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A microscopic approach, based on the kinetic equation, is developed to describe the spectrum of 
Rayleigh light scattering in a weakly nonlinear gas that consists of diatomic molecules. The 
calculated parameters of the spectrum are expressed in terms of the kinetic coefficients and the 
microscopic parameters of the gas. The contribution of the rotational degrees of freedom to the 
fine structure of the depolarized scattering spectrum is determined. 

1. INTRODUCTION 

The microscopic description of the spectrum of Ray- 
leigh light scattering in a gas with rotational degrees of free- 
dom, carried out in Refs. 1 and 2, predicted the presence of a 
fine structure in the depolarized part of the scattering spec- 
trum in a dense gas when 19 A, where I is the free path length 
andR is the light wavelength. The onset of the fine structure, 
which consists of three narrow dips in the spectrum of sym- 
metric scattering, is connected with the interaction of the 
rotational and translational degrees of freedom of the mole- 
cules in the collisions. It has been shown that the contrast of 
the dips does not depend on the density of the gas and reflects 
the contribution of the rotational degrees of freedom to the 
kinetic coefficient. The entire analysis was carried out in the 
Boltzmann approximation, i.e., for an ideal gas. 

There is interest in taking into account, within the 
framework of the developed method, the changes produced 
in the spectrum by the departure of the gas from ideal. In the 
present work, a kinetic equation for a gas with rotational 
degrees of freedom is obtained and used for the description 
of the Rayleigh-scattering spectrum in the next higher order 
in the gas-perfection parameter in comparison with the 
Boltzmann gas. Among the changes in the light-scattering 
spectrum, the greatest interest attaches to the narrow peak at 
the unshifted frequency in antisymmetric scattering, a peak 
lacking in the Boltzmann approximation. 

2. KINETIC EQUATION FOR THE CORRELATION FUNCTION 
OF THE FLUCTUATIONS 

For the calculation of the spectrum of scattered light in 
a weakly nonideal gas consisting of diatomic molecules, it is 
necessary to solve the linearized kinetic equation for the cor- 
relation function of the fluctuations'-3: 

@ ( 4  r, nl, r , ,  n,, r ,)  =(6f ( t ,  r, n,, r i )  6f (0, 0, n,, r,) >, 
where t is the time, r is the coordinate, n is a unit vector 
directed along the axis of the molecule, the quantity r = (p, 
M) includes the momentum p = mv (m is the mass of the 
molecule, v the velocity of the molecule) and the angular 
momentum M of the molecule-variables that are canoni- 
cally conjugate to the variables rand n, respectively: S f is the 
departure of the distribution function f of the gas molecules 
from the equilibrium Boltzmann function f ,; the angle 

brackets denote the usual averaging over the statistical en- 
semble of the molecules. 

When there is a nonideal gas in the kinetic equation we 
must take into account corrections for the mutual correla- 
tion of the particles. In first approximation in the parameter 
Nd3 (where d is the radius of action of the molecular forces, 
N is the concentration of particles in the gas [cm-q), these 
corrections, as is well reduce to allowance for the 
local triple collisions and nonlocal pair collisions. Since the 
triple collisions in this case do not violate the local laws of 
conservation of the number of particles, of momentum and 
of energy, their contribution reduces to only a small change 
in the eigenvalues of the Boltzmann collision operator. More 
interesting results are obtained in the scattering spectrum 
upon consideration of nonlocal increments to the collision 
integral; therefore, principal attention will be devoted in this 
work to precisely these corrections. 

As was shown earlier, in the case of small departures 
from equilibrium it is convenient in the description of the 
scattering spectrum to transform to the functionx(w, q, nl, 
r , ) ,  which is connected with cP in the following manner: 

B (rzr nz) =ei,ccat (r,, n,) e,,, 

(1) 
where e, and e, are the unit polarization vectors of the inci- 
dent and scattered waves; a,,(,, is the polarizability tensor of 
the molecule, which can be represented in the following 
form: 

aik(r, n) =ao6st+ai~,tjM,liWo+tl.~(n,n~-'/~6,t), 

Mo= ( T I )  ", 
I is the moment of inertia. In this expression, the scalar a, 
and the symmetric a, parts of the polarizability of the mole- 
cule are determined by the geometric structure of the mole- 
cule itself, while the antisymmetric part a, arises only in a 
rotating molecule: 

is the Fourier transform of the function cP(t,r); integration 
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over n, at fixed M, in (1) reduces to integration over the angle 
of rotation p, of the vector n in the plane perpendicular to 
the M, axis, since M and n are always mutually orthogonal 
in a diatomic molecule. 

The linearized kinetic equation for the function in a 
weakly nonideal gas of diatomic molecules can be obtained 
from the set of equations for the single-particle and two- 
particle distribution functions, by following Klimontovich6: 

=B (r,, n,) +N j (e-u.z/T-l) B (r,, nz) e-I" dr dq,  do^, 

(2) 
where 

h 

AIdy is the local increment to the collision integral, due to 
triple collisions; fi = M /I is the frequency of rotation of the 
molecule; U12(nl,n,,r) is the electrostatic potential of interac- 
tion of the colliding molecules; the integration over the time 
t ' in Eq. (2b) is along the trajectory of the colliding particles, 
which is determined by the specification of the variables T, 

and r2 (where ri = (ri ,ni , r i ) ;  the index "0" denotes the 
quantities r, ,n, ,ro, which would have been obtained at the 
time t in place of ri ,ni and r, if the particles had moved freely 
(usually, the operator i,, is introduced for designation of this 
transformation3~'); w and q are the differences of the frequen- 
cy and of the wave vectors of the incident and scattered 
waves; T is the temperature of the gas in energy units. 

The splitting of the collision integral in (2) into four 
components corresponds to the similar splitting used forAa 
monatomic gas by K l i m o n t ~ v i c h . ~ . ~ ~ ~  The first operator I, 
describes the local binary collisions (with account of the re- 
laxation of the phase g, in the collision) and is equal in order 
of magnitude the gaskinetic cgllision frequency? The sec- 
ond and fourth components I,i(qv - w )  and No have the 
order of magnitude v i ,  and arise upon taking into account 
the finiteness of the collision t i ~ e  (the term I,) and the local 
triple collisions (the operator No). The spatial nonlocality in 

binary collisions is described by the operator iq?,, which is 
obtained by expansion of the nonlocal collision operator in 
the parameter q to first order. This operator is equal to 
i(q v)Nd3 in order of magnitude. We note that there are two 
characteristic length parameters in the scattering problem: 
the mean free path I and the light wavelengthil. Therefore, in 
the considered case of a dense gas ( I (  A ) ,  wz can assume that 
the nonlocal part of the collision integral id, is an increment 
of the order Nd3 to the nonlocal cozision o~erator  of the free 
motion iq v, while the operators I, and No are increments 
of the order of Nd3 to the Boltzmann collision integral. 

The right side of (2) arises as a result of account of the 
initial condition in the kinetic equation for the function X. 
Here the first term refers to an ideal gas, while the second 
takes into account the finite correlation radius in the weakly 
nonideal gas. 

3. SPECTRUM OF RAYLEIGH SCATTERING OF A NONIDEAL 
GAS 

Equation (2) describes the complete light scattering 
spectrum (in classical language) in a gas, including the un- 
shifted Rayleigh component and the rotational Raman com- 
ponents, shifted by the frequency f 2fi = + ~ ( T / I ) " ~ .  In 
the case in which the central and shifted components are 
spectrally separated, the solution of Eq. (2) is conveniently 
sought in the form of an expansion in eigenfunctions of the 
operator [8 X n] 6' / an, which have the form qh, = exp(ikg, ). 
On this basis, the zeroth harmonic (k = 0) is separated spec- 
trally from all the remaining harmonics, and describes the 
Rayleigh scattering. The rotational Raman scattering is de- 
scribed by the harmonics with k = f 2. In the present work, 
we have limited ourselves to the study of the spectrum of the 
unshifted Rayleigh component, when we can assume that 
the function x in Eq. (2) does not depend on n. In this case, 
the right and left sides of Eq. (2) can be integrated with re- 
spect to dg,, and the equation takes the form 

i(qvl-o)x+ (fa+Al^o)~+fzi (qv1-o)x+iq%x 

= B ( M , ) + N ~  ( e-"12'T-I) B (rZ, n,) e-jq' dq, dq,  do^,, 

(3) 
where 

(34  
The spectrum of the Rayleigh scattering J(w,q) is ex- 

pressed in terms of the solution of Eq. (3) in the following 
fashion: 

As is seen from formulas (3) and (4), the integrated intensity 
of the Rayleigh light scattering is composed of two terms, 
one of which corresponds to an ideal gas and is proportional 

fo d r ,  while the second is connected with the cor- 
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relation of particles in the gas and is proportional to the 
quantity 

J ~ ( n , )  ~ ( n , )  (e-uiJT-l) e-'.' do., do., dr; 

we can neglect here the antisymmetric scattering in B. The 
presence of a term nonlinear in the density in the integrated 
light scattering intensity leads to a quadratic dependence of 
the scattering indicatrix on the wave vector q for spherically 
nonsymmetric molecules (in the case of specified values of el 
and e,). The part of the scattering intensity that is anisotrop- 
ic in q is of the order ofNd 3(qd )' of the total scattering inten- 
sity. In what follows, in the analysis of the scattering spec- 
trum, these small increments will be discarded since they do 
not affect the shape of the scattering spectrum. 

A A Th%microscopic expression for the collision integrals 
I,, I,, iqI, are given by the formulas (2a,b,c) integrated over 
dp , ,  in which th5function x does not depend on n. In this 
case, the integral I,x is reduced by the usual p r ~ c e d u r e ~ - ~  to 
a linearized Boltzmann collision integral, in which the tran- 
sition probability Wi~averaged over the vectors n, and n,. 
The local increment AI,$ue to the triple collisions, just as in 
the Boltzmann integral I,, conserves locally the number of 
~articles, the total momentum and the energy. The operator 
I, conserves the number of karticles and the momentum, but 
the nonlocal increment iq I,, leads only to conservation of 
the number of particles in the collision. 

In the considered case of a d e n ~ e  gas, the largest term in 
Eq. (3) is the Boltzmann operator I,, the characteristic fre- 
quency of which is v)qv, vNd 3,qvNd 3; therefore, the solu- 
tion of Eq. (3) is conveniently sought in the formAof an expan- 
sion in the eigenfunctions X, of the operator I,, while the 
remaining operators are considered as perturbations. In this 
basis, Eq. (3) breaks up into a coupled set of equations for the 
hyd~odynamic and nonhydrodynamic modes of the opera- 
tor 10. ' .9310 As is known,' three hydrodynamic modes, the 
two acoustic modes 

where v, = (T/m)112-is the thermal velocity E =  c,T, 
A E  = c, 'I'T, m is the mass of the molecule, c, and c, are the 
specific heats of a molecule of ideal gas at constant pressure 
and volume, respectively, and the third (thermal-conductiv- 
ity) mode 

E-E 

all form a narrow triplet of scalar scattering. Here, for defi- 
niteness, the x axis is directed along the vector q. The two 
remaining hydrodynamic shear modes x3 = v,/v, and 
x4 = u,?, appear only in the form of narrow dips in the 
depolanzed spectrum of symmetric scattering. This effect 
arises due to the admixing, by the operator iq v, of the shear 
modes to the nonhydrodynamic modes that describe the 
symmetric scattering. In essence, if we restrict ourse2es to 
the Boltzmann approximation (i.e., to the operators I, and 
iq v), this covers all the possible interactions of the narrow 
hydrodynamic (with width y - (qv)'/v) and the broad nonhy- 
drodynamic (y-v) modes, which determine the fine struc- 
ture in the scattering spectrum. 

We now proceed to consideration of the effect exerted 
on the scattering spectrum by corrections connected with 
the departure of the gas from ideal. Solving Eq. (3) with ac- 
count of small additions to the collision integral, we obtain 
the following expression for the intensity of the scattering 
spectrum4: 

J (m, q )  =Jo+Ji+Jz,  (5) 

Jo=Bo2 {A [ 7 + 
2cp ( o f q u )  2+y,2 ( ~ - q u ) ~ + y z ~  

1 Y 5  

Bia2va (l+(AIo)a) 

a>5 

I [ ( A B S O )  12+  ( ~ ~ 1 0 )  ) 2 ]  +- 
2 02+ysZ 

f 

(5b) 
BzaZva (I+<AZo)a) 

a>5 

(54 
Here 

Bia =J xafoBi d l ? = < ~ ~ I  B i ) ;  
u is the velocity of sound in the nonideal gas, and is equal to 

u=uid+(xilfix+ l ' z ( ~ x - ~ ~ ~ )  / x i ) ,  
(6) 

the line widths y, are determined by the following expres- 
sions: ,. ,. 

11=yz= 
4' 1 u x + I i x f  1 ,  (uz-u id) 1 :a 

1 

a>5 ~ ~ t t A l o j ~  

while the mixing factors AB are equal to 

* * 
q [ u x f ~ l x f  Tz (us-u i d )  ] i s z a  

7 

a>j V ~ + < A I ~ > ~  
(8b) 

- A I,,  and?,-are the Hermitian parts of the operators I ,, and 
12;va are the eigenvalues of the Boltzmann operator. 

4. DISCUSSION 

We now proceed to a more detailed analysis of the ob- 
tained spectrum. The changes in the spectrum of the scalar 
scattering [Eq. (5a)l are due to the appearance of a linear 
dependence on the density of the splitting of the Mandel- 
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stam-Brillouin doublet (or of the sound velocity) and to 
change in the character of the dependence of the width of the 
polarized triplet on the gas density. The velocity of sound, 
which is calculated from Eqs. (6) and (2), is identical with the 
well-known thermodynamic value, expressed in terms of the 
virial coefficient B (T):  

The last term in (9) arises because of the difference of the 
heat capacity at constant volume of an nonideal gas from the 
value c, for an ideal gas, and vanishes in the case of a van der 
Waals gas. The sign of the increment linear in the density to 
the doublet splitting is determined by the temperature de- 
pendence of the virial coefficient and can in principle be posi- 
tive as well as negative, depending on the parameter U12/T. 
However, for ordinary neutral gases, the temperature at 
which the virial coefficient changes sign is close to the criti- 
cal (condensation temperature); therefore, for a weakly noni- 
deal gas B (T)  = b - a /DO.  In this gas, the sound velocity 
increases with increase of density. We note that the expres- 
sion (6) for the sound velocity is identical with the thermody- 
namic value (9), since the possibility of sound dispersion has 
not been taken into account, i.e., the condition q . v ~ A v  5 v,B 
has been assumed, while the region of dispersion q.v - Av. In 
the considered case of diatomic molecules, the relaxation of 
the angular momentum of the molecule M is a relatively 
slow proces!; the frequency of such collisions 
Av- (xu (M)lIol~a (MI). 

The effect of the nonideal nature of the gas on the width 
of the polarized triplet reduces to the appearance of incre- 
ments of the order of Nd3 in the numerator and denominator 
of Eqs. (7a) and (7b). However, the corrections in the numer- 
ator are connected with the nonlocality of the pair collisions, 
while in the denominator they are connected only with the 
local triple collisions. Account of the triple collisions makes 
a positive contribution (hi,), > 0 to the collision frequency 
va , while the nonlocal increments have the same sign (most 
likely, positive) as the increment of the sound velocity [Eqs. 
(7) and (9)]. As a result, the widths of the triplet contain, 
along with the usual term a 1/N, a term that is independent 
of N, whose sign is determined by the combined action of the 
numerator and denominator of (7). Since the widths of the 
narrow hydrodynamic modes are directly connected with 
the kinetic  coefficient^,^.^^ the considered increments, in the 
language of kinetic coefficients, reduce to terms proportion- 
al to Nd3. 

We now consider the broad depolarized part of the light 
scattering spectrum (o - Av), which is described by Eq. (3)  
for nonhydrodynamic modesx, (a > 5) (for symmetric scat- 
tering, xa a Y,, (M/M), and for antisymmetric, 
- xa a Yl, (M/M), where Yi, are the spherical harmonics). 

The damping frequencies of these modes, Ag,, with account 
of small corrections for the nonideality of the gas, have the 
following form: 

( 10) 
As is seen fro? (lo), allowance for the finite collision time 
(the operator I,) leads for the nonhydrodynamic modes to 
dispersion of the collision frequency." These corrections to 
the damping frequencies (10) change the width and the inte- 
grated intensity of the depolarized scattering by a value of 
order of Nd3 [Eq. (5)]. We note that the frequency dispersion 
of the quantities AZa becomes significant at the high fre- 
quencies w -  l /~ , - f i  (T, is the collision time), where the 
rotational Raman spectrum is located. Therefore a more ac- 
curate description of this effect should be simultaneously 
accompanied by allowance for the rotational Raman scatter- 
ing. 

We now discuss the fine structure in the spectrum of 
depolarized scattering. This structure, as it turned out, is 
most sensitive to corrections associated with the nonideality 
ofthe gas. It is described by the second terms in Eqs. (5b) and 
(5c) for the antisymmetric and symmetric scattering, respec- 
tively. 

As is seen from (5b), a narrow spike appears in the spec- 
trum of antisymmetric scattering, in the center of the l i ~ e  
(o = O), due entirely to the spatially nonlocal operator iq-I,. 
The width of the spike is determined by the quantity y3 [see 
Eq. (7b)l. In the calculation of the intensity of the spike ac- 
cording to (8a) and (2c), the following relation is obtained for 
the direct and inverse matrix elements: 

Here pa (M ') is an arbitrary function of /MI. 
The relation (1 1) is a consequence of the law of conser- 

vation of the total angular momentum M + r x p ,  which is 
e~pressed~in the !anguage of matrix elements of the collision 
operator I, + iq1,B in the Fourier representation in the co- 
ordinates. The fact that the law of conservation of the total 
angular momentum, i.e., the sum of the rotational and orbi- 
tal momenta of the molecules, is strictly satisfied only with 
account taken of the nonlocal collision integral, was first 
considered by Kaganov and Maksimov." They took into 
account the new integral of motion, and supplemented the 
ordinary equations of hydrodynamics by an equation for the 
total angular momentum. It is interesting that in spectral 
language, a rigorous allowance for the law of conservation of 
angular momentum leads to the appearance of a narrow 
spike on the spectrum of the antisymmetric scattering. The 
intensity of the spike is connected with the relaxation of the 
vortices in the dense gas, i.e., with the transformation of the 
orbital angular momentum r x p  of the vortices into the in- 
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ternal angular momentum M. We note that the orbital mo- 
mentum is conserved in the Boltzmann appr~ximation.~ 

Using (8a) and (1 I), we obtain the following expression 
for the intensity of the svike: 

The contrast of the spike, of order (qd )2uAv/(qv)2 - (Nd3)', 
increases significantly only at very high gas densities 
(ND3 + I), i.e., as the liquid state is approached. 

In the spectrum of symmetric scattering (5c), a fine 
structure in the form of narrow dips at the unshifted frequen- 
cy w = 0 and at the Mandelstam-Brillouin frequencies 
w = + w,, arises even in the Boltzmann approximation, 
and was treated in detail in Ref. 1. The effect of nonideality 
of the gas reduces in the given case only to a change in the 
contrast of the dips. From the formulas (7) and (8) we can 
obtain the following expression for the contrast R of the dips: 

To estimate the contrast, we use the smallness of the 
parameter Av/Y, i.e., the ratio of the anisotropic part of the 
potential to the isotropic. In this case, Eqs. (1 3) for R take the 
simple form 

R(o=O) mAq/q,-Avlv, R(o=o,J mAq/g- ( A V / V ) ~  

(14) 
where AT, determined by the numerator of Eq. (13a), is the 
contribution of the rotational degrees of freedom to the shear 
viscosity coefficient, 7, is the part of the shear viscosity coef- 
ficient connected only with the translational degrees of free- 
dom, < is the coefficient of bulk viscosity (for more details on 
the coefficients AT, q,, <, see Ref. 2). We note that in our 
research,' in the estimate of the contrast of the dips that has 
been discussed [Eq. (1 8)], an error was made that lowered the 
contrast by a factor (AY/v)'. We note that in the transition 
from a gas to a liquid, the representation of the contrast (14) 
in terms of the kinetic coefficients is more accurate, since the 

parameter Av/v is rigorously difined only for an ideal gas. 
For an estimate of the contrast of the dip at the unshifted 
frequency in an ideal gas, we represent (14) in the following 
form: 

where the index "0" refers to the ideal gas and dani, and diso 
are the characteristic dimensions of the anisotropic and iso- 
tropic parts of the interaction potential. For simple models 
(of the Chapman-Enskog type), numerical calculations give 
positive increments to the kinetic  coefficient^.^ Therefore, 
assuming the coefficients C, and C2 to be positive and of the 
same order of magnitude, we obtain the change in the value 
of the contrast R (w = 0) in the case of a gas-density increase 
proportional to the parameter 

~(d,:~-d:,~,) ~g'~'/gtO' . 
Thus, over a broad range of change in the gas pressure, 

the dip contrast is a measure of the relative contribution of 
the rotational degrees of freedom to the shear viscosity. We 
recall that the magnetic field acts on just this part AT of the 
shear vis~osi ty .~. '~  The contrast of the dips at the Mandel- 
stam-Brillouin frequency differs from the considered value 
at the unshifted frequency in the ratio R (w = a,,)-(T,/ 
< )R (w = 0). 

It follows from analysis of the microscopic structure of 
the viscosity coefficients 77, and < (see Eqs. (22), (25), (27) in 
Ref. 2), with increments that take into account the nonidea- 
lity of the gas [Eq. (7)], that 

Here the constants A, and A, are positive and determine 
the increments made by local triple collisions to the frequen- 
cies AY and Y .  Since diso > dani, , then the ratio 7, /<increases 
with increase in the gas density. Consequently, the contrast 
of the dips in the depolarized scattering spectrum at the 
shifted frequencies, R (w =a,,), falls off with increase in 
the gas density more rapidly than the corresponding quanti- 
ty R (w = 0) at the unshifted frequency. 

Thus, the interaction of the gas molecules manifests it- 
self in a large number of characteristics of the spectrum of 
Rayleigh scattering. First, the dependence of the sound ve- 
locity on the gas density leads to a similar density depen- 
dence of the splitting of the Mandelstam-Brillouin doublet, 
with a relative change - Nd3 in the frequency of the doublet. 
Second, increments that do not depend on the density appear 
in the widths of the polarized triplet. Their relative value is 
also - Nd3. Third, in the spectrum of antisymmetric scatter- 
ing, a narrow spike appears at the unshifted frequency whose 
contrast - (Nd3)', while the width y, is determined by the 
shear viscosity coefficient 7. Fourth, the contrast of the nar- 
row dips in the center o = 0 and at the frequencies 
w = + w,, in the symmetric components of depolarized 
scattering become functions of the gas density. Here the 
change in the contrast (with increase in the density) at the 
shifted frequencies is greater than at the unshifted frequen- 
cy. 

As for the possibility of experimental observation of the 
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Ide,, 
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I YJ 
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FIG. 1. Fine structure of the spectrum of the H-H component of depolar- 
ized scattering of light in a nonideal gas; Avis the width of the spectrum of 
depolarized scattering, * a,, are the frequencies of the Mandelstam- 
Brillouin components. 

enumerated changes in the spectrum, in spite of their small- 
ness ( -  Nd3), this possibility is real at the contemporary level 
of development of laser technology and high resolution tech- 
niques. For example, frequency shifts Aw/w - (corre- 
sponding to a change in the gas pressure of about one atmo- 
sphere) are fully observable. l3 

The observation of the peak in the antisymmetric scat- 
tering is most difficult from the experimental viewpoint, be- 
cause of the smallness of the cross section for the corre- 
sponding type of scattering (al/ao)2- lop8. However, as 
shown in Ref. 14, this value can be increased to (al/ 
a,), - lop2 upon approach to the electron absorption band 
of the molecules. A spike in the anisotropic scattering should 
be observed in the H-H component of the depolarized scat- 
tering, where there is no contribution at the unshifted fre- 
quency from the fine structure of symmetric scattering. The 
H-Hpolarization means that the polarization vectors el and 
e, lie in the plane of the scattering. This case is shown in the 
figure. 

In conclusion, the authors thank V. L. Ginzburg and I. 
L. Fabelinskii for useful discussions. 

"In Eq. (10) there is no increment proportional to iq by virtue of the 
invariance of the complete collision integral to spatial inversion. 
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