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Ferromagnet oscillations of a new type are investigated, a combination of quasioptic domain- 
structure oscillations and transverse sound waves of wavelength considerably exceeding the 
thickness of the domain wall. At a certain wavelength commensurate with the domain-structure 
period, the two oscillations are at resonance so that their amplitude can increase strongly. The 
quasiacoustic oscillations of the domain structure do not interact with the transverse sound in 
question. 

In Ref. 1 we investigated the domain-structure natural- 
oscillation spectrum of a uniaxial ferromagnet, i.e., those 
deviations of the magnetization from its equilibrium distri- 
bution that correspond to wavelike displacements of a do- 
main wall as a whole. 

In this article we consider the interaction of the do- 
main-structure oscillations with acoustic oscillations, which 
results in excitation of both the domain-structure oscilla- 
tions and of the acoustic oscillations they induce via magne- 
tostriction. No such effect was considered before; its exis- 
tence, however is indirectly confirmed by theoretical and 
experimental results,24 although for an entirely different 
situation. The studies cited were devoted to excitation of 
acoustic oscillations, with a wavelength that is a multiple of 
the domain-structure period, by an external uniform mag- 
netic field that varied in time. The domain-structure oscilla- 
tions had then an infinite wavelength. We shall show that 
wavelike domain-structure oscillations can excite sound 
waves, and conversely, sound waves can excite "domain" 
waves. This effect, which is resonant, was named by us do- 
main-acoustic resonance. 

Consider a uniaxial ferromagnet with large anisotropy 
constant /32 10 in the form of a plate of thickness 
D ) A  = (a/,8)'l2 (where a is the exchange-interaction con- 
~ t a n t . ~  The plane xy of the plate is perpendicular to the an- 
isotropy (z) axis. The dimensions Lx and L, of the plate are 
much larger than its thickness, so that the influence of the 
plate edges can be neglected. A stripe domain structure is 
possible in such a sample. We shall assume that the domain 
walls are in planes parallel to the yz plane, so that the normal 
to them is parallel to the x axis. We confine ourselves hereaf- 
ter to the interaction between the natural oscillations of the 
domain structure (quasi-optic and quasi-acoustic'' and the 
transverse sound oscillations polarized along they axis. As 
will be shown below, it suffices here to consider sound oscil- 
lations with wavelength considerably exceeding the domain- 
wall thickness; this is equivalent to the inequality kA41, 
where k is the wave vector of the oscillations. 

The total energy, which is the sum of the energy of the 

intrinsic magnetic field (due to jumps of the magnetization 
on the crystal surface), the elastic energy, and the domain- 
wall energy, is equal to 

Here Mis the magnetization, M, , My = (M2 - M;)''~ 
sin 6, M, = (M - M :)'I2. its components, H, the intrinsic 
magnetic field produced by the magnetization jumps on the 
crystal surface, n the number of the domain wall, x, the 
location of its midplane, a the domain dimension along thex 
axis, u,, the elastic displacement, p the crystal density, c the 
elastic constant, and b the magnetostriction constant. 

Assuming that each domain wall moves as a unit re- 
maining plane and perpendicular to the x axis, we take M, 
and 6 to be dependent on the combinationx-Jv, dt, where v, 
is the velocity of the nth wall. These relations satisfy for each 
domain wall the known equation of magnetization m ~ t i o n , ~  
in which we have added the magnetostriction interaction 
and neglected the dissipation. Mx = 0 in a domain wall in 
the absence of elastic def~rmation.~ In analogy with Ref. 6, it 
can be shown that Mx is proportional to the wall velocity v or 
to the elastic deformation duel /ax. The zeroth approxima- 
tion in these small parameters leads to the known equation 
for the structure of an immobile domain wall5 

aOot'-p sin 0" cos 8,=0 (2) 

(a prime denotes differentiation with respect to x - X,  (t )). 
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We shall need subsequently the solution of (2) in the form 

x-X ( t )  
si, 0 ,  = ~h-l[-+]. 

The first approximation yields an equation for M, : 

4 n  v  bM du, 
~ ~ - ( - + c o s 2 8 ~ ) ~ , = - 0 , ~ + - -  

B B ax 
sin 0,. 

PgA 

This equation has a solution that satisfies the boundary con- 
ditions at the points 8, = n?r and (n + l ) ~ ,  in the form 

vn M== (-1)  "+' - bM d u ,  
sin 80 - - - sin 0,. 

4ngA 4n  dx 

Substituting (3) in the Lagrange equation corresponding to 
(I), we obtain, in an approximation quadratic in u and due, / 
dx, the Lagrangian terms connected with the inhomogeneity 
of the magnetization distribution within the domain walls: 

m 1 DL, - Z v n z + - b ~ - - r ,  ( - l ) " ~ ,  
n 4n  gA 

where m = DL, /2?rg2A is the effective mass of the domain 
wall; its value turned out to be the same as in Ref. 6, even 
though the anisotropy was not assumed to be small. The first 
term here is due to the motion of the domain wall and has the 
meaning of its kinetic energy, while the second and third are 
connected with the interaction between the moving domain 
wall and the elastic deformation of the crystal. The last term 
leads to a small renormalization of the sound velocity inside 
the domain wall, which will be neglected hereafter. 

Expanding the first term of (1) in powers of the displace- 
ments X ,  of the domain walls, up to and including quadratic 
terms, and using the results of Ref. 1, we obtain 

We can now write the Lagrangian for the elastic oscillations 
and for the domain-structure oscillations, in the form 

bM DL,  3 UY 
+ - - - I ~  j sin20--dz. 

4n gA (n+ / * )a -A  d x 

The equations for the oscillations are 

It is recognized here (St is the speed of sound) that the quan- 
tity due, /dx=u,, can be regarded as constant over the width 
ofthe domain wall (kA4 1). Just as in Ref. 1, the equations for 
X,, and X,, + , are different, but are now connected with the 
equation for the elastic displacment u,, ; the latter, in turn is 
connected with the equations for X,, and X,, + , . The 
expression in the right-hand side of the last equation is peri- 
odic in x, with a period that is a multiple ofa. It can therefore 
be expanded in the Fourier series Bkckeik" with k = m/a .  
At the wave vector values kA4 1 of interest to us, the Fourier 
series for it takes the form 

where 2N is the total number of the domains. Expanding all 
the quantities in the equations for the oscillations in terms of 
plane waves, we get 

where X ,F are the Fourier components of the displacements 
of the even and odd domain walls, respectively. These equa- 
tions lead to a dispersion relation for the coupled oscillation 

Here wt is the frequency of the transverse sound, w,, the 
frequency of the quasiacoustic oscillations, and w,,, the fre- 
quency of the quasioptic oscillations, for which we give 
asymptotic expressions: in the limit of low values of the wave 
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vector, k -+ 0, when 

and in the limit of the largest values k --+ k,, = ~ 2 a ;  in this 
case 

The coupling parameter of the acoustic and quasioptic oscil- 
lations is f = (b 2M '/rpS :)(A/a). At M z  8.5 . lo2 G, p =: 10 
g/cm3, and S=:3 . lo5 cm/sec, A=: 10V6 cm, P z  15, b z  10, 
and D=: 1 cm we have {z 

The oscillation equations have according to (4) two 
types of solution, viz., quasiacoustic oscillations of the do- 
main structure and coupled elastodomain oscillations. For 
the latter, the amplitude of the sound generated by the do- 
main-structure oscillations is 

and conversely 

For the analysis of the coupled elastodomain oscillations it is 
convenient to introduce a characteristic wave vector k, for 
which the quasiacoustic-oscillation frequency, which de- 
creases with increasing k, crosses the sound frequency. For 
the case considered here k, is close to k,,, and it can be 
easily shown that 

then 

At k close to k, so that fw:(w: + o:p,)>(w: - o:~,)', we have 

Thus, the two branches of the coupled elastodomain oscilla- 
tions behave in the following manner. At small k these are 
almost exactly the earlier' quasioptic oscillations of the do- 
main structure and the transverse acoustic oscillations. 

When k approaches k, (for the numerical example consid- 
ered, this is almost tantamount to k,,, = .rr/2a) a qualitative 
change takes place in the spectra of both branches, viz., they 
become separated by a gap, i.e., by a region of forbidden 
frequencies. In this case the branch (a) which coincided at 
small k with the quasioptic branch has at the upper limit a 
higher frequency than branch (b), which has at small k the 
frequency of transverse sound. 

Solutions (5) with account taken of the last expressions 
show that generation of sound by domain oscillations and 
the converse phenomenon take place in a "quasiresonant" 
manner. At k = k,, when the amplitude of the excited oscil- 
lations becomes particularly large, a phenomenon occurs, 
which can be called arbitrarily domain-acoustic resonance. 
At this quasiresonance the amplitude of the excited oscilla- 
tions, e. g., the sound amplitude, is larger than the amplitude 
of the exciting domain oscillation in a ratio l/f "'z lo4; a 
similar situation obtained when domain walls are excited by 
sound. 

We note finally an intersting circumstance, namely, 
that only the quasioptical oscillations interact with the 
sound, but not the quasiacoustic ones. First, the phase veloc- 
ity of the quasiacoustic oscillations increases with increasing 
wave vector k to a value 

and therefore remains smaller than the speed of sound at all 
values of k. At the same time, the velocity of the quasioptic 
oscillations decreases with increasing k, and crosses the w/k 
curve for the sound. This explains why the quasiacoustic 
oscillations do not interact with the sound. Second, this pe- 
culiarity can be explained also as follows: the elastic-stress 
forces due to the action of the sound wave on neighboring 
domain walls turn out, at small values of the wave vector 
(k -+ 0), to have the same direction as the displacements of 
the domain walls in quasioptic oscillations but the opposite 
phase. On the contrary, at k close to k,,, = ~ / 2 a  these 
forces have the same direction, which coincides with the dis- 
placements of the domain walls in quasioptic oscillations. It 
is this equality which makes possible the interaction of the 
domain-structure quasioptic oscillations with the transverse 
sound, whereas the quasiacoustic oscillations behave differ- 
ently and the quasielastic forces they exert on the domain 
walls do not coincide with the forces produced by the sound. 
As for the neglect of the quantity kA( 1, it can be seen from 
the equations of motion that it does not influence the indicat- 
ed result. 
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