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The position of a nuclear level perturbing the Coulomb spectrum can be calculated in the analytic 
theory of nuclear level shifts'-3 from the level shift of a hadronic atom. This is illustrated by the 
example of the K -4He atom. Experimental 2p-level shifts4s5 suggest that this system may have a 
weakly-boundp-state with binding energy and width E -  y - 0.5 MeV. The probabilities of radia- 
tive transitions to this level and the cross section for its creation in nuclear reactions on 6Li are 
calculated. The possible existence of states in which K - a n d j  are weakly bound to other light 
nuclei is examined. An exact solution is obtained for a model Coulomb problem with short-range 
interaction, and is used to determine the range of validity of the initial approximations. 

1. There has been increasing experimental and theoreti- level perturbing the atomic spectrum of kaonic helium. Sec- 
cal interest in recent years in systems bound by a Coulomb tion 3 discusses radiative transitions in hadronic atoms, and 
potential that is distorted at short1' distances. Analyses of Section 4 gives the estimated cross section for the formation 
the spectra of jTp and Z -p hadronic atoms have been based of a bound K -4He state in nuclear reactions on 6Li. Section 5 
on the eq~at ion l -~  gives a criterion for the existence of a shallow nuclear level 

h with arbitrary I in the system, and notes some hadronic 
{ ~ + 2 ~ [ $ ( 1 - + ) + 1 n ~ ] }  atoms that could be interesting from this point of view. Sec- 

I tion 6 examines a model Coulomb problem with short-range 
1 1  

x n ( & - h z )  =-+-rics) interaction, which has an exact solution. Analysis of exact 

"-. I a !cs )  2 
hZ , ( l '  solutions yields the range of validity of (1) and the other 

,-A 

which relates atomic I-level shifts and widths with the low 
energy-scattering parameters. In this equation, A = ( - 2E / 
EC)'l2, E = Eo - i r / 2  is the level energy, I is the angular 
momentum, { = - ZlZ2, $(z) = rl(z)/T(z), a j'"' and rj'"' are 
the Coulomb-nuclear scattering length and effective radius. 
Equation (1) is independent of the specific model of the 
strong potential V, (r) and is valid for 

hro<l. (2) 

Its properties were examined in detail in Ref. 2. 
Three independent experimental have recent- 

ly reported evidence for the existence of an anomalously 
large 2p-level shift in the K -4He atom (i.e., the state in which 
the K -meson is bound to the a-particle). This shift is 
AE,, = Re E2, - E > 0, i.e., the 2p-level is pushed up- 
ward. The experimental shift and width of the 2p-level5 are 
listed in Table I. Calculations of these parameters using the 
optical potential2' 

yield AE,, = 0.2 eV and r,, = 2 eV, which are lower by 
more than an order of magnitude as compared with the cor- 
responding experimental values. 

Anomalously large atomic level shifts are usually due to 
the presence of a near-zero level (real, virtual, or quasista- 
tionary) in the strong potential V,. It is interesting to consid- 
er the situation in the K -4He atom from this point of view (a 
brief summary of our results was published previously in 
Ref. 6). 

The plan of our paper is as follows. Section 2 gives a 
calculation of the position and width of a shallow nuclearp- 

equations used in the theory of hadronic atoms. 
2. Kaonic helium. For the K -4He system, the reduced 

mass ism = 436.0 MeV, { = 2, E, = 23.2 keV, and the Bohr 
radius is a, = L /2 = 3 1.0 F. 

The effective radius r',"' (I = 1) in (1) is calculated as 
follows. We know that the nucleon density in the a-particle 
is satisfactorily described by the Gaussian distribution 
p(r) = const.exp( - r2 /< ) .  In the optical model, the interac- 
tion potential V, between the K-meson and the 4He nucleus 
has the same form. If we know V,, we can relate the effective 
radius rj"' of the strong interaction with the Coulomb interac- 
tion turned off ({ = 0) to the root-mean-square charge radius 
(2,, ) lI2: 

ria' =-ai/(rch2)'19. (3) 

The dimensionless coefficient a,  is not very dependent on 
the specific strong-interaction model (for example, 
a, = 2.32,2.52, and 2.89 for the rectangular well, the Gaus- 
sian potential, and the exponential potential, respectively). If 
we introduce the Coulomb potential into rj"' in accordance 
with Ref. 7, i.e., 

ri(") =r:" -4% ( ~ n  I rj8' /b I -pi), (4) 
we obtain the Coulomb-nuclear radius r';"' (PI is the con- 
stant to be calculated: Dl = 0.70 for the rectangular well and 
Dl = 0.74 for the separable Yamaguchi potential). If we take 
(2, ) I t 2  = 1.67 F for thea- article,^ we obtain ryl = - 94.8 
L -' and = - 120L -' for the Gaussian potential, ry' 
= - 87.3 L -' and r(,") = - 112L -' for the rectangular 

well, and so on. 
Coulomb renormalization of the effective radius is thus 

seen to be quite substantial. This is a specific feature of thep- 
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TABLE I. Results for kaonic helium. 

Note. The values of the 2p-level shift and width are taken from the papers 
cited in Ref. 5. The values of E,  y, etc. were calculated from (1) for the 
average values of the 2p-level shift and width without using the experi- 
mental uncertanties. We took = - 95/L = - 1.53 F-', which corre- 
sponds to the Gaussian potential V,(r) m exp( - ?/4). 

wave and is due to the presence of the "large logarithm" 
In Irj"'/{ 1 -In (aB/ro))l in (4). It has long been k n o ~ n ~ . ' ~  
that the Coulomb logarithm appears in the correction to the 
scattering length a t '  - a tJ  for thes-wave. For an arbitrary I, 
the logarithm In (aB/ro) appears only in the Coulomb correc- 
tion to the coefficient of k2' in the expansion for the effective 
radius7 while in the remaining terms of this expansion the 
Coulomb renormalization is of the order of r,,/aB 4 1. 

Using the values of rj"' given above, we have varied this 
parameter between - 85L -' and - 1 lOL -' (L = 62.0 F). 
For given r',"', AE,, and r,,, Eq. (1) gives us the scattering 
length a?' in thep-wave, and also the position and width of 
the remaining p-levels. 

It turns out that, in addition to the up-shifted atomicp- 
levels, the K -4He system has a deeper nuclear level that 
distorts the Coulomb spectrum. Its positions is sensitive to 
the shift AE,, and, to a lesser extent, to the effective radius 
rj"' (see Ref. 1 1 for further details). It is clear from Table I that 
the measured position and, especially, the width of the 2p- 
level of the K -4He atom cannot as yet be regarded as estab- 
lished. This is responsible for the appreciable discrepancy 
between the values ofs  and y calculated from variants 1-3 in 
Table I. We have varied r,, in the range 0-100 eV allowed 
by experiment. Calculations of E and y by the method de- 
scribed above show that the K -4He system can have a sta- 
tionary state with I = 1. Its binding energy and width are 
again of the order of a few hundred keV (Fig. I), i.e., they are 
very small on the nuclear scale. 

The mean radius of thep-state with a low (hoe 1) bind- 
ing energy is given by 

c,7/2, MeV 
C 

FIG. 1. Position and width of the nuclearp-level as functions of the width 
of the atomic 2p state (AE;, = 43 eV and I(;' = - 9 5 L  - I ) .  

where Pe0.7-0.8 is a constant that is not very sensitive to 
the shape of the potential V, (Ref. 11). For E-0.5 MeV, we 
obtain (r) e 2 . 5  F, which exceeds the range of nuclear forces 
by a factor of about two. 

The possible existence of a weakly-bound nuclear level 
is probably the most interesting consequence of the ob- 
served4p5 shift of the atomic 2p-level. For weak absorption, 
the nuclear level appears as a result of the rearrangement of 
the Coulomb ~pectrum. '~, '~ . '  Increased absorption is accom- 
panied by a transition from the rearrangement regime to the 
oscillator regime in the motion of the atomic levels.14 It may 
be shown that all the atomic nl-levels correspond to the rear- 
rangement regime if absorption in the system is not too large, 
i.e., 

where6 r' = 0.99 1 fors-states2 and f I"' = 1 for I> 1 (see Ref. 
11). 

3. Radiative transitions in hadronic atoms. A possible 
way of detecting the presence of the nuclear p-level in the 
K -4He system is to observe radiative transitions to this state 
from atomic levels. Transitions from the s- and d-levels 
A1 = I ' - I = + 1 are possible in the dipole approximation, 
but thes- and d-levels are not the first to be populated during 
transitions from high orbits in the K-meson. 

The general case of an E 1 tranition from an unper- 
turbed nl '-level to a nuclear YI-level is examined in Appendix 
A (v = 6 /A is the analog of the principal quantum number, 
where Y = 1, 2, 3, ... for the unperturbed Coulomb spec- 
trum). We shall now give formulas for the nd-tvp transition 
probabilities that are important for kaonic helium. In the 
case of a deep level (E)E, or Y( 1) the influence of the Cou- 
lomb interaction on the wave function of the nuclear state VI 
can be neglected, and we have 

where w ,  = 0.179 for K -4He and a = e2/+icic 11137. Since 
lrj"'aB I -' - rda,  the probabilities of radiative transitions 
vanish in the limit of zero-range nuclear forces (this is in 
contrast to the np-vs transition; cf. Ref. 2). Inclusion of the 
Coulomb interaction for r > r, leads to the additional factor 
C :  (v) i.e., 
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TABLE 11. Effect of the Coulomb interaction on the probability of transitions to thep-level. 

I I I I I 

Note. The functions C ,+ (v) are tabulated [see (a)]. As usual, 8.82 ( - 2) 
means 0.0882, etc. 

w (n ,  l*l+vl) =woCI* ( v )  , (8) and hence R = l o p 3 - 2 ~  for r',"' = - 95/L (the Cou- 

where w, corresponds to l=  0 and is given by (7). The gen- lomb correction will increase the transition probability by 

era1 formulas for C ,+ are somewhat unwieldy and are repro- roughly 20%). Since w(3d-vp) a v2 a &-' for v( 1, the y-ray 

duced in Appendix A. for the 3d-tvp transition, we have spectrum has a peak near w, = (g '/2) ( l / d  - 1/9) provided 
y < 1 . h 0  (see Appendix A). It is not clear at present whether 

64 o, v2 (9-vZ) this condition is satisfied (for this to be so, we must have r,, 
w ( 3 d - t ~ ~ )  = 7 --- 

6361 1 rj8)a, 1 [ (2-v) (4-v) (5-v) l 2  < 30 eV). We must therefore consider other ways of detect- 
ing the bound state of K -4He. 

2 v+4  1 v {(-) z ~ i (  2-v, - ( l+v)  ; 6-v; -( 1 - 3))}. (9) tion 4. The simplest way of generating this state is the reac- 
2 

The factors C (v) become equal to unity [see (A4)] as 
v 4 .  The numerical value of Cl* (v) for the 3d-vp and 
np-vs transitions are listed in Tables I1 and I11 (the latter 
case refers, for example, to thepp-atom2). 

To calculate the y-ray spectrum emitted as a result of 
3d-vp radiative transitions, and the absolute probability of 
these transitions, we must average (9) over the Breit-Wigner 
distribution. For a narrow resonance, this yields 

w (3d+vp) vZC,+ ( v )  
R =  = 0,97 

w (3d+2p) 1 r;')aB 1 
For variants 1-3 in Table I, Re v ranges from 0.23 to 0.30, 

K-+'Li+ ( K -  'He) +d 
in which one records deuterons emitted into the forward 
cone. Because of the cluster nature of the nucleus 
6 L i d  + a, the principal contribution to the cross section is 
provided by the triangular diagram of Fig. 2, which can be 
evaluated in a standard way. The function $,, (r) for the rela- 
tive motion of the d and a was taken in the approximation of 
zero-range nuclear forces, and the wave function for the sys- 
tem K -4He with 1 = 1 was taken for V, (r) = - V,S(r - r,). 
The corresponding Kd-scattering amplitude was taken out- 
side the integral sign at the point corresponding to backward 
scattering: 

TABLE 111. Coulomb corrections for np-vs radiative transitions. 

v 

Note. The values of the functions C$ (v) are multiplied by 10. The coeffi- 
cient p represents the correction for the effective range [see (AS)]. 
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FIG. 2. Feynman diagram for the K - + 6Li-+(K -a) + d reaction. 

fh.d=2fK.Y7Pd ( p d ) .  

where Fd is the deuteron formfactor and pd is the momen- 
tum transferred to the deuteron. We now reproduce the esti- 
mated cross section at K-meson energy corresponding to the 
excitation of the A(1520) resonance in the K -Nsystem, i.e., 
p,,, = 389 MeV/c; 

where I = 2 corresponds to the fact that A(1520) is a d-wave 
resonance, T,,/T,,, = 0.45 for A(1520), and the transition 
form factor is given by 

FK, (Af )  = j  i p d .  ( r ) i p ~ d  ( r )  elAtr dr3,  

where A ' ~ 2 0 0  MeV/c and A is the momentum transferred 
to the K -4He system. Under the above assumptions about 
the wave functions, the numerical calculation yields F,, 
~ 0 . 2 8  and da/dR (el, = 180") z 60 microbardradian. 

5. At first sight, the existence of a level with binding 
energy E - 0.5 MeV seems surprising, since the 2p-level shift 
in the K -4He atom is relatively small: S,, - 7. lop3 where 
S,, = AE,,,/(E jP!+ ,,, - E 9). We note, in this connection, the 
general criterion for the existence of a weakly-bound nuclear 
state. If we use perturbation theory in the scattering length3' 
to determine the level shift, and assume that a';) can be taken 
equal to the scattering length for a rigid sphere of radius r,, 
we obtain the following "critical" value for the parameter 
Snl: 

This parameter falls rapidly with increasing I. When 6 ~ 6  ("'I, 

the perturbation of the atomic spectrum must be regarded as 
strong, and the system may have a weakly-bound state 
whose position is determined by (1). 

The condition 6 R 6'") provides us with a rapid way of 
estimating the possible existence of weakly-bound nuclear 
levels in hadronic atoms. For example, for K -4He, I = 1, rJ 
a, =: 1/20andS ti)- ForK -Li, we have 161 = 1, AE,, 
= 2 + 26 eV, T2, = 55 + 28 eV, and S,, 
= (1.9 + 0.9).10-3. For r J a ,~0 .1 ,  we find from (11) that 

For ji4He, we have the estimates 

rola6-0.07, 6:;' = 1.7.10-'. 

If we calculate 6,, for the average 2p-level shift and 
width given in Ref. 17 (AE,, = SO+ 18 eV and T,, 
= 105 + 65 eV), we obtain S,, - 7- lop3. The lower value 

S,, - follows from ~ e f .  5 AE,, = 12 + 14 eV, 
T =0+,30eV. 2, 

In the above cases, the measured S2, is definitely greater 
than 6 ti' which is an indication that nuclear states with E 

and y which are low (on the nuclear scale) may be present. 
Moreover, estimates show that 6 -6'") for K -'Li and other 
systems (we cannot reproduce exact values because the ex- 
perimental data are still subject to considerable uncertainty). 
At any rate, all these systems deserve further detailed experi- 
mental study. 

Only the s- andp-levels were involved in the examples 
examined above. This is not surprising since the relative 
width of the region of rearrangement of the atomic spectrum 
(for ro(a,) decreases with increasing 

where 
CC 

2 m  
g = I V. ( r )  I r dr=V,ro2, 

0 

and V, is the characteristic depth of the strong potential. 
The rearrangement phenomenon consisting of a strong 

perturbation of the.atomic spectrum by a weakly-bound nu- 
clear level was first examined by Zel 'dovi~h'~ in connection 
with the question of electron energy levels in primary semi- 
conductors. It was shown12,13 that atomic s-levels are sensi- 
tive to a short-range potential if it contains a level (real or 
virtual) with a low binding energy &(fi2/2rn1.2,, and the width 
of the region in which the spectrum becomes rearranged was 
estimated ( -  rda,  ( 1 for I = 0). This phenomenon is now 
referred to as the Zel'dovich effe~t '~-~O (for states with arbi- 
trary angular momentum I ). Although the Zel'dovich effect 
has been investigated for s-levels in all its details,1~2~12~13~18~19 
it was only recently that it was shownz0 that it had a number 
of new qualitative features for I ZO. 

6. Exactly solvable model. So far, our approach has 
been based on the model-independent equation5' (I),  whose 
range of validity is defined by (2). The limits of the range of 
validity of this approximation can be established more pre- 
cisely by comparing it with the exact solutions of the Cou- 
lomb problem with a short-range interaction. To do this, 
consider the model potential 

g V s  ( r )  = - - 6 (r-ro) , 
2r0 

(13) 

where g is the dimensionless coupling constant. The discrete 
spectrum is then determined from the equation 

where Y = ( / A ,  z = U r o  (see Appendix C). As (4 (Cou- 
lomb interaction "turned off "), this equation assumes the 
form 

from which it follows that there is only one bound state in 
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FIG. 3 .  The product Ar, as a function of the coupling con- 
stant g[A = (2~) ' " ;  E is the binding energy). The solid curves 
are based on (14) and the broken curves on the approximate 
equation (1). The values of the parameter <ro = r d a ,  are in- 
dicated against the curve. 

each partial wave which appears forg > g, = 21 + 1. By con- 1 1 
- = ( I +  2b,br,)- 

sidering the scattering problem, we can readily find the scat- a e s  a, 
tering length and the effective range for the potential (13): -2% (In I % 1 r,+ co+cibr,), 

g1 -i 21-1 
a:" =ti1 ( 1 - g) , r = (  I - -) , (15) which is a generalization of the well-known Schwinger for- 

g m ~ l a , ~  obtained from (17) by substituting 6, = c, = 0, i.e., by 
where 51 and 7.1 represent the corresponding quantities for a neglecting corrections of the order of f ro. Similarly, for 
perfectly rigid (impenetrable) sphere of radius ro: states with 1 #O, we have25 

Z l + i  {-21 
til=alro , r " ~ = p ~ r ~  , 

1 
2 (21+1) -- 

1 1 -- 
a l = [  (21+1) !! (21-1)!!]-', pl = - . a ( c s )  I a ( ~ )  + -r[d,bro+O( (c,ro)2) 1. 

I 

(18) 
(21+3) (21-1) a1 ' 

When the Coulomb interaction is taken into account (i.e., The coefficients 61, CO, c1, and d depend on the shape of the 
f $01, the formulas become much more complicated. The strong potential V,(r), and explicit expressions for them are 
Coulomb-nuclear scattering length and the effective range given in Refs. 2 and 25. For the 6-function potential (13), we 
are then given by (see also Ref. 19). have 

I E l l  21+3 i, 
r;c81=fl  [-- +--- 2 -  1 ] . (16) 21+1 2q12 21+1 2q1 qlZg 

The functions 6, (x), 77, (x), and so on, where x = 2[r0, 
were determined earlier in Ref. 25 [see Eqs. (2.4)-(2.8)]. All 
these functions become equal to unity for f = 0 and (16) be- 
comes identical with (15). 

We have used (14) to calculate the binding energy in the 
ground state as a function ofg  for several values of the ratio 
fro = rda ,  (Fig. 3). We note that, when f = 0, the bound 
state appears only for g > 1, whereas for f > 0 it arises for all 
g > 0 (we then have A+[ as g-+O. It is clear from Fig. 3 that: 
(1) the uncertainty in the energy calculated from ( I )  does not 
exceed 10% when Aro <0.3, i.e., the binding energy is 
E < 0. lfi2/2m4, and (2) the range of validity of (1) expands 
somewhat as fro increases. For example, for the pp-atom, 
equation (1) is quite accurate up to E -  5-10 MeV. 

We now turn to the determination of the "purely nu- 
clear" scattering length aj"' from the Coulomb-nuclear 
length a?' found by low-energy phase-shift analysis. In a 
previous paper,2 we found that (I = 0) 

where C = - $(I) = 0.577 ... 
Figure 4 compares (16) and (17) for 1 = 0 (f > 0 corre- 

sponds to Coulomb attraction and f < 0 to Coulomb repul- 
sion). It is clear that the Schwinger formula is valid in the 
relatively narrow range in which r d a ,  < 1/20, but its accu- 
racy deteriorates rapidly as the parameter ro/a, increases. 
On the other hand, inclusion of corrections -ro (as de- 
scribed in Ref. 2) results in a considerable improvement in 
the situation. 

For 1 # O  states, we have from (16) 

where g = g,, i.e., l/aj"'. The first term in this expansion re- 
produces (1 8), and the correction - (fro)2 decreases with in- 
creasing I. An analogous picture arises for the Coulomb cor- 
rections to the effective range (see Ref. 26, in which the 
8-function interaction on the r = r, sphere is examined in 
greater detail). 

Our results show that (1), (17), and (18) have wide range 
of validity in the parameter Ar0 and r d a ,  . 
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FIG. 4. The ratio r d a ,  for the model described by (13) with I = 0 and 
g =go = 1 (a, = m). Curves 1, 2, and 3 correspond to the exact solution 
(16), formula (17), and the Schwinger formula (b, = c, = Oj, respectively. 

APPENDIX A 

Let us now consider the probabilities of electric dipole 
transitions (nl 'Lvl ,  I ' = I 1) in a hadronic atom. The spe- 
cific feature of this problem is that the shift of the upper n1'- 
level can be neglected, while the position of the lower (nu- 
clear) vl-level is arbitrary. We shall not reproduce any 
derivations and give only the final formulas. 

The E 1-transition probability can be factored as shown 
in (8). The first factor corresponds to { = 0: 

0 0  v k 2  wo ( n ,  l i l - .v l )  = P l f I I n , l f ~  
n c1-21 1 r(S) 1 ' 

where I> 1, 

We note that ({ ' 2' lrjS1l j-I  - ( r O / a B ) 2 1  '< 1 and the nu- 
merical factors P* decrease rapidly with increasing I: P ,+ 
= 0.533, P,f  = 6.35.102, P :  = 4.12.10-3. This leads to 

a corresponding reduction in the transition probability. 
The Coulomb factors C ;' will now be given for the case 

I ' = I + 1, which is the most important for hadronic atoms 
(fortheformulasforl' = I - 1,seeRef. 11). Whenn = I '  + 1 
(transition from the lower atomic level with orbital angular 
momentum I '), we have for 0 < v < I + 2 

The expression for C ,+ (v) in the case of a transition from an 
arbitrary atomic state (n = I '  + 1) is analogous to (A2) but 
contains the sum of n - 1' hypergeometric functions. The 
formulas become very unwieldy as n increases, but a simple 
expression is obtained in the limit n-a : 

c,+ ( v )  = ( 2  (1+1) (1+2) I1 ( v )  1 2 ,  

As Y-+O, i.e., for a deep (E%E,-) nuclear level, the Coulomb 
correction approaches unity: 

Cl* (v)  =I+c,*v+O (v2), ('44) 

where 

c,+=n'"r (Z+l ) l I ' ( l f51 , )  for 1 2 1 ,  
~o+=-'/3 H ~ , - = - 2 ~ ' ~ ~ r ( l )  lr(1i-  3 / , ) .  

With increasing v = { /A, the correction increases when 
I ' = I  + 1 and1>1,anddecreaseswhenI'=l- 1 o r I=O.  
For v - 1 (and small 1 ), the correction is already - 100% (see 
Table 11). Furthermore, we note that the coefficients c: are 
independent of n [the dependence on the principal quantum 
number n of the initial state appears in the higher-order 
terms in the expansion (A4j, beginning with v2]. 

To calculate the y-ray spectrum recorded experimen- 
tally, we must multiply the probability w(v) by the Breit- 
Wigner distribution 

Since ~ ( v )  cc Y * a w for v< 1 (the upper and lower signs 
correspond to 1' = I 1, respectively), we obtain the y-ray 
spectrum for nd-vp transitions, which has a peak at the 
frequency 

The peak vanishes for y > (2/fi)w0 = 1.155w0. The y-ray 
spectrum always contains a peak at the frequency 
w; = (wt + f /4) l t2  for transitions of the form ns-vp 
(I '  = I - 1). When y(wo, we have w,? = wo(l f f/8wi). 

The np-vs transition probabilities, corrected for the 
effective radius r,, are given by 

w (np+vs) =woCo+[l+phrsf 0 ( ( h ~ . ) ~ ) ] ,  (A51 

where (using the notation of Ref. 2) 

The Coulomb corrections (Tables I1 and 111) were calculated 
from (A2), (A3), and (A6). 

APPENDIX B 

It is well-known that the Schroedinger equation with 
the potential V = V, + V,, the sum of the short-range V, 

425 Sov. Phys. JETP 61 (3), March 1985 Popov et at. 425 



and the Coulomb V,(r) = - f /r potentials, can be solved 
analytically only in very rare cases. The fact that exact solu- 
tions can be obtained for the model defined by (13) is due to 
the fact that this potential is equivalent to the boundary con- 
dition 

The wave function p, (r) = rR, (r) can be expressed in terms 
of the Whittaker function in the case of the discrete spectrum 
(E = - il 2/2 < 0): 

Substituting (B2) into the mating condition (Bl),  and using 
the Wronskian 

we obtain (14). 
The curves of Fig. 3 were calculated with the aid of the 

tables given in Ref. 27 and the relation 

W,,l+jl, ( z )  =e-zfZz'+'G ( l f  I-V, 21+2; 2 )  , 

where G (a,y;z)-T(a,y;z) (see Ref. 28). The dashed curves 
were obtained from the approximate equation (1) with 1 = 0 
and 

which corresponds to the inclusion of the first Coulomb cor- 
r e ~ t i o n . ~ ~  Finally, thef = 0 curve was determined from (14') 
and the corresponding dotted curve from 

which gives the solution of (1) with f = 0. Here, a, = r,g/ 
(g - 1) > 0, r, = (4/3)ro. 

Figure 4 was calculated from (16). We note that the 
functions (,, v,, and so on, have different analytic form, de- 
pending on the sign of c. For example, for s-scattering, 

where 1 = 0,p = (81f and J , ,  N , ,  I,, andK, are Bessel 
functions. The formulas for r',") in thep-wave have an analo- 
gous form but are more unwieldy26 (the case f > 0 then corre- 
sponds to Coulomb attraction and f < 0 to Coulomb repul- 
sion). 

"I.e., for r-r,<a,, where rO is the range of nuclear forces and a, = (5  1 
is the Bohr radius. We are using the atomic system of units in which 
fi = m = e = 1; the unit of binding energy is E, = me4/fi2 and the unit of 
length is L = fi2/me2 = 15 a,. 

"See Ref. 5. Herep(r) is the density of nuclear matter and ii is the effective 
KN-scattering length, extrapolated to the heavier K-mesonic atom in 

accordance with the level shift and width. 
3'See Eq. (5) in Ref. 15: 
4'We note that Refs. 1 and 2 give an incorrect esimate for the width of the 

region in which the spectrum becomes rearranged in the case of states 
with nonzero orbital angular momentum. For I> 1, the nuclear level suc- 
cessively crosses each of the atomic nl-levels as the coupling constant g 
increases. The term-crossing region is very narrow (Ago: ( r d ~ , ) ' + ~ ' ~ ,  
and the entire range of values of g in which the nuclear level crosses the 
atomic spectrum is much wider and is given by (12). The reader is re- 
ferred to Ref. 20 for further details. 

"This equation is widely used in the theory of hadronic atoms (see, for 
example, Refs. 2,3,6, and 11). It can be deduced by analytic continuation 
of the effective-range expansion (in the presence of the Coulomb interac- 
tion) to the discrete s p e ~ t r u m . ~ . ~ ~ . ~ ~  Another way of deriving it is based 
on the method of evolution with respect to the coupling constant,23 de- 
scribed in Ref. 24. 
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