown that if the junction has high Q and the 
potential energy is large compared with the temperature the Fokker-Planck equation for these 
fluctuations can be written in the form of a system of integral equations that can be solved by the 
Wiener-Hopf method. An exact expression is obtained for the current-voltage characteristic 
(IVC) of the junction. It is shown that at the threshold current, which corresponds in the absence 
of fluctuations to the bifurcation point of the solution of the equation for the phase, the fluctuation 
IVC of the junction has a break at which the logarithmic derivative has a jump of order unity. The 
decay of the superconducting state of the junction is determined. The relative probabilities of the 
different phase flips and the probability ofjunction activation into the resistive state are calculat- 
ed. Expressions are given for the activation time and for the lifetime of the resistive state, and their 
connection with the noise characteristics of the junction is discussed. 

1. INTRODUCTION 

The current-voltage characteristic (IVC) of a Josephson 
junction is determined in definite range of parameters by 
thermal fluctuations. Of greatest interest to us is the case of 
high-Q junctions under conditions when the temperature is 
low compared with the energy barriers between the poten- 
tial-energy minima of the junction. The calculation of the 
static IVC of such a junction is mathematically equivalent to 
finding the average rate of untwisting of a low-friction phys- 
ical pendulum by a small torque under conditions when the 
reversal of the pendulum rotation calls for overcoming a po- 
tential barrier greatly exceeding the temperature. The last 
process can be most lucidly presented as motion of a Brow- 
nian particle in a tilted periodic potential. The dependence of 
the average particle velocity on the inclination is connected, 
subject to simple substitutions, with the IVC of a Josephson 
junction. 

Research into Brownian motion in the presence of po- 
tential barriers seems to have been initiated by Kramers,' 
who developed a theory of absolute rates of chemical reac- 
tions on the assumption that thermal dissociation of a mole- 
cule is similar to the escape of a Brownian particle from a 
deep potential well. Kramers's results pertain, first, to the 
case of strong friction, when only the particle motion near 
the top of the barrier is significant, and second, to the case of 
extremely weak friction, when the particle oscillates almost 
freely in the potential well and diffuses slowly in energy 
space. This limit is realized if the energy loss per oscillation is 
small compared with the temperature. A number of at- 
tempts were made to go outside the diffusion approximation 
and obtain results valid for arbitrary dissipation. It was nec- 
essary then to invoke unwarranted a~sumptions,~ to use 
model-dependent  equation^,^ or confine oneself to numeri- 
cal  result^.^ 

We have shown in an earlier paper5 that in an actual 

low-frequency region, where the energy loss per oscillation is 
small compared with the well depth but can be lower as well 
as higher than the temperature, the Fokker-Planck equation 
for the motion of a Brownian particle can be reduced to an 
integral equation in the energy variable, or else to a system of 
such equations, and the quantum transparency of the poten- 
tial barrier can be taken into account in a natural manner. 
These equations are solved in the classical limit by a some- 
what modified Wiener-Hopf method that yields also the so- 
lution for the quantum case. 

The procedure proposed made it possible to find the 
complete solution of the Kramers problem1 of the Brow- 
nian-particle metastable-state lifetime in a deep potential 
well (the strong-friction region was investigated in Refs. 6 
and 7). In addition, in Ref. 5 we calculated the frequency of 
the transitions of a Brownian particle between the minima of 
a two-well potential. The results can have a bearing on the 
destruction of the superconductivity of a Josephson junction 
by thermal  fluctuation^,^ and on activation transitions 
between neighboring states of a superconducting ring closed 
by such a junction. 

We have reported briefly" an investigation of the mo- 
tion of a Brownian particle in a slightly tilted periodic poten- 
tial. As applied to a Josephson junction this means that the 
current through the junction is less than the threshold cur- 
rent1' at which (neglecting the fluctuations) a stationary so- 
lution of the time-dependent equation for the order-param- 
eter phase can be obtained in addition to the trivial static 
solution. 

The present article is devoted to a calculation of the 
fluctuation IVC of a Josephson junction at arbitrary values 
of the current, as well as to an investigation of the probabili- 
ties of activated phase flip of the order parameter. The basic 
concepts and notation and an investigation of the fluctuation 
IVC junction in the exponential approximation are dealt 
with in the next two sections. In Sec. 4 we write down the 
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basic equation and calculate the IVC below the threshold, 
where the exponential approximation is not valid. In Sec. 5 is 
described a method of continuing the IVC above the thresh- 
old values of the current, after which the relative value of the 
IVC jump at the threshold is obtained in Sec. 6. The section 
that follows solves the problem of activation relaxation of a 
spatially inhomogeneous distribution of Brownian particles 
in a tilted periodic potential. The solution is used to find the 
probabilities of the phase flips and the lifetime of the junc- 
tions's superconducting state. In Sec. 8 are given expressions 
for the activation time and the lifetime of the resistive state, 
and the connection between these quantities and the noise 
characteristic of the junction is indicated. The Conclusion 
contains a brief discussion of the results. 

2. VOLTAGE ON JUNCTION IN THE ABSENCE OF 
FLUCTUATIONS 

In the resistive model of a lumped Josephson junction, 
the current through the junction is the sum of the supercur- 
rentl, sine,andofthenormalcurrent V/R + CdV/dt, where 
I, is the critical current, e, is the order-parameter phase dif- 
ference, V is the voltage on the junction, R is the junction 
resistance in the normal state, and Cis  its capacitance. The 
values of Vand e, are connected by the Josephson relation, so 
that the system of equations for them 

CdV/d t+V/R+ sin cp=I, @/dt=2eV, (1) 

is equivalent to the single equation 

Bq I dq 2e 
.- + - - + - ( I ,  sin cp-I) =O. 

dtZ R C d t  C 
If the current I is assumed given, the problem of the junc- 
tion's static IVC reduces to solving Eq. (2) for e, (t  ) and aver- 
aging the Josephson relation 

The parameters of Eq. (2) can be combined to form two 
quantities with dimension of frequency: w = (2e1, /C ) ' I 2  and 
y = l/RC, where o is the frequency of the small phase oscil- 
lations at I = 0, and y is the friction coefficient for these 
oscillations. We assume that the junction has high Q. Neg- 
lecting friction (y = 0), Eq. (2) describes the motion of a par- 
ticle with coordinate e, in the potential 

shown in Fig. 1. At y = 0 the pa~ ic l e  leaving the potential 
well is accelerated in the tilted potential. When friction is 
taken into account the particle either remains in one of the 
minima, or its motion becomes stationary. 

When displaced over a period 2 r  of the potential, the 
particle acquires an energy U = TI /e. The total particle en- 
ergy is of the form 

where U, = Ic/e is the depth of the potential wells at I = 0, 
and the energy E is reckoned from the peaks of the potential 

FIG. 1. 

at I = 0. Friction causes E to decrease in accordance with the 
relation 

At w)y the governing current is I- yIc/u<Ic, so that 
the potential tilt can be neglected in the energy-dissipation 
calculation. The energy lost by a particle of energy E after 
one period of the potential is given by 

where E ( x )  is a complete elliptic integral. The energy in the 
stationary regime, at a given current I ,  is obtained from the 
balance condition 

Assuming E, known, we get dq, /dt from (5) and, taking (3) 
into account, we obtain the junction IVC in the form 

where E and K are complete elliptic integrals. As z-1 we 
obtain I = I, and V = 0. This means that when the fluctu- 
ations are neglected Eq. (2) has at I < I, only a solution in the 
form e, = const, while at I > I, a solution appears with de, / 
dt #O, for which the static IVC is given by (8). 

At I)I, we get from (8) 

A plot of V(I )  is shown in Fig. 2. From this, as well as from 
the asymptotic form of (9), it follows that the IVC becomes 
linear quite rapidly. We shall distinguish hereafter between 
below-threshold I < I, and above-threshold I > I, values of 
the current. 

3. FLUCTUATION CVC OF JUNCTION (EXPONENTIAL 
APPROXIMATION) 

Thermal fluctuations affect the junction IVC in two 
ways. At I < I,, when V = 0 in the absence of fluctuations, 
the latter produce a finite voltage on the junction. The IVC 
for this region will be calculated in Sec. 4. At I >  I, the fluc- 
tuations cause transitions between the junction states with 
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FIG. 2. Static IVC of junction. The dashed section can be observed at 
times on the order of the resistive-state lifetime. FIG. 3. Fluctuation IVC of a junction in the exponential approximation. 

V = 0 and V = V (I ) (see Fig. 2). The physical picture is in this The variation scale of the function 6 (e) is e - Uo)T, it follows 
case the following: Let initially V = 0, which corresponds to therefore from (1 I), with exponential accuracy, 
finding the particle at the bottom of the potential well. After 8 

a time 7, - w - 'exp( U,,/T), the particle is expected to be 
ejected from this minimum and be set in motion at an aver- 

f ( e ) = c * e x p [ -  .I( n I -&) $] . 
age energy E, determined by Eq. (7). We note that the activa- 

The maximum off (e) is reached at an energy E, determined 
tion time ra can be regarded as weakly dependent on the 

by therelation (7). We obtain the constant C,  from the condi- 
current I .  On the contrary, the time 7, of trapping a particle tion f (0) - exp( - UJT). In the upshot we obtain for the den- 
from an above-barrier state depends strongly on the energy sity of the particles of energy &, 
E,, meaning also on the current I ,  so that T, 

=o 
-wF1exp [a(I/I,)U,,/T 1, where a(x) is a function defined UO U de  
below. Thus, the instrument that averages V(t ) over the time l n f ( e . ) =  --+ j (--i) ?. 

2" 6 ( 6 )  
(12) 

intervals ra ,  r , ) t ) ~ - ~ ,  will read either V = 0 or V = V(I ). 
The transition from V = 0 to V = V(I)  is a Poisson random Taking (6) ,  (7), and (12) into account we obtain for the 
process with a characteristic time r,, while the reverse tran- junction IVC in the fluctuation region the parametric 
sition time is on the average 7,. Averaging over a time t)r,, expression 
7, we get 

V ( Z )  = V ( Z )  ztl(7.,+7t). 

Clearly, at r, (7, the fluctuations change the junction 
voltage little. On the contrary, at 7, >T, we get in the expo- 
nential approximation In F(I) = U, [a(I /I0) - 1 ]/T. It fol- 
lows hence that when the fluctuations are taken into account 
a characteristic current appears, defined by the condition 
a(I,/I,) = 1. At I <  I, the F(I) dependence is exponential, 
and at I > I, ,  when t)a, the fluctuations have little effect and - 
V (I) = V (I). To find the function a(x) and to determine the 
current I, we must solve the Boltzmann kinetic problem. 

In the presence of fluctuations, the distribution f (e) of 
the particles in energy is concentrated in two regions--near 
the energy E, and near the bottom of the well. We determine 
f (E) from the following considerations. At a particle displace- 
ment equal to the period of the potential, it loses an energy 
6 (E) to friction and gains an energy Ubecause of the tilt of the 
potential. In addition, the thermal fluctuations broaden the 
distribution function by an amount (6 (E)T)'/', SO that the 
periodicity condition of the stationary function f (e) takes the 

Z=IoE (2 ' )  12. (14) 

The previously introduced function a(I/Io) is given by the 
second term of ( 1 3) ifz is expressed in terms of I /Io and (14) is 
used. 

The current I, and the voltage V, corresponding to the 
departure of the IVC from the fluctuation region are deter- 
mined from relations (8) by substituting in them that value of 
z which causes the right-hand side of (13) to vanish: 

It follows from these results that V< V (I ) so long as I < I,. As 
applied to Fig. 1 this means that V (K ) is zero so long as I < I,, 
and increases jumpwise to V, at this point, after which it 
follows the plot shown in Fig. 2. The dependence of In Von I 
in the region I, < I  < I, is illustrated in Fig. 3. 

4. FLUCTUATION IVC OF A JUNCTION BELOW THE 
THRESHOLD 

form In the preceding section the thermal fluctuations were 

(1 1) taken into account on the basis of Eq. (1 I), in which the 
coefficient of the second term was chosen to satisfy the con- 
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dition that the solution (1 1) have the Boltzmann form at 
U = 0. A more rigorous approach calls for inclusion of the 
fluctuation current in Eq. (2), which is transformed thereby 
into the Langevin equation 

d2cp 1 dcp 2e -+-- +-(I, sin cp-14-1, ( t ) )  =O. 
dt2 RC dt C  

We assume that the fluctuation current I, is Gaussian with a 
correlator 

2T 
(1,  ( t )  I f  ( t ' )  )= - 6  ( t - t ' ) .  

'R  

Equation (15) is equivalent to the Fokker--Planck equation 
for the distribution function f (p,+ ) in p and in Q, d p  /dt: 

, a f  4e2 aU(cp) a f  a (4z~3+~f) , (16) 
' P z j - C T i $ = R C G  C  dip  

where U (p )is given by Eq. (4). The time derivative is omitted, 
for only the steady state is of interest. The function f (p, Q, ) 
must be periodic in p and normalized: 

0 -00 

The average junction voltage is then given by the integral 

where account is taken of the fact that under stationary con- 
ditions the flux is independent of the phase. 

In a high-Q junction the energy is dissipated after a 
large number of oscillations, and the energy (5) can in first- 
order approximation be regarded as a conserved quantity. 
We propose the existence of two small parameters y/w and 
T/Uo( 1. Their ratio is assumed arbitrary, so that the energy 
loss S - yU& per oscillation is comparable with T and the 
solutions given below depend on the parameter S /T. 

We replace Eq. (16) by a simpler integral equation, us- 
ing the following reasoning. If the dissipation and the poten- 
tial tilt are neglected, i.e., at S = U = 0, the motion of the 
representative point on the (p, Q, )plane is periodic: the parti- 
cles with E < 0 move on closed trajectories and those with 
E > 0 on open ones. Since the tilt of the potential U and the 
energy dissipation S are small compared with the energy U,, 
the real motion of the particle per period will differ little 
from periodic. As follows from Fig. 1, a particle moving over 
the barrier close to its top either was reflected one period 
earlier (when its phase was approximately smaller or larger 
by 27r) from a neighboring barrier, or else passed over the 
latter. If the particle had an energy E' at that instant, the 
particle distribution in energy is nearly Gaussian, in view of 
the Gaussian character of the random force, so long as the 
energy changes are relatively small. This means that the dis- 
tribution at the top of the neighboring barrier is of the form 

g ( ~ - E ' )  =[4nTCI ( E ) ]  - Ih  exp[- ( ~ + 6  ( 8 )  - - E ' ) ' / ~ T ~ ( E ) ] .  

The function S (E)  changes over energy intervals& - Uo) T, so 
that either E or E' can be its argument. We neglect for now 
this dependence, introducing the notation6 S (0). For a Jo- 
sephson junction we have 

We introduce the functions f ( E )  and f (E) ,  which give 
the number of particles the move over the barrier with veloc- 
ities directed to the right and to the left. In the stationary 
case these functions are identical for any barrier if the energy 
E is reckoned from its top (see Fig. 1). The function f (E) at 
the barrier 2 is formed from particles that have passed over 
barrier 1 and of particles reflected from this same barrier. 
These particles are described by the functions f (E')B (E ' )  and 
f ( ~ ' ) e  ( - E ' ) ,  and the distance between the points of refer- 
ence of E' and &' is equal to U. The periodicity conditions for 
f ( E )  and f ( E )  take then the form of integral equations 

where the shift of the argument of the function g by f U 
takes into account the different points of energy reference of 
the different barriers. The normalization conditions (1 7) cor- 
respond to the presence of one particle at each potential min- 
imum. At - E)T, f ( E )  should be a Boltzmann function, so 
that we get the boundary condition 

Solution of the system (18) with the boundary condition 
(19) allows us to express the junction IVC in the form 

We solve the integral-equation system (18) by the Wiener- 
Hopf method. The unilateral Fourier transformation 

cp:'" ( h )  =J r9' ( E )  8 ( 3 ~ )  erp ( ihs iT)  de (21) 

transforms the system (18) into 

where the argument A has been left out of all the functions, 
and 

gi ( h )  --exp [-GhZ/T-ih (G*U) /T I .  (a) 

The junction voltage is connected with p R'L ( E )  by the rela- 
tion 7 = (7r/e). [p (0) - q, : (0) ] , which is obtained from 
(20) when (21) is taken into account. For our purposes it 
suffices thus to find the difference p (A ) - p (A )=p (A ). 

Solving Eqs. (22) fore, and p : and taking the differ- 
ence q, 5 - p : , we obtain an equation for p (A ): 

where 

The condition means that q, (A ) has a pole of the form 
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iw sh (U/2T) exp (-Uo/T) 
T - ( A ) ~  --- , I A+i1 < I .  (25) 

n A f i  

To solve (23) we express the kernel G (A ) as 

where G+(A ) and G-(A ) are analytic in the upper and lower 
halves of the A plane, respectively, and their analyticity re- 
gions overlap in a certain band. Using the Cauchy formula 
we obtain 

m 

dh' In G ( A ' )  
G,(h)=exp[*J - 

- rn 2nz A ' - h ~ i 0  
The singular points of G (A ) that are closest to the real A axis 
are located at /Z = 0 and A = - i ( l  - U / S ) ,  and it is this 
which determines the common region of analyticity of G+(A ) 
and G-(A ). 

The solution of (23) follows from the factorization con- 
dition, which is written simultaneously with the boundary 
condition (25): 

--- A )  - G- (A) p- ( A )  
G+ ( A )  

- -- i o  sh (U/2T)  G- (4) exp (-U,/T) 
n h+i 

(28) 

The voltage 7 is equal to ~ p +  (O)/e, so that 

Using the multiplicative structure of G (A ) [see (24)] we 
can rewrite the expressions for G, (A ) as follows: 

B (26, I-2iA, 4 )  
G- ( A )  = - , Imh<-- 

(D (a-2iA, a )  B (a-2ih, P )  a (31) 2 '  

wherear  1 + U /S= 1 + I /Io$ r 1 - U /S= 1 - I /I0, the 
function is defined by the relation 

n / z  

and @(S, p, v )  is given by the same expression, but with S 
replaced by 28. Substitution of (30) and (3 1 )  in (29) yields 

- o sh(U/2T)A (26) exp (-U,/T) U 
Ti=- 4 - - >(&)"' , 

e @ ( a ,  a )  @ ( B ,  P )  @ (i, a )  @ (a,  B)' 6 
(32) 

where A is the factor preceding the exponential in the prob- 
lem of the decay of a metastable state of a Brownian particle 
in a single potential well5 

x / z  

The criterion indicated in (32) will be explained below. At 
U(S (I(Io),  7 (I ) has ohmic conductance: 

In the limiting cases we have the expansions 

where f ( x )  is the Riemann function, f (1/2) = - 1.46, and 

At low dissipation we have 

@ ( p ,  v) = (6/4T)lh (p-l-v) , 6<T, 

so that we get from (32) 
n I R  exp (-I,/eT) 7 s -  
2 I I )  ' 6<T* 

where the dependence on the junction parameters is explicit- 
ly indicated. We note that in the low-dissipation model the 
ohmic conductance of the junction does not depend on its 
capacitance. 

In the opposite limiting case we have 

- o sh (I/2eT) exp (-I,/eT) v=- 
e A"[G (~-ZIZ,)ZIT] , 6 B T ,  

from which it follows that the IVC depends on 6 only near 
the threshold, when I ,  - I - I , (T/S)"~.  As I - +  lo, the IVC 
of the junction has, under our assumption (that S is indepen- 
dent of energy), a singularity of the form ( 1  - I /Io)-'. Figure 
4shows plots of Vagainst the reduced current I / I  for various 
S /T. 

We consider now how the IVC can be extended to the 
threshold current. The appearance in the IVC of a singular- 
ity of the ( 1  - I / Io)- '  type is due to the integration of the 
function? ( E )  which, if the dependence of 6 on E is neglected, 
is proportional to exp [ - ~ ( 1  - U / S ) / T ] ,  as follows from 
Sec. 3. In (32) this singularity follows from the asymptotic 
relation 

We introduce the function 

de uo U de' - o J T e x p [ - T -  l ( i - - ) I ,  6 ( ~ )  

which determines the contribution of? ( E )  to the junction 

FIG. 4. Fluctuation IVC of junction below threshold. 

859 Sov. Phys. JETP 61 (4), April 1985 V. I. Mel'nikov 859 



voltage at values of Uclose to 6. Account is taken here also of 
the dependence of S on E, so that the expresion is valid up to 
the threshold U = 6, at which 

and does not depend on S. At 1)(1 - u/~)>(T/u,)"~ we 
have 

V,,, (U) - (I-U/6) -' exp (-UoIT). 

Comparison with (32) and (33) shows that to continue (32) to 
the near-threshold region we must replace *-'(/I, 
/?) exp ( - U d T )  by (T/~)"~v~, ,  (U), and substitute U = 6, 
a = 2, and /? = 0 in the remaining functions. The result is 

sh (6/2T) A (26) Vex,  (U) v=- - / 
- e (D (2,2) @ (2.0) (D (0,2) . (34) 

This expression jointly with (32) determines the IVC of 
the junction in the region below threshold 

5. FLUCTUATION IVC OF A JUNCTION ABOVE THRESHOLD 

We examine now how the solution of (23) must be modi- 
fied for the region U> S. Neglecting the dependence of S on 
E, the equation 

m 

F(E)  - J g(E-e l -~y~(c l )dar  

has for sufficiently large E )  U, S, and T the solutions 

fRmconst, fR-exp [ -8 (1-U16) IT], 

which correspond to the zeros of 1 - g-(A ) at A = 0 and 
A = A,=i(U/S - 1). It was shown above that an exponential 
solution for $ (E) with account taken of the energy depen- 
dence of 6 (E) introduces a factor Vex, (U ) in the expression for 
the voltage. At the same time, the solution$ a const corre- 
sponds to a nonnormalizable distribution function and must 
be discarded. As applied to the function p (A ) this means that 
p+(A ) should have a pole at the point A, and be finite at 
A = 0. Factoring of (28) does not satisfy either condition. 

The point is that the inequalities /? < 0 and a > 2 hold at 
U>S, so that expressions (30) and (31) are insufficient to 
determine G+(O) and G-( - i). To continue G, (A ) to the 
vital regions of A it is necessary to return to the original 
notation (27), which results in 

0 (26,I-2iA, I )  0 (a-Ziil, a) 
G- (h) = ' 

0 (B-2iA, B) [ 1-g+ (A) I ' 

Assuming that p+(A ) a G+(A )/(A + i), as follows from (26), 
the function p + ( A  ) will be finite at A = A,, meaning in the 

region (30). On the other hand in the vicinity of A = 0 the 
factor G+(A ) is given by (35) and has a pole singularity. It  is 
therefore necessary to choose in place of (28) a different fac- 
torization of (23), such that p+(A ) has a pole at A = A, and 
the pole of G+ (A ) at A = 0 is eliminated. These requirements 
are satistied if we write, taking the boundary condition (25) 
into account, 

v+ (A) -- --9- (A) G- (A) 
G+ (A) 

We have thus found the solution of (23) for the region 
U>S. It is clear from the foregoing that to calculate the 
voltage we must match this solution to the function$ (E )  at 
E) U, S, T. To this end it suffices to write 

and to note that when the dependence of S on E is neglected 
we obtain hence a pole of the form 

9, (A) =iCle-uo'T/(A-Ao). 

The coefficient C,  is thus determined by the residue of p+ (A ) 
at the point A,, after which integration of (37) with respect to 
E yields the junction voltage 7 = TC, Vex, (U)/e. Since/? < 0, 
we have Im A, = - p > - p /2, the residue must be deter- 
mined by using Eq. (30) for G+(A ) and (36) for G-(A ). The 
result is 

V =  (ole)B(G, U) Vezp (U), (38) 

where 

(38) 
In the limiting cases we have near the threshold 

Expression (38) is matched to (34) at the point U = 6. 
The relation (38) was obtained, with exponential accuracy, 
by Vollmer and Risken,'' but their exponential is preceded 
by an incorrect factor. 

The transition ofthe expression for the IVC from7(1 ) to 
V(I) near the point I = I, can be easily tracked if account is 
taken, when the function f (E) is normalized, of the contribu- 
tion made by the positive-energy particles. 

6. BREAK IN THE IVC AT THE THRESHOLD VALUE OF THE 
CURRENT 

The fact that the formulas for 7 are different at U< S 
and U> S suggests that the IVC of a Josephson junction has 
a break at U = S, i.e., at I = I,. To find the value of this 
break, which is given by the jump of the logarithmic deriva- 
tive, we note that near the threshold the principal part of Vis 
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given by an expression such as (38) also at U < 6, the function 
B (6, U) being determined as before by the residue of p + (A ) at 
the point R = - ip. Recognizing thep > 0 below the thresh- 
old, the residue must be determined by using expression (35) 
for G+(R ) and expression (31) for G-(A ). We then obtain 

IVC 

Since Vex, (U)  has no singularity at U = 6, to find the 
derivative jump we must differentiate (39) and (40). It is im- 
portant here that p reverses sign at U = 6. The calculations 
show that only the function @(3a - 4, a) contributes to the 
derivative jump, so that 

where 

In the limiting cases we have 

A plot ofD (6) is shown in Fig. 5. It follows from these results 
that the IVC logarithmic derivatives, whose order of magni- 
tude is ( U ~ T ) ' ' ~ )  1, has at I = I, a negative jump of order 
unity. 

7. ACTIVATION PHASE REVERSALS AND DESTRUCTION OF 
JUNCTION SUPERCONDUCTIVITY 

So long as the current I through thejunction is less than 
the critical I,, the superconducting state of the junction cor- 
responds to the minimum of its potential energy, and for the 
junction to go over to the resistive state or to one of the 
neighboring potential wells it is necessary to surmount a po- 
tential barrier. Accordingly, the lifetime r of the junction 
superconductivity and the probabilities w, of transition with 
a phase flip by 2.nn are determined by activation processes. 

Assume that at the initial instant the junction state cor- 
responds to a phase distribution near one of the minima of 
the potential U(p  ). The activation processes flip the phase 
over to the neighboring minima, and destroy thereby the 
superconductivity. In this situation one of the potential 
minima is singled out, so that the translational symmetry 
used for the problem in the preceding section is violated. In 
place of the equations for the functions f R,L (E )  we must write 
therefore the following infinite system of equations: 

FIG. 5. Discontinuity of the IVC logarithmic derivative at the threshold. 

where n is the serial number of the minimum. These equa- 
tions must be solved subject to the boundary conditions 

assuming that the initial state corresponds to the minimum 
n = 0. 

Carrying out the transformations (21), we obtain from 
(41) the system 

where the subscripts + and - were made into superscripts 
for convenience, and the argument R was left out. We solve 
these equations for p - and p f - (it is just these functions 
which contain no shift with respect to n), and taking into 
account the expression for the decay rate 

m 

we obtain the difference p, = rp f - p f;, , . The new func- 
tions satisfy the system of equations 

+ 
(1-g-g+) cpn-=g-cpn-i- (1+g+g-)cp,++g+cp:+i, (42) 

with 1/r = p ,+ (0) - p 2 , (0). The boundary conditions for 
Pn (A are 

io exp[- (Uo-U/2)  TI cpo- = - - 
2 n  h+i 7 

(43) 
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while the remaining q, ,- (A ) have no pole at A = - i. 
To solve the system (42), we introduce the functions 

which satisfy the equation 

(44) 
where 

h, (k, 1 )  =g, (1) exp (kikh) 

From the conditions (43) we obtain for q, (kJ ) the boundary 
condition 

o sin (k/2+iU/2T) exp (-Uo/T) 
qr(k,1)= -- , Ihfil<l,  

a h+ i 

where T is connected with q, (kJ ) by the relation 
n 

Expressing the kernel of (44) as a product of H+(kJ ) 
and H-(kJ ) in full analogy with expressions (23) and (26), 
we obtain the solution for q, +(kJ)  in the form 

- - o sin(k/2+iU/2T) H+ (k, h) H- (k, -i) exp (-U,/T) 
n (h+i) 

It is convenient to write the decay rate in the Arrhenius form 

where the exponential contains the height of the lowest bar- 
rier Uo - U/2. We write for the factor d preceding the ex- 
ponential 

n 

and use the definition 

w(X, 6, U)=4sin - sin -+x) (3 ((," 2, 

U 
x H+ (x, 01 H- (k, -i) exp ( - F )  . (45) 

Just as the junction IVC, the function w differs in form 
at U< 8 and at U> 6. To find the corresponding expressions 
we write down the factors H, (kJ ) in different regions ofA: 

@,(26,1-2ih, 1) 
H+ (k, A)  = 0, (k, a-Zih, a )  0, (-k, B-2ih, B) ' 

@ (26, I-2ih, I )  
H- (k, h) = 

@, (k, a-2ih, a )  0, (-k, B-2ih, B) ' 

@ (26,l-2ih, 1) 0, (k, a-2ih, a )  
H- (k, h) = 

0, ( 4 ,  B-2ih, B) [ 1-h+ (k, h) I ' 
1 -- a 
2 

>Imh>--, 
2 (49) 

where, as before, a = 1 + U/6=1 + I/I,, P = 1 - U/ 
S= 1 - I /Io, and we have introduced the new function 

In accord with (45), we get 

4A (26) sin (k/2) sin (k/Z+iU/ZT) exp (-U/2T) 
w (k, 6, U) = 

cD, (k, a ,  a) cD, (-k, B, B) (k, B, (-k, a ,  B) ' 

0% (k, B, a )  (-k, B, B) U>6, (5 1) 
" U)=A(26)'@l (k, a ,  a )  0, (-k, a ,  B) ' 

where expressions (46) and (48) are used at U<6, and (47) 
and (49) at U> 8. 

The function w(k,S,U) vanishes at k = 0 if U< 6 and 
differs from zero if U> 6. The reason is that at U< 6 a parti- 
cle that leaves a potential well may turn out after some time 
to be again in one of the wells. At U> 6, on the contrary, 
there is a finite probability of the particle going into a state of 
accelerated motion, in view of the neglect of the energy de- 
pendence of 6 in the scheme employed here. 

In certain cases it may be more convenient to use the 
expression 

m 

which is valid for both U < S and U > 6, where erf(x) is the 
error integral. The existence of such an expression shows 
that, in contrast to the IVC, the activation probabilities have 
no singularities at the threshold U = 6. 

The probability of the particle transition to the n-th 
minimum, i.e., the probability of a phase flip by 211-n, is given 

dk dk 
w. (6. U) =- eXknw (k, 6, U )  / I- w (k, 6, U). (52) 

-n 2n 
- X  

2n 

The sum of w, over n is equal to unity at U<6, for in this 
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FIG. 6. Relative probability of 2n phase flip. 

case w(O,S,U) = 0, and is less than unity at U>S, when a 
probability P(S,U) appears that the particle will not be 
trapped in any of the potential wells, 

The dependences of w,, w,, and Pon the relative current I /I, 
at different &/Tare shown in Figs. 6-8. In limiting cases it is 
possible to obtain simpler expressions for these quantities. 

The most interesting is the case 64T. To find w(k,6, U) 
in this case we use the asymptotic relations 

@, ( k ,  p, V )  = (6/4T) '"[  p+ (v"4ikT/6)'"1, 6 /T ,  k a l ,  (54) 

When calculating the denominators of (52) and (53) we 
can assume that w = 26. Taking (54) into account, we obtain 
for P(S,U) 

When w,(S,U) is calculated for n- 1, the entire interval 
( - T,T) contributes to the integral (52), so that the use of the 
asymptotic form (55) yields 

FIG. 8. Relative probability of activation of a junction into the resistive 
state. 

where the second term takes into account the properties of 
the function 9' defined below. It can be seen that in this limit 
w, is independent of the current through the junction. 

If n)l, the main contribution to the integral (52) is 
made by k 4  1. The asymptotic form (54) must therefore be 
used and the integral must be extended over the entire k axis. 
Shifting the integration contour into the upper half complex- 
k plane in such a way that it passes along the imaginary axis 
and encloses the branch point k = i/3 ,S/4T, we obtain 

zZ exp (-xz2/4) 

n '[a+ (a+++z" '"1 [bf (a2+p2f z2) '"]  
' 

This expression is valid for both U< S( /3 > 0) and 
U >  S( /3 < 0). To obtain w, (S,U) at n < 0 it suffices to use the 
identity w - , (S,U) = w, (8, - U). We note that reversal of 
the sign of Uis equivalent to the interchange a e  in (58). At 
small nS/T, Eq. (57) leads to the asymptotic form (56), so 
that (57) is valid for all n. The dependence of 9' on I/I, is 

FIG. 7. Relative probability of 4n phase flip. FIG. 9. 
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shown in Fig. 9 for x = 0.1,0.2,0.3, and 0.5. The relatively 
weak dependence of 9 on I /I, at I- I, agrees with the fact 
that the asymptotic form (56) does not depend on I at all. At 
x 2 1 the function 9 depends on I exponentially, as can be 
seen from the factor preceding the exponential. 

In the high-dissipation limit 6) T below the threshold, 
when8 - U>(6T)IJ2, only transitions to the nearest minima, 
with probabilities w + , = [ 1 + exp( f U/T) ] -', are possi- 
ble. At the exact threshold, transitions with any n > 0 are 
possible, since 

1 I'(n-'/*) w (k, 6, U) = (1-e-")"', * " =  r ( l / , ) r ( n + ~ )  " 

For the first values of n we have w, = 1/2, w, = 1/8, 
w, = 1/16. 

The probability of the junction becoming resistive at 
6>T  is P(6,U) = A  I J 2 ( ( ~  - 6)2/6T),whenceitfollowsthatat 
U - 6>(6T)IJ2 each activation act makes the junction resis- 
tive, and the probability of finite phase flips is negligibly 
small. 

8. NOISE CHARACTERISTICS OF JUNCTION 

Consider the voltage correlator 

So long as I < I, the V (t ) plot has the form of random pulses of 
duration -@-I, the area under which is a multiple of n-/e in 
accord with the Josephson relation (2a). The function Sv(v) 
is concentrated in this case in the high-frequency part of the 
spectrum at v-w. The procedure used in the present paper 
uses essentially averaging over times t>w-' and is therefore 
unsuitable for the calculation of SV(v) at I <  I,. 

Above the threshold, at I >  I,, it can be assumed, as 
indicated in Sec. 2, that V(t ) is given by pulses of amplitude 
V (I) with average duration r,, with an average time ra 
between them. In this case Sv(v) takes the Lorentz form 

T4 s, (v)  =V2 ( I )  - 
l+vZt!2 ' 

where the inequality r,(ra and the relation F= V(I)r t / ra .  
are used explicity. At I >  I,, when T, (T,, we have 

Since V (I ) can be measured independently, and V (I ) can 
practically always be regarded. as linear, measurement of 
Sv(v) yields the activation time ra and, the trapping time 7,. 
Note that the time of ra of activation into the resistive state 
exceeds the superconducting-state lifetime T, since super- 
conductivity destruction can be produced also by finite 
phase flips. The time ra is expressed in terms of the previous- 
ly introduced functions by the relation 

We indicate also an expression for the trapping time 

which is valid also at I > I,, when F(I) given by (38) becomes 
larger than V(I ). Naturally, F(I ) at I > I, is not related to the 
junction IVC, but is nevertheless useful for the calculation of 
T,. The difference between the last expression for 7, and (10) 
is due to the fact that in the calculation of F(I) we have nor- 
malized to unity not the total number of particles but only 
the number of particles at the bottom of the potential well. 

The integral noise intensity (the area under the Sv(v) 
curve) is of the order of V2(I)r,/ra at 7, (T, (I < I,) and of the 
order of V2(I)ra/r, at r ,>ra(I>I ,) .  This means that the 
integral intensity as a function of the current through the 
junction has an exponentially sharp peak at I = I,, when the 
noise is comparable with the average current. The width of 
the SV(v) distribution is determined by the shorter of the 
times ra and T,, so that this distribution becomes rapidly 
narrower as the current is increased from I, to I,, and 
changes relatively slowly at I >  I,. 

9. CONCLUSION 

The results above are valid if the inequalities Uo> T and 
w>y hold, with greatest interest attached to the case 
Uoy - w T. For the investigated activation transitions to have 
a sufficiently high probability, the excess of Uo over T must 
not be particularly large. The foregoing conditions are ap- 
parently difficult to realize in the presently produced Jo- 
sephson junctions. Thus, a large U, at zero current sup- 
presses the superconducting-state decay probability so 
strongly that to observe this phenomenon one must use cur- 
rents close to the critical value.' In this situation the junction 
is almost always activated into the resistive state, and no 
trapping of the phase in a neighboring minimum takes place. 
The entire process is thus analogous to activation of a parti- 
cle from a solitary potential well. The previously developed 
theoryS permits calculation of the factor preceding the expo- 
nential in the corresponding decay probability, but this fac- 
tor can hardly be measured against the background of the 
exponential temperature and external-field dependences of 
the activation. 

Our results are thus important for high-Q junctions, 
whose activation phase flips can be observed with sufficient 
probability even at zero current. The IVC of such junctions 
for the below-threshold region I < I, are shown in Fig. 5. The 
course of the IVC at I > I, is determined mainly by the expo- 
nential factor shown in Fig. 3. 

The approach developed above has enabled us to calcu- 
late the probabilities of phase flipping between the potential 
minima. Figures 6 and 7 show the probabilities of 2a- and 
4a-phase-flip probabilities vs the external field. It can be 
seen that if the dissipation is not too small, 6 2 T, the phase 
flip is mainly 2a. The 4a-phase-flip probability should none- 
theless be likewise regarded as fully noticeable, since it 
reaches approximately 0.15 in a definite range of currents. In 
the case of low dissipation, 6(T, or near the threshold cur- 
rent, other phase flips have also comparable probabilities. It 
must be emphasized here that the asymptotic expressions 
corresponding to the limit 6 4 T  are valid only at very small 
S/T, viz., at 6 / T S  as follows from the form of the 
correction term in (56). We note that in contrast to the IVC 
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the phase-flip probabilities have no singularities at the 
threshold current I,. 

Above the threshold, each activation of the junction 
from the minimum of its potential energy makes it resistive 
with a finite probability P. At low dissipation, P = (I - I,)/ 
(I + I,). The current dependence of P is shown for a number 
of dissipation values in Fig. 8. We regard an investigation of 
the relative probabilities of the phase flips and of transitions 
to the resistive state as more promising from the experimen- 
tal viewpoint than the measurement of the IVC, inasmuch as 
the exponential dependence of the absolute probabilities on 
the current I is cancelled out in the recalculation to the indi- 
cated quantities. 

Activation transitions from an equilibrium state of the 
junction take place when the fluctuations can be regarded as 
thermal. This makes likely the approach described above to 
the calculation of the activation probabilities, as well as to 
the calculation of the IVC at I < I,, when the voltage is pro- 
duced on the junction by infrequent phase flips. It appears 
that the notion that the fluctuations are in equilibrium can be 
used to calculate the activation probabilities also at I > I,. 
On the contrary, to calculate the IVC in this region it may be 

necessary to take into account, in a self-consistent manner, 
the influence of the noise due to the nonequilibrium resistive 
state of the junction during the time T, of motion of this 
state.I3 
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