
Sound vibration branches of a gas interacting resonantly with light 
F. Kh. Gel'mukhanov and L. V. Il'ichev 

Automation and Electrometry Institute of the Siberian Branch of the Academy of Sciences of the USSR 
(Submitted 9 July 1984) 
Zh. Eksp. Teor. Fiz. 88, 733-740 (March 1985) 

We study the effect of light pressure, and the effect of light-induced drift (LID) and related effects 
on sound vibrations in a gas. We predict a new branch of transverse sound vibrations caused by 
the recoil effect. The LID effect causes the occurrence of sound vibrations of the absorbing gas 
relative to the buffer gas. In this case the gas mixture as a whole remains at rest provided the 
masses of the absorbing and the buffer particles are the same. The pressure tensor and the heat 
flux induced by the radiation give rise to two additional vibrational branches. 

It is well known that light acts on the translational de- 
grees of freedom of a particle. Striking examples of this ac- 
tion are the light pressure effect,' the light-induced drift ef- 
f e ~ t , ~  and effects related to it.3 The aim of the present paper is 
to study how these effects influence the sound vibration 
branches of a gas in a radiation field.4 

1. GAS DYNAMICS EQUATIONS 

One can determine the spectrum of the sound vibrations 
by solving the eigenvalue problem for the kinetic equations 
or for the hydrodynamical equations which are obtained 
from the kinetic equatiom5 We choose the second method. 
The state of the gas which is interacting with light is com- 
pletely determined if we know the density matrixpij (v) of the 
gas which is absorbing the light. In the simplest model of 
two-level absorbing particles which interact with the field of 
a travelling monochromatic wave the following kinetic 
equations6 hold for pi (v) ( pi =pii ): 

(d/dt+vV+I',)  p, ( v )  = m a s i  ( v )  -2Re [ iG 'p , , ( v - v , / 2 ) ] ,  

( d /d t+  VV l v )  , . - \  , 
=maso  ( v )  +̂ ripi ( v )  4 - 2 ~ e  ( i ~ : ~ , ,  ( v + v o / 2 )  ) , (1.1) 

( d / d t + v V +  r - i ( P - k v )  )p,, ( v )  

The indices 0, 1, a indicate, respectively, quantities referring 
to unexcited and excited particles and to the absorbing gas as 
a whole; G = Edld2fi; E and k are the amplitude and wave 
vector of the electromagnetic field; dl, is the dipole moment 
matrix element for the 0-1 transition; v, = fik/ma is the re- 
coil veiocity; r, is the radiative decay constant of the excited 
state; rl is an integral operator which takes into account the 
recoil effect in spontaneous emi~sion;~ R is the detuning 
from the resonance which equals the difference between the 
frequency of the radiation and the frequency of the 0-1 tran- 
sition; and Sa is the Boltzmann collision integral for parti- 
cles of type a and mass ma. We shall also assume that a 
buffer gas is present which does not interact with the radi- 
ation and the state of which is described by the usual Boltz- 
mann equation 

As in classical gas dynamics the transition from the ki- 
netic Eqs. ( I .  1) and (1.2) to the closed gas dynamics equations 
is strictly justified only under conditions close to equilibri- 
um. The departure from equilibrium in the velocity distribu- 
tion of the absorbing particles depends on the ratio of the 
homogeneous half-width r and the Doppler half-width kca 
of the absorption line, where Fa = (2Ta /ma ) 'I2 is the mean 
thermal velocity and T, the temperature of particles of type 
a (we set the Boltzmann constant equal to unity in what 
follows). In order that the departure from equilibrium be 
weak, we shall assume that 

I'Bk&. (1.3) 

We shall use Grad's 13-moment method's8 to solve Eqs. 
( I .  1) and (1.2) under this condition. In accordance with this 
method we write each distribution function p,(v) 
(a = 0, 1, a, b ) in the form 

-2 -312 p ; ( ~ ) = ~ ~ ( r n ~ )  e x p ( - c Z / i s ~ ) , c = v - u , w , = u , - u ,  
q, = ha + ;pa w, . The transport equations for the mass den- 
sityp, = ma nu, the average velocity u, , the pressurep,, the 
pressure tensor ?ram, and the heat flux q, are obtained from 
the kinetic equations (1.1) and (1.2) by multiplying them by 
the functions $2.. . ; 

and then integrating over the velocities. To reduce the un- 
wieldiness of the notation we neglect here the light pressure 
which we shall consider separately in the next section. The 
excited particles are described by the following transport 
equations 
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(r,+d/dt)n,,,=R,':~ +II~:' , (r,+dldt) h1=Ri5' +IF5). 

Here 

n.(i' =- J ~l,::!. 2 Re iG'p,, ( v )  dv, 

and the vector 

is the contraction of the tensor product of the vector a and 
the tensor T; e, is a unit vector along the x, axis; the macro- 
scopic variables without index a refer to the mixture as a 
whole. One can also write down equations for the particles in 
the ground state which are similar to (1.5). However, for the 
equations which supplement (1.5) it is convenient to use the 
equations for the absorbing gas as a whole 

Equations (1.5) and ( 1.6) are closed by the gas-dynamic equa- 
tions for the gas as a whole: 

On the left-hand side of Eqs. (1.5) to (1.7) we have dropped 
terms which are unimportant for the present paper (e.g., 
terms due to viscosity and thermal conductivity). The com- 
plete gas-dynamic equations in a radiation field are given in 
Refs. 9, 10. The linearized moments R !. , . of the Boltzmann 
collision integral have the form7.' 

where p = 0, 1, b and the parameters XEh c ~ a n ~ , ' ~  be ex- 
pressed in terms of Chapman and Cowling's R integrals 
of the elastic cross sections gap for the scattering of a particle 
a by a particle 8; pap = ma mg/(m, + 

It is clear from Eqs. (1.8) for RE' and Rf) that there is a 
collisional interaction between the particle flux nu ua and 
the heat flux ha which is the cause of thermodiffusion and 
demonstrates the general effect of a coupling of the moments 
of the distribution function through the collision integral. 
However, in accordance with Kihara's observations" this 
coupling is weak. One verifies this easily for the example of 
the interaction between u,, and h,, by calculating 

where C * = R*I2 /R*ll , R*lr = Rir/R;is the reduced R in- 
tegral," R; is the R integral for the hard sphere model. Re- 
sults from numerical calculations show" that the ratioXt2'/ 
X(l' is indeed small, of order 0.2 to - 0.2. the coupling of u, 
with higher order moments is even weaker. The weak cou- 
pling of the distribution function moments with one another 
in the limit (1.3) is the basis of the 13-moment method we 
have used. 

The departure from equilibrium in the velocities pro- 
duced by the electromagnetic field is described by the mo- 
ments II!'!. of the field term - 2 Re iG *p,,(v) which up to 
and including terms of order (kE, /r)' have the form 

Here x is the saturation parameter; the z axis is parallel to k 

2. SOUND AND LIGHT PRESSURE 

In order to consider in its "pure form" the role of the 
light pressure in the formation of the sound vibration spec- 
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trum we shall digress from the LID effect2 and the effects 
related t ~ i t , ~  i.e., we shall assume that a,, = o,, . Assuming 
that v,fi< 1 and following Grad's method we get from (1. I) 
the following linearized equations for a one-component gas: 

which generalize Eqs. (1.7) with the recoil effect. Here 

F=-2vo ~e ic.1 p,, (v) dv=vorixp/2 (I+%) . 12.21 

Q=-'/,v, Re iG* J vp,, (v) dv, 

c2 = (dp/dp), = 5p/3p is the usual sound velocity; F is the 
force per unit volume due to the light pressure.' One notes 
easily that the rate of change of the gas energy density 3Q /2 
is an antisymmetric function of the mismatch 0 ,  (Q = 0). We 
assume for the sake of simplicity that 0 = 0, i.e., Q = 0. In 
an absorbing cell with closed ends the stationary state of the 
gas has a spatially nonuniform pressure distribution, 

We consider a weak deviation of the gas from the sta- 
tionary state (2.3). The deviations from the stationary den- 
sity and pressure values (Sp and Sp) satisfy according to (2.1) 
the following set of equations; 

-A6p+[d2/dt2+ ( V f )  +fV]6p=0, 

where f = 8 F/dp. It is difficult to find an exact solution of 
Eqs. (2.4) which take into account the r-dependence off. We 
restrict ourselves to the case when f is a constant which is 
valid for a constant half-width r on x) I. We look for a 
solution of Eqs. (2.4) in the form p l t2  exp(iwt - ig . r). This 
solution yields the following dispersion equation: 

04-o2cZ (gZ+ (Vp/Zp) ') + (ao cg sin 0)'=0. (2.5) 
Here 

6 is the angle between the light and the sound wavevectors k 
and g. It follows from (2.6) that the stationary state of the gas 
is unstable if 

In the limit gc)w, the dispersion Eq. (2.5) gives two vibra- 
tion branches, viz., the weakly anisotropic ordinary sound 

and a new sound mode 

02=oo2 sin2 0. (2.8) 

One verifies easily that in contrast to ordinary sound the new 
sound mode is transverse in the limit gc)w,. We note the 
close analogy between the branch (2.8) and the intrinsic gra- 
vitational waves. l2  

3. LIGHT-INDUCED DRIFT AND SOUND 

We consider the LID effect on sound, forgetting for the 
moment the recoil effect. One notes easily from Eqs. (1.5) 
and (1.10) that in the limit (1.3) and (1.9) the inequality 
p1 lull > Ihl I/c2, IT,,  I / c  is satisfied. Hence in the analysis of 
the sound vibrations connected with LID we can neglect the 
pressure tensor n and the heat flux h induced by the radi- 
ation. We shall show in the next section that the light-in- 
duced pressure tensor and heat flux also lead to new vibra- 
tion branches, but in the limit (1.3) those vibrations lie in the 
low-frequency region of the spectrum and therefore interact 
weakly with the branches caused by the drift. Taking what 
we have said into account we get from the first three of Eqs. 
(1.7) the following equations for the nonequilibrium correc- 
tions to the density and the pressure: 

As in the preceding section we consider a gas in a cell with 
closed ends. In such a case the various components of the gas 
are in the stationary state nonuniformly distributed along 
the length of the cell thanks to the LID effect (for constant 
total pressure, Vp = 0). If the masses of the absorbing and 
the buffer particles are different, the total mass density 
p = mana + m, n, is also spatially nonuniform and when 
the temperature is constant, equals 2 (for n, )na ) 

Vp= (ma-mb) Vn, 

where v:) = x$n,/ma is the collision frequency. We solve 
Eqs. (3.1) in the limit /vj') - vg)l/vg)<l. One checks easily 
that the last term in the second equation of (3.1) is smaller 
than the other terms by a factor w/v"' and we can thus ne- 
glect it. Changing to a new variable 6p = pl" 7 in the result- 
ing equations, we have the wave equation 
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In the limitgc>iS, we can neglect the r dependence ofij, and 
look for a solution in the form exp(iwt - igr); as a result we 
get 

To obtain the dispersion relation in the region gc 5 Go it is 
necessary to solve the stationary Schroedinger equation with 
a potential ij;(r). 

Apart from a change in the dispersion law (3.5) for the 
ordinary sound the LID effect also produces a new branch of 
oscillations. For simplicity we consider the case where the 
masses of the absorbing and the buffer particles are the same: 
ma = m, = m. As ma = m,, when w2#g2c2 the only solu- 
tion of Eqs. (3.1) is 

bp=6p=6u=O. (3.6) 

We find a solution of Eqs. (1.6) for &pa and Sj, = S (p ,  ua ) 
using the fact (3.6) that the mixture as a whole does not 
move: 

where 

j, is the stationary mass flux of the excited particles (n, >no ): 

Using the substitution exp(iwt - igr) we get from (3.7) 

The first root of the dispersion relation Eq. (3.8) w = i ~ " '  
corresponds to a dissipative process caused by the friction 
between the absorbing and the buffer particles. The second 
root 

( 1 )  ( 1 )  vi -Yo V,2gZ 
a=-( ~ ( i j  ) g u ( ~ )  cos O+iF 

describes weakly damped oscillations of the absorbing gas 
relative to the buffer gas4 when the mixture as a whole is at 
rest. One notes easily that the speed of this sound is of the 
same order of magnitude as the speed of the light-induced 
drift u,,, .2 

4. EFFECT OF PRESSURE AND HEAT FLUX ANISOTROPY ON 
SOUND 

From the last two equations in (1.5), (1.7), and (1.10) it is 
clear that the radiation produces a pressure tensor G and a 
heat flux h both in a one-component gas3 and in a multi- 

component gas. We study the effect of these quantities on the 
sound vibrations in the simplest system, a one-component 
gas. The deviation of the gas from the spatially uniform sta- 
tionary state is described according to (1.7) by the following 
linearized equations: 

In the limit w/v< 1, lv, - vol/vog 1 the condition that Eqs. 
(4. I), the solution of which we look for in the form exp(iwt 
- igr), are compatible is the dispersion relation 

04-02g2 [c2+so2 (3 cosz 0-1) I 
(4.2) 

-og3s3 cos 0+ (gZcs1 sin 0 cos 0)'=0. 

In that equation, obtained using (1.5) and (1.7) we have intro- 
duced the notation 

where the pressure tensor and heat flux in the approximation 
which is linear in 7c have the form 

Using the fact that the "velocities" so, s,, and s are small 
compared to the usual sound speed we get from (4.2) 

The first two roots w, and w2 describe a weak splitting and 
shift of the usual branch w = $- gc. The roots w3 and w, 
correspond to new low-frequency vibration branches. 

If ls3/c2s, 1 S 1, we have4 

sf2c2 as=-- - gS3 0 s  0, o,=g--3;sin2 0 cos 0. 
c2 

In the opposite case, /c2s, sin 0 /s3 1 > 1, we have 

a , ,  ,= tgs ,  sin 0 cos 0. (4.5) 

In these two limiting cases the branches w, from (4.4) and 
w,, , from (4.5) correspond to transverse vibrations. 
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CONCLUSION 

We estimate the frequencies and propagation speeds of 
the sound vibrations. Taking into account that uo/c- 
and taking TI  - lo7 s-I, which is characteristic for atomic 
transitions in the visual range, we find that the frequency 
(2.6) of the sound vibrations caused by the recoil effect for 
x-  1 is of order oo-I'lvo/c- lo3 s-'. The value x -  1 is 
typical in present-day experiments with laser radiation.13 
The second characteristic frequency (3.4) is connected with 
the LID effect and has the following order of magnitude: 
w -vu,,,/c. In a recent experiment with sodium vaporsI3 a 
value of the ratio of the LID velocity to the normal sound 
speed was reached; u,,D/c-10-2, corresponding to 
So- 10' s- for v- lo7 s- '. The remaining vibration 
branches are characterized by linear dispersion laws 
o = c'g, where c' is the sound speed for the branch in ques- 
tion. We therefore estimate the ratio cl/c. For the LID 
branch (3.9) we find c'/c - u,,, /c- lop2. For the branches 
a,,, of (4.3), when ki7/T-X'2'/X'1'-10-', we have c'/ 
c-X(2)~LID/X(1)c- 10-3. 
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