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A new type cf radiation is considered. Its spectral and angular characteristics are the same as 
those of the Cerenkov radiation and its intensity depends on the scattering of electrons by atomic 
planes (strings). Possible applications of this radiation to measurements of the energy of relativis- 
tic particles are discussed. 

1. INTRODUCTION ton polarizations1: 

When a relativistic electron is channeled in a crystal 2nn ( o )  e2 
almost along an atomic plane, the classical relativistic equa- 1 vi-, I " o C { I J x ( x x )  I2sinZcp 
tion of motion shows that the acceleration produced by the 
longitudinal force is greater by a factor of ?than that due to 
the lateral force [ y = (1 - 0 is the Lorentz factor]. It 
follows that, when the relativistic electron travels close to an 
atomic plane line), its interaction with the crystal can be 
described by the average potential over the plane (line) of the 
single crystal. The transverse motion of the channeling par- 
ticle is nonrelativistic and is described by the Schroedinger 
equation with the relativistic mass. The longitudinal motion 
may be looked upon as free. Depending on the angle of inci- 
dence of the beam of electrons on the single crystal relative to 
a given crystallographic direction, the transverse motion can 
be either finite or infinite. Correspondingly, the transverse 
energy spectrum is discrete in the first case and continuous 
in the second. Spontaneous transitions between states asso- 
ciated with the transverse motion results in the emission of 
electromagnetic radiation by the channeling particle, which 
may then be looked upon as a relativistic "quasiatom." This 
is of considerable theoretical interest because it may be pos- 
sible to use this process to investigate the wave properties of 
particles in macroscopic motion. 

We have examined effects due to the quantization of the 
transverse motion of a channeling particle when it undergoes 
spontaneous transitions in the transverse continuum with- 
out transferring momentum or energy to the crystal. This 
process is possible when the radiating particle travels with a 
velocity greater than that of light in the medium. 

2. DETERMINATION OF RADIATION PARAMETERS 

+ I Js ( x , )  cos 0 cos q - J z  ( x , )  sin 0 1') 9 

where 

C 
J % ( x J  = -J ~ X P  ( - i x d )  $ t S ( x )  PZ$i(x)  d ~ ,  

Ell (2.1) 
C 

p = v I  /c, vI1 is the component of the electron velocity along 
the z axis, x, is the component of the wave vector x of the 
photon along the x axis, 6 is the angle between the x and z 
axes, q, is the azimuthal angle of the vector x ,  n(w) is the 
refractive index of the medium, $(x) is the solution of the 
Schroedinger equation corresponding to the continuous 
spectrum of transverse motion, and dN is an element of 
phase space. 

For motion without transfer of momentum or energy, 
the argument of the delta-function becomes 

Ei-Ej-fiw=fio [ I - n ( o )  P I  cos 01. ( 3 )  
Since electron momentum is conserved in the problem for- 
mulated above, we may consider a single independent parti- 
cle, i.e., dN = w2dwdR. Expression (3) leads to the condi- 
tions for the emission of radiation and its directivity, 
namely, n(w) P = 1 and 6 = arccos(l/n PI, ). Theseare anal- 
ogous to the corresponding conditions for the Vavilov emis- 
sion. It is possible to obtain an exact analytic expression for 
the quantities in (2.1) in which $,,, (x) satisfies the Schroe- 

Let us take the z axis along an atomic plane of the single dinger equations 

crystal and the x axis perpendicular to it. Let us further sup- 
pose that the electron travels close to the z axis under the 

$I" ( X I  +ki2$i ( X I  = V ( Z )  $i  ( 2 )  (4) 

conditions of planar channeling. The interaction between $2*" ( 5 )  +k2Z$2* ( x )  =V ( x )  $2*  ( x )  . 
the electron and the field due to the atomic plane will be 

( 5 )  

taken into account exactly, and the emission of photons will Let us multiply (4) by $:(x) and (5) by $,(x), and then sub- 
be described in first-order perturbation theory: tract one from the other: 

d 
Q 2 -  (.) ( x )  -$2.' ( x )  $% ( z )  ] = (kz2-kl2) $2' ( x )  $ 1  ( 2 ) .  

(1) d z  
(6) 

where W, ,f is the photon emission probability and Vi ,f is Multiplying (6) by exp( - ix, x) and integrating by parts, we 
the matrix element of the interaction, summed over the pho- obtain 
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(kz2-,ti2) JIl  ( x I )  = ixIJL ( 1 1 % )  S F  ( x X )  - i d  ( x x ) .  ( 7 )  lim $+ ( x )  =2e1" cos ( k ,  I x I S T + ) ,  
x-. " 

where 
rn 

lim $- ( x )  =2eiq- sign (x) cos ( k ,  I x I +cp-) , 
5- 0) (12)  

I,, (x . )  = .I exp ( - i x s )  $2' ( X I  $ 1  ( X I  dx ,  (7.1)  k,= (2moEL)'"/ t i ,  
- m - where E, is the transverse energy, we obtain the following 

J ,  (x . )  = 5 exp (- ix,)  $ z ' ( x )  $1' ( x )  dx .  expression for the Wronskian: 
- m 

W=$z* ( 5 )  $1' ( 2 )  -$z" ( x )  $1 ( 5 )  

+" F ( x , )  = {exp ( - ix ,x)  [$ , ' (x)  9%' ( x )  -$2" ( x )  $i (2) I I-". 

(7.2)  

Using ( 7 )  and the definition of the primitive 

j ( s )  = J f r  ( x )  dx=exp ( - iw)  9,. ( x )  9, ( x )  

we finally have 

where 

Since x, = x sin 8 cos p ,  there are angles 8 and p lying in 
the ranges 0<8<n-, O<q<2n- for which x, = 0.  We recall2 
that, when f ( x )  and p ( x )  are related tox f ( x )  = p ( x )  and can 
be zero, we have, in general, 

f ( x )  =P.  [v ( x )  1x1 +A86 ( x )  , (9)  
where P, denotes the principal value of the integral in the 
Cauchy sense. From (8 )  and (9), it then follows that 

since 

P .  [@ (x , ) Ix , ]=O,  P. [x,Jl  ( % , ) I  = - 2 n i [ 1 p ~ ' ( x )  $ i ' ( x ) ]  La, 
P. [F ( x , )  / x z ]  - (kZ2-ki2) P.  [JII  ( x * )  Ix,] = O .  

It is readily seen that the second term in (10)  appears in ( 2 )  in 
the form xS(x) = 0 and need not, therefore, be taken into 
account. Since k : - k : - x: #O, we find, using (8 ) ,  that 

I t  follows from ( 3 )  that the radiation that we are considering 
lies in the optical range [it appears when n(w) > 11 and we can 
neglect the effect of the emission of the photon on the scatter- 
ing of the particle by the plane. We then have 
F (x,  ) = @(x, ) = 0 and, according to (6 ) ,  the Wronskian of 
the solutions $ , (x )  and &(x)  is independent of x ,  which al- 
lows us to obtain from (10) an explicit expression for J,  (x , ) .  
Moreover it is clear from (10) that initial and final state func- 
tions have different parities, Using the asymptotic form of 
the even $+ (x )  and $ - (x )  solutions of ( 5 )  and (4) .  

=-4nk,I tl exp {i(cp--cp+) )=I$+* ( 0 )  9 - ' ( 0 ) .  (13) 

Consequently, 

J, (x , )  = -4nk ,  exp {i(cp--cp,)) sin ( c p - - c p + ) ,  (14)  

where sin(p- - p , )  = It / is the modulus of the amplitude 
for the propagation of the particle above the potential well 
produced by the atomic plane. 

Substituting (14)  in (I),  and using ( 3 )  and (1 I ) ,  we obtain 
the following expressim for the energy emitted by the parti- 
cle per unit path length: 

d l  d l ,  - z- It1 x7 
where 

is the zerenkov energy. It is clear that the influence of the 
scattering process on the Cerenkov emission intensity is a 
purely quantum-mechanical effect. It manifests itself 
strongly when the particle moves near the top of the well. 
With increasing distance from the top of the well, the parti- 
cle transmission coef f i c i~ t  above the well It l 2  tends to unity 
and we obtain the usual Cerenkov radiation. The periodicity 
of the potential acting in the transverse direction can be 
readily taken into account. The point is that, in the one- 
dimensional case, the solid-state problem can be solved ex- 
actly in terms of the t matrix formalism for scattering by an 
individual periodicity element3 The dispersion relation is 
then 

cos (kLd-k6) /I  tI =cos K d ,  (16)  
where fzK is the quasimomentum, k,  is the transverse wave 
number of the electron, S = arg t, t is the amplitude for the 
propagation of the electron above the well, and d is the sepa- 
ration between atomic planes. For a symmetric potential, the 
Bloch wave function has the form4 (0  < Kd < n-) 

so that, according to (16)  and ( 17), 

At the edges of energy bands, Kd = m and the function $(x)  
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has a definite parity. Hence, the radiation emitted as a result 
of spontaneous transitions between the bottom and the top of 
the energy band is described by (15), so that the intensity of 
the radiation can be controlled by tilting the crystal, first, 
because of the change in It l 2  and, secondly, because of the 
periodicity of the potential acting in the transverse direction. 
In the special case of the Poschl-Teller potential 
V(x) = - Vo/cosh2ax, the transmission coefficient above 
the well5 is 

It 1 2 = ~ h 2 n ~  (sinh 'ne+sin2ns) -', (19) 

where 

2E,,E, '!2 1 &=[(=I . S = - { - l + [ l +  2 
(cosh a)2 

E, is the transverse energy of the electron, E ,, is the longitu- 
dinal energy of the electron, Vo is the well depth, mo is the 
electron rest mass, and a-' is a measure of the well width. 
Since t l 2  oscillates as the y-factor is varied, the radiation 
intensity will behave in an analogous manner. This feature 
can be exploited in measurements of the transmission coeffi- 
cient above the well. For values of y for which s is an integer, 
(16) shows that the energy spectrum above the well spreads 
out into a continuum (4). The radiation intensity is then de- 
scribed by (1 5) across the entire energy spectrum. The above 
results show that we have a qualitative explanation of the 
experimentally established6 orientational dependence of the 
optical radiation emitted when an electron is channeled in a 
single crystal. 

We note in conclusion that the fact that the Poschl- 
Teller potential provides a good approximation to the poten- 
tial between the planes is not fortuitous. It was shown in Ref. 
4 on the basis of an anlysis of experimental data on the chan- 
neling of electrons in a single crystal that the potential in the 
space between atomic planes is of the soliton type. This is an 
indirect confirmation of the suggestion made in Ref. 7 that 
the nonlinear interaction between a channeling particle and 
a crystal takes a portion of the latter that is close to the 
particle trajectory to an excited state of the one-dimensional 
or two-dimensional lattice, so that the model of continuous 
atomic planes (lines) used in the theory of channeling corre- 

sponds to physical reality and is not merely a convenient 
approximation. 

3. CONCLUSION 

1. It is clear from (18) and (19) that the radiation de- 
scribed above depends not only on the velocity, but also on 
the rest mass of the particle (the dependence on mass is in- 
cluded in the transmission coefficient). Hence, by measuring 
the transmission coefficient and the position of the radiation 
cone, it is possible to determine the velocity and re$ mass of 
the particle (which cannot be done with the usual Cerenkov 
counters). 

2. An analogous type of radiation can also be emitted in 
the case of glancing incidence of relativistic electrons on the 
surface of single crystals. If the condition for the emission of 
the radiation is then satisfied only in the second medium, the 
entire radiation is emitted into this medium (crystal). 

The author is indebted to V. G. Khlabutin for providing 
him with certain results prior to publication. 
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