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A theoretical study is made of the threshold interaction of extraordinary light waves with nematic 
liquid crystals. Various geometries in which this interaction may be manifested are considered. 
The threshold intensities are calculated for two types of instability and above-threshold distribu- 
tions of the director are found. A hysteresis is predicted for the dependence of the degree of 
reorientation of the director on the intensity of light. Optical manifestations of these effects are 
considered. 

INTRODUCTION 

Recently there have been many theoretical and experi- 
mental investigations of light-induced deformations of the 
director in liquid crystals. Both the threshold-free effects 
(see, for example, Refs. 1-7) and the effects with a threshold 
(see, for example, Refs. 3, 6, and 8) have been investigated 
thoroughly. It is always understood that the threshold effect 
representing a light-induced FrCedericksz transition (LIFT) 
occurs either during propagation of an extraordinary light 
wave along the director of a nematic liquid crystal or in the 
field of an ordinary wave. An extraordinary wave traveling 
at an angle to the director is regarded as responsible for the 
threshold-free effect. 

We shall consider theoretically the possibility of thresh- 
old reorientation effects in the field of extraordinary light 
waves traveling at an angle to the director, i.e., in the geome- 
try in which the orientational optical nonlinearity of the me- 
sophase of a nematic liquid crystal has been discovered.' 
There are two types of such effect. In one of them a light 
wave causing a threshold-free reorientation of the director in 
the plane of incidence induces a tilt of the director out of this 
plane when the intensity of light exceeds a certain threshold 
value. In the other effect the director deflected in a threshold 
manner in the plane of incidence under the action of two 
extraordinary waves which balance out the threshold-free 
effect. We shall use the designation LIFT-I1 for the thresh- 
old reorientation of the director in the field of extraordinary 
waves traveling at an angle to the director. 

The occurrence of two types of instability in the LIFT- 
I1 case and the variety of the geometries in which the effect 
can be manifested enrich greatly the range of threshold phe- 
nomena and of the associated effects. 

In 4 1 we shall consider the possibility of compensation 
of the threshold-free director reorientation effects. In $5 2 
and 3 we shall find the threshold intensities for the planar 
and transverse LIFT-I1 cases, respectively. We shall show 
that there are ranges of angles of incidence of the waves on a 
cell for which one or the other type of LIFT-I1 is possible. In 
§ 4 we shall determine the above-threshold steady-state 
structures of the director field. 

We shall show that the degree of reorientation of the 
director may be controlled not only by the intensity, but also 
by a change in the angle of incidence of the waves. 

In 4 5 we shall discuss optical manifestations of these 
effects. We shall show that in the planar LIFT-11 case we can 
expect either self-focusing or self-defocusing from one ex- 
periment to another. The transverse LIFT-I1 may be mani- 
fested not only by self-focusing, but also by a change in the 
state of polarization of a beam or by a nonlinear optical ac- 
tivity. 

51. COMPENSATION OF THRESHOLD-FREE 
REORIENTATION 

We shall consider a cell containing a planar nematic 
liquid crystal filling the space O<z<L. The x axis of a Carte- 
sian coordinate system is selected along the director 
do' = e, . We shall assume that a light wave is incident on the 
cell at an angle a and that the polarization and wave vector 
of the wave lie in the (x, z) plane. In this geometry a director 
rotation that lowers the energy of the interaction between a 
nematic liquid crystal and the light field has no intensity 
threshold and it occurs in such a way as to reduce the angle 
between the director and the electric field of the wave. Since 
the degree and direction of reorientation of the director of a 
nematic liquid crystal are governed by the direction of prop- 
agation of light, we can find a second wave with a suitable 
intensity and direction of propagation which has the same, 
but reversed effect on the director as the first wave. The 
simultaneous action of such waves should result in zero net 
reorientation. 

We can find the compensation condition by writing 
down variational equations for the angle of rotation of the 
director under the action of light fields. The familiar proce- 
dure for finding these equations8 gives 

(K,-K,)  sin 0 cos 0 (:zO - ) 2  

dcp - sin 0 cos 0 [ K , - 2  ( K 3 - K , )  sin2 01 (z) 

d 0  + cos 20[cos cp (E,E,*+E,'E,) + sin cp (E,E,*+E,'E,) 1 )  =y -, 
d t 
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d2rp 
sinZ 0 (K ,  sin2 0+K, cosZ 0 )  - 

dsZ 

d e  drp + sin 20[K3-2 (K,-K,) sin2 01 -- 
d z  d z  

E + -2 {sinz 0 [sin 2rp ( 1 E, 1 '- 1 Ex 1 '+cos 2rp (E&,'+E,*E,) ] 
1627 

+ sin 0 cos 0 [cos rp  (E,E,'+E,'E,) - sin rp (E,E,'+E,'E,) ] } 

where the angles 0 and q, define the orientation of the direc- 
tor as 

n={n,, n,, n,) = (e,  cos q+e, sin cp)sin 8+e, cos 8; 

Ki are the Frank constants (in dynes); E, = Ell - E, is the 
anisotropy of the permittivity of a nematic liquid crystal at 
the frequency w of the incident light; Ei are the components 
of the complex amplitude of the electric fields of the light 
wave defined in such a way that the real intensity vector is 
e,., = 0.5(Ei + E t); y is the viscosity constant (in poises); ex, 
e, , and e, are the unit vectors in a Cartesian coordinate sys- 
tem. We shall assume that perturbations of the director are 
inhomogeneous only along the z axis. This is naturally valid 
for the beams of transverse dimensions greater than the cell 
thickness. The conditions for the absence of the threshold- 
free effects are the same as the conditions for the absence of 
terms of zeroth order in respect of the director perturbations 
in the system of equations (1). Since the waves are extraor- 
dinary and since they travel in a plane (x, z), the appearance 
of the E, component can only be due to the appearance of an 
n, component of the perturbation: E, a E, n, . In the selected 
geometry, we have 8 'O' = 71/2 and n, zq,. The function q, 0 
is a function of Fig. lb. This means that perturbations char- 
acterized by q,+O can only have a threshold. Substituting 
q, = 0 in Eq. (la), we can see that sums of zeroth order in 
respect of the perturbations St9 = 8 - 8 'O' are absent if 

For one wave, this condition is satisfied in the trivial cases 
when Ex = 0 or E, = 0. In the field of two waves, the condi- 

FIG. 1. Possible geometries of the threshold interaction between light 
waves and nematic liquid crystal. The wave vectors k, and k,, the polar- 
ization vectors el and e,, and the director n"' are all in an ( x ,  z)  plane. 

tion (2) can generally be satisfied for mutually inclined orien- 
tation of the vectors E and n"'. 

Clearly, compensation occurs in the geometries in 
which beams of the same intensity are distributed in accor- 
dance with a mirror symmetry relative to the plane of the cell 
(Fig. 1, case a )  or relative to the equatorial plane (case b ). 

If we use the results of Ref. 8, where the geometric- 
optics expressions are given for the light fields, Eq. (2) can be 
reduced to 

S l ,  sin al-S,, sin a ,  (s,,s,,)'~{ sin a,( 
& I - E  s inZal 

( el-& sin2 a,  
- sin a ,  )"' } cos [ (  p) (sin a ,  -sin a , )z  

8,-E sin2 a ,  

where S ,, and S,, are the z components of the energy flux 
density of the waves in the medium (in units of ergs per 
square centimeter per second); a, and a, are the angles of 
incidence; Aq, is the difference between the phases of the 
waves. If the waves are noncoherent, the interference term is 
absent from Eq. (13) and the compensation condition can be 
satisfied also for an asymmetric orientation of the beams. 
The beam intensities and their angles of incidence must then 
satisfy 

S1,  sin a,=S,, sin a,. (4) 
This more general condition applies not only in the case 

of noncoherent, but also coherent beams if the period of the 
interference is much less than the cell thickness L. This is 
due to the smallness of the amplitudes of the threshold-free 
but rapidly oscillating perturbations of the director in 

We have mentioned a cell with an initial planar 
orientation, but all the main conclusions remain valid also in 
the case of a homeotropic cell. Naturally, it is possible to 
achieve compensation of the threshold-free effects also in the 
case of a noncoplanar interaction of waves. 

We thus have a number of geometries in which compen- 
sation of the threshold-free effects is possible. We shall con- 
sider the specific case when all the vectors are initially in an 
(x, z) plane. We shall assume that the conditions of Eqs. (3) or 
(4) remain satisfied for all the intensities and angles. 

Q2. PLANAR INSTABILITY THRESHOLD 

We shall assume that when the total intensity is in- 
creased to a certain critical value, the director becomes reor- 
iented in the (x, z) plane (planar LIFT-11). 

We can find the threshold energy flux density by linear- 
izing Eq. ( la)  with respect to SO = t9 - 0"' followed by the 
substitution of q, = 0; we shall use the actual expressions for 
the fields derived in Ref. 8. When the geometry is character- 
ized by a mirror symmetry relative to the plane of the cell 
(case a in Fig. I), so that the intensities and angles of inci- 
dence are equal, Eq. ( la)  can be reduced to 
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d2 
- 68+ (a-2q cos 2C) 60=0, 
dC2 

where 

A is the difference between the wave phases; E is the permit- 
tivity of the medium from which the waves are incident; a is 
the angle of incidence; S, is the modulus of thez component 
of the Poynting vector inside the medium for each of the 
waves. 

Since w/c-  10' cm-' and L - lo-' cm, it follows that 
for practically all the angles a (right up to E, - E 

sin2a- lop6) we have ?cL)l. If a solution of Eq. (5) is ex- 
pressed in terms of the Floquet functions F, (z) (Ref. lo), it 
follows from the boundary conditions B(A/2) = 0 and 
B (xL + A/2) = 0 that v = ?r/xL( 1. We shall also make the 
assumption that q(1. Then, as is known, we find that 
a z g  - 0.5q2. Substituting here the quantity a expressed in 
terms of q, we obtain from Eq. (6) 

Hence, it is clear that in the case of small values of Y the 
assumption q( 1 is satisfied for all positive values o f l  and for 
all negative values of (. The following expression is obtained 
for the threshold from Eqs. (6) and (7) 

(8) 
If S,., a L -' when { 's?, it follows that for { S O  the 
threshold S, ,,, begins to rise rapidly with decreasing x in 
accordance with the law S, ,, a (g 1%'. 

Therefore, the angle a at which 6 changes sign, 

sin2 U=E,/ZE, (9) 

is in fact the limiting angle above which the reorientation is 
possible. In the case of MBBA we have E, = 2.37 and for 
light incident on a nematic liquid crystal from a medium 
with E = 2.25 (light crown glass) it follows from Eq. (9) that 
a,,, z 38". 

If the light beams interacting with a nematic liquid crys- 
tal are noncoherent, the interference term in Eq. (5) is absent 
and instead we have in Eq. (8) 

ceL" (aI-& sin2 a )  '12Ki 
sz.th= (t)' 2a.el,l:(2r sin2 a-a,) . 

The case when a nematic liquid crystal has the homeo- 
tropic orientation can be investigated in a similar manner 
and, if the beams are noncoherent, we find that 

In a planar cell the LIFT-I1 can occur beginning from 
sufficiently large angles, whereas in a homeotropic cell the 

angle of incidence should be less than a certain limiting value 
sin2a, = E,, /2&. This is easily understood if we bear in 
mind that the field component perpendicular to the director 
has a destabilizing effect on it. 

The value of S, is defined inside a medium. This is why 
the thresholds given by Eq. (8) or (10) tend to zero on ap- 
proach to the angle of total internal reflection sin2a = E, /E. 
The threshold intensity of an incident wave has a physical 
meaning which can be deduced using the formulas relating 
the intensities inside and outside the medium, which are giv- 
en in the Appendix. 

For example, using Eq. (A16) from the Appendix we 
can see that the threshold intensity for the incident beam 
remains finite near the angle of total internal reflection. The 
numerical value of the threshold radiation intensity incident 
on a cell containing MBBA with planar orientation amounts 
to S = 3 X lo2 W/cm2 for a = 60", L = lop2 cm, 
K ,  = 6X 10p7dyn, E, = 2 . 3 7 , ~ ~ ~  = 3.06, and& = 2.25. 

53. TRANSVERSE INSTABILITY THRESHOLD 

We shall first consider the geometry shown in Fig. la. 
We can find the threshold intensity of the transverse LIFT- 
I1 by linearizing Eq. ( la)  with respect to p, assuming that 
8 = 7/2, and using Eqs. (A3) and (A6) for the fields. This 
yields the equation 

d2q  + - 26~,, sin2 a S z q  =o. 
dz2 c (ella,) "' (aI-E sin2 a) "'K2 (12) 

Application of Eq. (A6) means that Eq. (12) is valid 
when the angle of incidence is less than the angle of total 
internal reflection: 

where A is the wavelength in vacuum. It follows from Eq. 
(12) and from p a sin(?rz/L ) that 

c (aI1al) lh ( E ~ - E  sin2 a) '"K, 
S.th = (5) ' 

2aaa  sinZ a 
(13) 

For a homeotropic cell, we find that Eq. (13) becomes 

which is valid in the case of relatively large angles of inci- 
dence a)a, such that 

Expression (13) or (14) defines effectively the threshold 
in the adiabatic approximation, i.e., when the polarization of 
a wave follows the rotation of the director as the wave propa- 
gates through a nematic liquid crystal. 

We shall consider the role of the nonadiabatic effects in 
the case of a homeotropic cell. Applying Eqs. (A12) and 
(A1 5 ) ,  we obtain from Eq. ( la)  

where p is defined by Eq. (A1 3) and we have 
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In writing down Eq. (15) we have omitted the rapidly 
oscillating terms proportional to - cos 2kzz and allowed for 
the time dependence 0 (I, t )in the form 6' (z, t ) = 8 (z)exp(Tt ). 
An equation of the (15) type was first obtained in Ref. 8 
where, in particular, it was pointed out that the integral op- 
erator is nonself-adjoint and, consequently, the growth of 
perturbations with time is more complex than simply expo- 
nential. The threshold must now be determined from the 
condition that the real part of the eigenvalue r vanishes. We 
shall find r by differentiating Eq. (12) twice with respect toz 
and eliminating from the resultant expression the integral 
term by means of Eq. (15). (This procedure is used in Ref. 12 
on the assumption that r = I?' + i r "  = 0.) In this way we 
obtain a homogeneous fourth-order differential equation 
with constant coefficients. If we assume that the boundary 
conditions 6' (z = 0, L ) = 0 and the initial equation (15) are 
satisfied, we obtain the following transcendental equation 
for the determination of 

sin v,L sin vzL 
( v , Z - p 2 ) -  = (vz2-p2) - , 

Ti V z  

We then have 

B (z, t )  ==const (sh v,L sh v2z-sll vzL sh v,z) erg. (17) 
A comparison of the threshold intensities in the range of 

angles in which the nonadiabatic effects are unimportant 
shows that the threshold of the transverse LIFT-I1 is always 
less than the threshold of the planar LIFT-11. In particular, 
the transverse LIFT-I1 can occur even for incidence angles 
when the planar LIFT-I1 is absent. 

54. ABOVE-THRESHOLD STEADY-STATE DISTRIBUTION OF 
THE DIRECTOR FOR LIFT-II 

We shall assume that the wave intensities exceed the 
threshold values only by a small amount and in the vari- 
ational equation system (1) we shall include nonlinear terms 
of the third order in respect of perturbations of the director. 
We shall consider a cell with a nematic liquid crystal charac- 
terized by a planar orientation. We shall assume that the 
intensity of light is higher than the threshold for the trans- 
verse LIFT-I1 but less than the threshold for the planar 
LIFT-11. Then, we can substitute 0 = 3-/2 in Eq. (lb). Substi- 
tuting also the expressions for the fields from Eqs. (A3), (A6), 
(A8), and (A9) and retaining -p ,, we obtain 

Next, as is usual, we shall substitute in Eq. (1 8) the value 
of e, = am sin(~z/L ) and then, ignoring higher harmonics, 
we obtain 

where S,,,, is defined by Eq. (13). We can see that if 
&sin2a > 4~,/5,  then u, is negative. This corresponds to a 
hysteresis, as shown in Ref. 13. Equation (19) is then invalid 
and it is necessary to obtain a more rigorous solution of Eq. 
(lb). 

We shall now consider the planar LIFT-I1 in a planar 
cell. We shall assume that a homogeneous magnetic field is 
applied at right-angles to the unperturbed director and that 
there is an intensity H of this field which is sufficient to 
reduce the threshold value of the intensity for the planar 
LIFT-I1 below the threshold intensity for the transverse ef- 
fect. We shall also assume that H < HF = (T/L )(K1/xa ) ' I2 ,  

wherex, > 0 is the diamagnetic anisotropy of a nematic liq- 
uid crystals and HF is the FrCedericksz transition threshold 
in a static magnetic field of the geometry under di~cussion.'~ 
The presence of such a magnetic field gives rise to a term 
,yo H sin p cos q, on the left-hand side of Eq. (la).  Substitut- 
ing q, = 0 in Eq. (la) and the expressions for the light field 
taken from Ref. 8, we obtain 

where 17 = X, H '(K1d/L ')-I, 

Equation (20) corresponds to the maximum deviation of the 
director: 

where k = (K, - K,)/Kl and S,,,, = SZ,,,(H = 0)(1 - v). 
The value of 0,  for the LIFT-I1 given by Eq. (21) is 

governed in a very complex manner by the parameters of a 
nematic liquid crystal and by the angle of incidence a of 
light. This provides an additional opportunity for inducing a 
hysteresis of the LIFT-I1 or for controlling its parameters (if 
it exists when a = 0) by a suitable selection of the value of a. 
In the case of MBBA when the angle of incidence is a = 60", 
the intensity of a magnetic field sufficient to equalize the 
threshold values of the intensities for the planar and trans- 
verse LIFT-I1 cases amounts to H = 540 G.  The angle a,,,, 
above which a hysteresis is exhibited by the dependence of 
0, on S amounts to a,,,, = 20.7" in a field H = 700 G. The 
threshold intensity for the planar LIFT-I1 is then 
St, ~ 0 . 6  X 10' W/cmZ for each of the waves incident on a 
cell (the threshold intensity for the transverse LIFT-I1 under 
the same conditions is St, ~ 1 . 5 X  10' W/cm2). Since 
a,,,, < ali, = 38", it follows that in this case a hysteresis oc- 
curs throughout the full range of angles of existence of the 
LIFT-11. 
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85. DISCUSSION 

We shall first consider the characteristics of the optical 
manifestations of the LIFT-11. An inhomogeneous orienta- 
tion of the director alters the phase and polarization of light 
transmitted by a nematic crystal. By way of example, we 
shall consider a planar cell in which the planar LIFT-I1 oc- 
curs. 

A nonlinear phase advance for small perturbations of 
the director is given by8 

o E,E sin a 
6@= - - SO(z)dz. 

C E L  0 

We have seen already that the quantity 68 grows from ther- 
mal fluctuations and can be positive or negative. Conse- 
quently, we can expect either self-focusing (if 68  < 0) or self- 
defocusing (if 60 > 0), which varies from one experiment to 
another. We recall that in the case of normal incidence 
(a = 0) the nonlinear phase advance is proportional to (68 )' 
and it is always of the self-focusing nature. 

The optical effects are of greater variety in the trans- 
verse LIFT-I1 case. In addition to self-focusing [S@ a (60 )'] 
we can expect also a change in the state of polarization of an 
initially linearly polarized light beam. The magnitude of the 
E, component, which appears because of the departure from 
the adiabatic conditions, is given by Eqs. (A7) or (A15). In 
fact, the E,, component of the field appears in the LIFT-I1 
case also in the adiabatic regime [Eqs. (A6) and (A14)], but in 
this case the component in question vanishes at the exit from 
the cell. If one of the cell substrates in no way affects the 
orientation of the director in an (x, y) plane, the n, compo- 
nent of the director in the LIFT-I1 case does not vanish for 
the same substrate. Consequently, the polarization of a wave 
follows adiabatically the rotation of the director and it leaves 
the cell in a rotated configuration. 

We have considered so far the geometries which are 
easiest to realize experimentally. For example, a single inci- 
dent beam and a mirror placed directly behind a cell can 
produce the situation shown in Fig. la or its "homeotropic" 
analog. One of the characteristics of the configurations in 
which the angles of incidence of the wave are not equal is the 
possibility of modulation of the field along the x axis. As 
pointed out in $1, in some cases such modulation plays no 
significant role. In a situation of this kind (this is true, for 
example, of noncoherent beams), a calculation of the thresh- 
old intensity of the planar LIFT-I1 in a homeotropic cell 
gives 

sin2 ai) '" ( E ~ - E  sinz a2) I/* 

x [sin al(e,l-2 e sin' at) -k !sin at (e1i-2~ sin2 a=) 

As expected, (S ,, ),, -r 0 when a,+O and ( S ,  ),, + 0 when 
a , - rO .  

When two coherent waves are incident symmetrically 
on a cell from one side, the threshold perturbations of the 
director are found to be modulated along the x axis:0 (x, 
z) a s in(~x/A)s in(~z / l ) ,  where A is the transverse size of the 

cell. The threshold intensity then increases somewhat, pro- 
portionally to -K,(a/A)'. 

We have calculated so far only the threshold values of 
the z components of the Poynting vector S, in a medium. In 
the case of normal incidence of light on a cell, we may as- 
sume that S, is equal to the intensity of the incident light. In 
the case of oblique incidence we have to allow for the Fresnel 
reflection at the boundary with a nematic liquid crystal. 
Therefore, a complete solution of the problem of the thresh- 
old intensity requires the use of the relationship between S, 
inside the medium and the incident intensity, which is given 
in the Appendix. 

Compensation of the threshold-free effects is also possi- 
ble in static electric and magnetic fields, but static fields can- 
not induce a transverse reorientation of the director in the 
situations discussed above. Such a reorientation is specific to 
light fields and it is associated with the conditions of validity 
of the adiabatic approximation when the propagation of 
light is described. 

We shall consider also the following interesting effect. 
We shall assume that the planar LIFT-I1 occurs in, for ex- 
ample, a homeotropic cell. Naturally, the application of any 
third field allows us to reestablish the original unperturbed 
homogeneous distribution of the director. In particular, this 
can be achieved by increasing the intensity of one of the 
waves (the selection of this wave is governed by the direction 
of orientation of the director in the LIFT-I1 case). We there- 
fore have a situation in which the total intensity of the waves 
exceeds the LIFT-I1 threshold, the compensation condition 
is disobeyed, but nevertheless there is no reorientation of the 
director. The excess intensity for the symmetric configura- 
tion of the beams (Fig. la) is characterized by 

n3~ll ' 'z (6,-2e sin2 a )  
61=18,1, 

~ L ' E  sin a(eL-e sin2 a)'" 
' 

where l8,l( 1 is given by Eq. (21). 

APPENDIX. LIGHT FIELD IN A NEMATIC WITH NONPLANAR 
PERTURBATIONS OF THE DIRECTOR 

We shall consider a cell in which the director of a nema- 
tic liquid crystal suffers a deformation of the n, = 0, 
n, = cos q, (z), and n, = sin q, (z) type. Such a deformation 
appears in the transverse LIFT-I1 in a planar cell and, since 
we are interested only in the near-threshold situation, we can 
assume that Je, (z)) (1. Let us postulate that an extraordinary 
monochromatic light wave is incident on a cell in an (x, z) 
plane. The Maxwell equations for the field in the cell become 

d2E, d2E, - - - +k,'e,E,=O, 
dx2 dxdz 

d2E, dZE, --- +h2[ (el+& cos2 (c)E,+E, sin cp cos (FE,] =O. 
dz2 d x d z  

(Alb) 
dZE, d2E 
--- f L + k , 2 [ & a  sin cp cos cpE,+ (F ,+E,  sin2 cp) E,] =o, dx2 dz2 

where k = (w/c)'. 
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Perturbations of the medium are homogeneous only 
alongx, i.e., p = p (z). Therefore, E (x,z) = E (z)exp(ik, x) and 
Eq. (A 1 a) allows us to expression E, in terms of Ex as follows 

ik, aE,(z) 
Ez ( 2 )  = 

koZE,-k,2 32 . 
Substituting Eq. (A2) into Eq. (Alb), we find that in the ze- 
roth approximation with respect to p we obtain 

( 0 )  - 
E ~ O '  ( 2 )  =A exp ( i k , ~ ) ,  E,  -0, kr=E,,'12 

The constant A is related to thez component of the Poynting 
vector, which is conserved only in a medium with a z-depen- 
dent refractive index. The relationship is 

We can determine Ey in the first nonvanishing approxima- 
tion by solving the equation 

d2E,"' (z ) /3z2+ ( k o 2 ~ L - k X 2 )  ~ y ( ! )  ( 2 )  =-k02e,cp ( z )  EJ0 ' (z) .  

(A41 
Separating from El') the rapidly oscillating component 
El'' = B (z)exp(ik,z), we find that the slowly varying ampli- 
tude B (z) is described by 

Ifpsn-/L, it then follows from Eq. (A5) that 

i.e., the polarization of the extraordinary wave follows adia- 
batically the rotation of the director. This breaks down only 
near the angle of total internal reflection. We then find from 
Eq. (AS) that 

The first nonvanishing correction to E is of the second 
order in p. 

Using Eq. (A3) and, for example, (A6), we obtain 
I 

The correction to El') is then of the form 

(A91 
In the case of the transverse LIFT-I1 in a homeotropic 

cell we are dealing with deformations of the director field of 
the n, = 0, ny = sin 8, and n, = cos 8 type. We shall con- 

sider the propagation of an extraordinary wave in such a 
medium and postulate, as before, that the wave is incident in 
an (x, z) plane. The Maxwell equations are 

(A 1 Oa) 

PE, a", 
7-- 4 ko2[e ,  sin 0 cos BE,+ ( E ~ + E ,  cos2 0) E,]=O, 
dx2 dx dz 

(A 1 Ob) 

a2E d2Ey 
2 4 - +koz[ (el+&, sinZ 0 )  Ev+e, sin 0 cos 0E,l=0. 
dx2 d z 2  

(A 1 Oc) 

In the zeroth approximation with respect to 8, we can 
use Eq. (AlOb) to find E, : 

ik, dE, 
E:'.(Z) = -. 

az 

Substitution of the above expression in Eqs. (AlOa) and 
(A1 Oc) gives 

The constant A is related to thez component of the Poynting 
vector by 

Once again if p)n-/L, Eq. (A1 3) yields 

The adiabatic condition is no longer satisfied when the an- 
gles are sufficiently small so that sin2a -A /&&, L. Then, a 
solution of Eq. (A13) becomes 

It is clear from Eq. (A1 5) that the value of E, decreases on 
approach of the angle of incidence to the normal and, conse- 
quently, the threshold intensity for the transverse LIFT-I1 
rises without limit. 

On the other hand, the threshold of the planar LIFT-I1 
in a homeotropic cell is minimal for the normal incidence. 
Therefore, it is the planar LIFT-I1 that occurs in a homeo- 
tropic cell at low angles. Consequently, we shall not give 
expressions nonlinear in respect of 8 for the fields in this 
case. 

As already pointed out, in the case of oblique incidence 
of light on a cell the reflection effects become important. The 
most general formulas describing refraction of light at the 
boundary between an isotropic medium and a uniaxial crys- 
tal are given in Ref. 15. We shall write down here the expres- 
sions for the geometry of interest to us when an extraordin- 
ary wave is incident on a cell in an (x ,  z) plane. If a nematic 
liquid crystal has the planar orientation, then 
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(SinJ, 4 ( E  1 1 ~ ~ ~ ~ )  '" sin2 a;) 'I2 cos a; 
-=- - (A16) 
(Sin=) [ E ~ '  ( E ~ - E ;  sin2 ai)'"+ ( E , , E ~ )  I' cos a,]' 

For a homeotropic cell we have 

Equations (A16) and (A17) should be taken into account 
in calculations of the threshold intensities under specific ex- 
perimental conditions. 
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