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A unified method is used to describe quasiclosed (decaying) two-level systems that interact with 
electromagnetic radiation. In contrast to the known vector model, the analysis imposes no restric- 
tions on the relaxation constant. An evolution equation that is invariant to the Lorentz group is 
obtained for the pseudospin. In limiting cases, the equation reduces to the Frenkel' equation for a 
relativistic spin in an electric or a magnetic field, and to the Bloch optic equation. The exact 
solution of a four-dimensional equation is obtained under conditions when radiative and ioniza- 
tion broadenings of the transition dominate. An approximate quasistationary solution of the 
problem is also obtained, with account taken of dephasing collisions, and the range of its validity 
is indicated. 

1. It is known that in optics a two-level system can be set 
in correspondence with a simple and lucid vector model.192 
The problem of resonant interaction of a monochromatic 
field with an atom reduces then to an investigation of the 
"pseudospin" precession in "energy space." When relaxa- 
tion is taken into account, however, a limit is imposed on the 
validity of this model. We analyze here a four-dimensional 
vector model that generalizes Ref. 1 to include the case of an 
arbitrary ratio of the relaxation constants of the states. 

Consider an ensemble of two-level atoms in a light field 
described by the equation for the density matrixp (see, e.g., 
Ref. 3): 

ionization broadening, and interactions of the states 1 and 2 
with the continuum. 

Equations (1) can be set in correspondence with the 4- 
vector equation aC" = (a0, a). To this end, we expand the den- 
sity matrix in terms of Pauli matrices a, = (1, a): 

where a, is variable in the general case. Equation (1) is then 
transformed into 

(1) where p, Y = 0, 1, 2; f = (f ', f )  is the level-excitation 
4-vector, 

where rl and l?, are the total widths of the levels 1 and 
2, r is the polarization relaxation constant, A is the Einstein 
coefficient, and Q is the excitation function. The interaction 
of the atom with the light field is specified by vector V, not 
necessarily Hermitian. We+consider the case of a monochro- 
matic wave of amplitude 59 and frequency w. We obtain 

= ( i )  e Vz l=  (G-iy  ) elQ', 

The indices are raised and lowered by the diagonal met- 
ric tensorg,, = diag(1, - 1, - 1, - 1). The relaxation ten- 
sor PV is symmetric and Fpv is antisymmetric. Just as any 
antisymmetric Ctensor, F pv can be expressed in terms of the 
components of two three-dimensional vectors: Fpv ( - E,H) 
(see Ref. 7,§6), where 

where d,, and w,, are the dipole-moment operator and the E= ( 2 y ,  0 ,  I?-), H= ( -2G,  0 , Q ) .  
frequency of the 1-2 transition, G can be chosen to be pure (7) 

real, and a non-Hermitian part of the Hamiltonian appears, The four-dimensional equation (5) coincides at 
for example, when account is taken of the interaction of the rPv = 0, f , = 0 with the Frenkell equation (see Ref. 8, §41), 
discrete levels via a continuum4 or in nonadiabatic molecule which describes the spin or a relativistic electron that moves 
c~ l l i s i on .~ .~  The initial equation (I)  takes thus into account a quasiclassically in an external electric or magnetic field. In 
number of relaxation processes: radiative broadening, quantum electrodynamics the 4-vector ap describes the elec- 
broadening by collisions in the relaxation-constant model, tron polarization, and the differentiation in the equations of 
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motion is with respect to the proper invariant time. This 
analogy enables us to use the relativistic-theory formalism to 
analyze four-level systems. 

The four-dimensional character of Eq. (5) is essentially 
due to the term E-a - Aa,/2, and Eq. (5) does not reduce to 
three-dimensional even at A = 0. If r- -A /2 = y = 0, the 
equations for a, and a become independent and the vector a 
precesses, with damping, around H. For example, at 
A = y = 0 and r, = r2 we obtain 

where T, = l / r , ,  T2 = 1 / r  are the "longitudinal" and 
"transverse" relaxation times, and Z, =f, /T, is the station- 
ary value of a,. Equation (8) coincides with the Bloch equa- 
tion that describes the precession of the nuclear spin a in a 
magnetic field H. Similar equations describe in optics the 
motion of a pseudospin vector in energy space. 

2. It is natural to name the four-dimensional description 
(5) the generalized vector model. If T, - A # r2 or y #O, Eq. 
(5) does not reduce the Bloch's equation (8). Thereis, how- 
ever, a case ofa non-Bloch two-level systems that is nonethe- 
less describable simply enough. This is the case of the relaxa- 
tion isotropic tensor: 

The condition (9) is satisfied if processes that dephase the 
atomic oscillator are neglected. In particular r = r+ when 
the dominant relaxation mechanism is spontaneous decay or 
ionization broadening. The substitution ap = IJ" e - r'allows 
us then to rewrite (5) in the simple vector form 

The square of the 4-vector "length" IJ" is conserved in this 
case: 

It follows therefore that the end point of the 4-vector IJ" 
traces an orbit on a pseudosphere surface in our four-dimen- 
sional space. In the particular case of a pure initial state (e.g., 
if only one of the levels is populated at t = O), the constant in 
(1 1) is zero and the pseudosphere is transformed into a cone. 

By virtue of the Lorentz-invariance of (5) and (lo), it is 
possible to make up of the F p v  components two invariant 
scalars: 

Thus, for a complete analysis of the time behavior of the 
solution (10) it suffices to consider three cases: I, $0, I,#O; 
I, # 0, I, # 0; I, = I, = 0. In the first case there exists a Lor- 
entz transformation with parameter L, such that E becomes 
parallel to H. In that case L is given by 

If E,, = H,, = 0, the system decay probability per unit time, 
W = - 2a0, takes the form 

+Le-r' [ (I' sin (F-LPH') sin H't- (H' sin q+LpF)cos H ' t ] ) ,  

where E' and H'  are quantities transformed to a common 
direction, e, is the angle between their common direction and 
the z axis, and /3 = (1 - L ')- 'I2. Expression (14) is charac- 
terized by two decay times r *  = (r + E I ) - ' ,  with 7-$7, 

possible. The oscillating term in (14) is proportional toL, and 
consequently the general condition for the onset of oscillat- 
ing decay is that (13) be nonzero. 

If the vectors H and E are perpendicular (I, #O), it is 
possible to choose a coordinate system in which E' = 0 
(I, > 0) or H' = 0 (I, < 0). If I, > 0, then (10) reduces to a 
three-dimensional equation such as (8) with 
H' = H(H - E ')I1'/H. IfI, < 0, thesystemdecays with two 
characteristic times r , = (r + E ' ) - I ,  where 

Let now both invariants (12) be zero. The following con- 
ditions are imposed on the interaction parameters: 
fi = f 2y, 2G = f r -. The system decay is not exponen- 
tial in this case: 

where W(t ) is the decay probability by the instant of time t. 
Actually, the vanishing of both invariants I, and I, means 
equality, in the radiation field, of quasienergy levels whose 
complex energies differ by a quantity R = (I, + 4i1~)'" that 
vanishes at I, = I, = 0. A similar situation arises in the case 
of overlapping nuclear  resonance^.^ 

3. In the general case of anisotropic relaxation, when (9) 
does not hold, Lorentz transformations do not simplify Eqs. 
(5) substantially. We consider therefore an approximate 
analysis of Eqs. (5). 

We assume that a, varies slowly with time, and that the 
components of a can attune themselves to the variation of a,. 
It suffices therefore to consider in the equations for a only 
the stationary regime. Assuming that a = 0 (Tiit$ 1), we 
have 

where rii = diag ( r ,  r ,  r,) is a three-dimensional relaxa- 
tion tensor (A = 0) which is anisotropic, and eU, is a unit 
antisymmetric tensor. 

We write the solution of (15) in the form 
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It follows from (15) that the components Bik (H) are subject 
to the relations 

B i k  ( H )  = B k i  (-HI (17) 

which are analogous to the properties of the conductivity 
tensor of a conductor in a magnetic field.'' Resolving B into 
symmetric and antisymmetric parts, we get 

a,/ao=SihE,+ [ExA Ii, (18) 

where the symmetric part is 

and the axial vector 

is equivalent to the antisymmetric part of B. Since i' is diag- 
onal, the term EXA leads to the appearance of a component 
of a that is perpendicular to E and is proportional to H. 
Using (181, we find the solution of the equation of a,: 

where 6 = Sik Ei E, /r+. The condition that a,  varies slowly 
will be satisfied if 1 - 6 4  1, i.e., 

Expression (21) determines the validity of the quasistation- 
ary approximation in the general case when inelastic colli- 
sions (the difference between r and T+)  are taken into ac- 
count and at an arbitrary magnitude of the level interaction. 

In the simplest case Ex = 0 (y  = 0), i.e., when, e.g., 
there is no interaction of the discrete state via the contin- 
uum, (21) leads to the conditions 

where x = 4G 2 /Tr+  is the saturation parameter of the dis- 
crete transition. The first of the conditions means a substan- 
tial difference between the level widths, and the second 
means smallness of or a large detuning compared with the 
homogeneous linewidth. At T l ) r 2  Eq. (22) leads to the re- 
sults of Ref. 11 for the probability of resonant photoioniza- 
tion of atoms. 

Another simple example is the case of isotropic relaxa- 
tion rij = Faij. It is easy to show that the decay probability 
W takes the form 

the range of the parameters HX,  (n,G ) for which the quasi- 
stationary regime is realized. To this end we align the z axis 
with the vector E by rotating the coordinate system through 
an angle q, = arccos E,/E. Then, putting 1 - 6 = a ,  where 
a( 1, we obtain 

Here fi and G are the deviation from resonance and the 
interaction matrix element in the coordinate frame rotated 
through the angle q,. I t  follows from (24) that a nonstationary 
regime exists only at a) 1 - E 2/I'2. This is natural, in as 
much as the quantity 1 - E 2/r2 determines the degree of 
interference between the transitions to the continuum from 
levels 1 and 2, and the system lifetime cannot be longer than 
[ r ( 1  - E 2/r2)]-1. Thus, the region of the values of fi and G 
is bounded by the hyperbola 

An error has crept into Eqs. (5.2) and (5.9) of Ref. 4. When 
this is allowed for, the corresponding inequality of Ref. 9 will 
coincide with (24). 

The strictly stationary regime of Eqs. (5) is possible at a 
nonzero excitation 4-vector f p .  The components fo and f, 
take into account the population of the levels 1 and 2, while 

fx and& take the polarization transfer into account. 
We note in conclusion that the four-dimensional ap- 

proach is fully equivalent to the density-matrix formalism, 
but offers a number of advantages due to its clarity and to the 
inclusion of the decay (ionization) probability w = - 221, as 
an independent variable in the equations. Obviously, the 
generalized vector model is valid not only for optical pro- 
cesses, but also for two-level systems of any type. 
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