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A quantum-statistics theory is derived for the processes which occur in small Josephson junctions 
at low temperatures. When the current, the temperature, and the quasiparticle admittance are all 
below certain limits, the dynamics of the system is similar to that of a quantum-mechanical 
particle in a one-dimensional periodic potential. The possible occurrence of "Bloch oscillations" 
in the junction is analyzed on the basis of an adiabatic Hamiltonian. The current-voltage charac- 
teristic of the system is derived. The factors most important in suppressing or masking the Bloch 
oscillations are discussed. The possibility of observing these effects experimentally is analyzed. 

1. INTRODUCTION Our purpose in the present paper is to analyze the pro- 
"Secondary" (or quantum microscopic effects cesses which occur at an isolated junction for sufficiently low 

in weak superconductivity have recently attracted consider- levels of the perturbing factors: the current1 (t 1, the tempera- 
able interest. These effects, which were discussed as early as ture T, and the quasiparticle admittance Y(w). Since the 

1963 by Anderson,' occur because the Josephson phase dif- translational properties of the phase difference p are crucial 

ference q, cannot in general be treated as a classical variable the we begin with this 

and must be instead treated as an operator which does not 
commute with the electric Josephson-junction charge opera- 
tor Q: 

[cp, Q]=2ei .  (1) 

Until recently, attention has focused primarily on the case in 
which the elementary value 

EQ=e2/2C PI 
of the electrical energy of the junction Q2/2Cis not too large: 

EQ<<max [ E j ,  T I ,  (3) 

where EJ is the amplitude of the Josephson coupling energy, 

U j = - E j  cos (P, (4) 

Cis the capacitance of the junction, and Tis the temperature 
(which will be expressed below in energy units). Under con- 
dition (3) a nonvanishing value of the commutator in (1) leads 
to (first) small quantum fluctuations of p and Q and (second) 
a nonvanishing probability for a macroscopic quantum tun- 
neling; see the review by Likharev.' Neither of these effects, 
however, caused qualitative changes in the behavior of the 
junctions, and each can be described phenomenologically by 
simply introducing an effective temperature T * > T in the 
"classical" dynamic equations of the Josephson e f f e ~ t . ~  

The consequences of second quantization may provide 
significantly more information in the case E, 2 EJ 2 T. Al- 
though several attempts have been undertaken to analyze 
this case (e.g., Refs. 4-9), the most specific processes (more 
on this below) have escaped the attention of these authors, 
apparently because interest was focused on relatively com- 
plex disordered structures consisting of many junctions. 
Only recently'o*" has the simplest case, in which a current 
I ( t  ) fixed by an external system flows across a single junction 
of small area, been examined in detail. However, Rogovin 
and Nagello and Widom et al." reached fundamentally dif- 
ferent conclusions regarding the properties of such a junc- 
tion, since they (implicitly) made opposite assumptions re- 
garding the translational properties of the variable p. 

2. TRANSLATIONAL PROPERTIES OF THE PHASE 
DIFFERENCE p 

If the voltage V = Q /C across the Josephson junction is 
not too high, specifically, if 

~ I V I K A ~ . ~ ( T ) ,  (5) 

where A1,,(T) are the energy gaps in the superconductors 
which form the junction, we know (Ref. 12, for example) that 
all the properties of the junction can be described successful- 
ly by the "adiabatic" Hamiltonian 

h 

Here H, and ( x )  are respectively the Hamiltonian and the 
set of coordinates of the ensemble of quasiparticles, which 
serves as a heat reservoir in this case. This ensemble is relat- 
ed to the superfluid subsystem in which we are interested 
through the quasiparticle current operator I,, which ap- 
pears in (6) in the same way as the external current I (t ). We 
assume that this external current is a classical function of the 
time, as we are justified in doing if the impedance of the 
source of this current is sufficiently high: IZ, Y 1 %  1. 

If the energy dissipation rate, determined by I,, and the 
external current I (t ) are sufficiently small, the Hamiltonian 
(6) takes the very simple form 

This Hamiltonian and commutation relation (1) are com- 
pletely analogous to those which describe the properties of 
two well-known systems: 

1) a planar quantum pendulum with moment of inertia 
(4/2e)2C, angular momentum (N2e)Q, and deviation angle p 
from the equilibrium position p = 0 in a gravitational force 
field; 

2) a one-dimensional quantum particle with a mass (ti/ 
2e)2C, momentum (4/2e)Q, and coordiante g7 in the field of 
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the periodic-potehtial UJ (q, ). 
At energies which are not too low (E 2 Ej) ,  however, 

the properties of these two systems are fundamentally differ- 
ent, because of the different translational properties of the 
variable q,. Specifically, after the translation 

q+q+Zn (8) 

the state of the quantum pendulum is precisely the same as 
its original state, so that in the q, "coordinate" representa- 
tion its weight function is periodic with a period of 27r, lead- 
ing us immediately to the well-known picture of a discrete 
energy spectrum (Ref. 13, for example). For the one-dimen- 
sional quantum particle, in contrast, the states before and 
after translation (8) are fundamentally different, so that we 
must incorporate in the wave function some Bloch compo- 
nents with arbitrary quasimomenta fik (Refs. 14 and 15, for 
example): 

We then immediately find the band structure of the energy 
spectrum and other effects which are well known in solid 
state physics. For Josephson junctions, the first of these pos- 
sibilities was adopted (implicitly) in Ref. 10, while the second 
was adopted in Ref. 11 (again, without proof).'' 

Obviously, if we wish to determine the actual transla- 
tional properties of the Josephson phase difference q, we 
must go beyond Hamiltonian (7); e.g., we might use the adia- 
batic Hamiltonian (6). The question can be solved most easi- 
ly in the case I (t ) # 0. In this case, translation (8) leads to a 
finite changein the term - (fi/2e)Z (t )q,, which describes sim- 
ply a change in the energy of the current source: 

AE,=-2n(fi/2e) I ( t )  =-@,I(t) ZO. (10) 

In principle, this change can be measured arbitrarily accura- 
tely, so that the states of the junction before and after trans- 
lation (8) are fundamentally different. As for the value I = 0, 
we note that the same result could be obtained for it either 
from continuity considerations or by the following ap- 
proachiwe cannot assume that the operator I,, which fig- 
ures in H in precisely the same way as the current I ( t  ), is ever 
exactly zero, so that the states before and after the 27 phase 
translation may also be distinguished, in principle, by the 
change in the energy of the heat reservoir. 

We thus see that the states of a Josephson junction 
which differ in phase by 27r are always distinguishable in 
principle. For this reason, the properties of junctions with 
small dimensions are similar to the properties of a particle in 
a one-dimensional potential (although the properties are not 
analogous in the two cases because of the different nature of 
the scattering processes). If Z(t ) and I, ( x )  are sufficiently 
small we can thus describe the processes in the junction by 
perturbation theory, using as a basis the system of Bloch 
functions (9), which are periodic in k with a period 1. 
Since the Schrodinger equation for the unperturbed Hamil- 
tonian Ho is, in the q, representation, the well-known Math- 
ieu equation, the properties of these basis functions are well 

FIG. 1. The function E'"' ( k )  for a junction with EQ SE,; diagram of the 
discrete transfer of a Cooper pair when the "quasicharge" q = 2ek crosses 
the boundary of the Brillouin zone (q = e) .  

known. In particular, in the most interesing case, EQ 2 E j ,  
the energy spectrum consists of a lower band E "'(k ), which is 
separated at EzEQ from the upper bands (which essentially 
merge) by an energy gap of magnitude Ej (Fig. 1). 

3. LANGEVIN OPERATOR EQUATION FOR THE 
QUASICHARGE 

If the temperature T is quite low, then in the case Z(t ), 
I, {x)-+O the system will be trapped in the lower energy 
band (s = 0), so that the band index s cannot vary over time; 
only the quantity q = 2ek can vary. This quantity differs 
from the charge Q to precisely the same extent that the quasi- 
momentum of a quantum particle in a crystal differs from its 
momentum. We could thus naturally call Q a quasicharge. 
The most convenient technique for describing the changes in 
Q is to use Langevin operator equations, which are used ex- 
tensively in quantum radiophysics for systems of weakly 
coupled harmonic oscillators (Ref. 17, for example). 

To derive this equation for our system we break up q, 
into two components, 

in such a way that q,, is related to q by a commutation rela- 
tion analogous to (1): [p,, q] = 2ei. The remainder of the 
phase operator, q,, , then describes only interband transi- 
tions, and it commutes with q (Ref. 15). In the rzpresentation 
in which the time dependence associated with Ho (7) is incor- 
porated in the state vector of the system, Hamiltonian (6) 
corresponds to the following system of operator equations: 

4=1(t) - I ~ ,  ( 124 

Here the operator Vis determined by its matrix elements in 
the Schrodinger picture: 
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It is also a simple matter to derive the matrix elements of the 
commutator [p, , ps 1: 

where the e, "'(9) are the elements of the operator p, , 

which are expressed in terms of the solution of the Mathieu 
basis equation. 

Solving Eqs. (12) by perturbation theory, we find, in 
second order in the interaction, 

q = l ( t )  -[(I,)+Y ( t )  I .  (15) 

The random operator 7 ( t  ) satisfies the equation 
t 

(where H is the unperturbed Hamiltonian of the heat reser- 
voir, H, ), and (I, ) satisfies the equation 

t t' 

where (...) means an average over the states of the unper- 
turbed heat reservoir. 

Making the usual assumptions regarding the continuity 
of the energy spectrum of the heat reservoir, we can use the 
well-known18 statistical properties of the solution of an 
equation of the type in (16): 

<T ( t )  >=O, m 

fiw fio 
S I ( o ) = n - ' R e Y ( o ) B ( o , T ) ,  @(o,T)=-c th- ,  

2  2T 
( 18'4 

where Re Y is the real part of the complex admittance of the 
junction due to the quasiparticle current I,, given by 

Here u(E) is the state density of the heat reservoir near the 
energy E, f (E) is the energy distribution of the reservoir, 
which we assume to be an equilibrium distribution, 

f ( E )  =Z-' exp {-EIT),  Z = ,f dEo ( E )  eap {-Eli"}, (20) 
and the I, are the matrix elements of the operator I,, 

Z,=(E*fioIZ,I E ) .  (21) 
To find the expectation value (I, ) we note that in the 

energy representation we are concerned with only the diag- 
onal matrix elements of the commutator in (17), 

which can be found quite easily: 

= 2 E r n  1 Z 1 ' o [ E m  ( t )  I. (23) 
n 

Expanding the operator p in a Fourier integral, and trans- 
forming from a summation to an integration in (22), we find 

K ( a )  = lirn j d ~ o  ( E )  f ( E )  
6-+U 

However, using expression (19) for Re Y(w), and using the 
Kramers-Kronig dispersion relations, we see that K (o) is 
none other than the total quasiparticle admittance of the 
junction: K (a)= Y (0). Consequently, using (l2d), we can put 
Eq. (1 5) in the form 

i=l(t) -T ( t )  -  doe-'@'^ (w)  V.. (26) 

As long as we are concerned with the single-band ap- 
proximation we can replace Vby d E  'O'/dq, according to (15). 
Furthermore, our adiabatic approach [see (16)] is valid only 
if all of the important frequencies for the changes in q and V 
satisfy the condition &(A,,, (T ). The frequency dispersion 
of the quasiparticle admittance Y (w), on the other hand, is 
important only at frequencies on the order of A, , / f i ,  so that 
we can set Y (a) = Y (0) = G in (26). Under these assump- 
tions, Eq. (26) takes the simple form 

{=I  ( t )  -G 
dE'" ' (9)  -I ( t )  . 

dq 

We proceed now to the solution of this equation. 

4. BLOCH OSCILLATIONS AND THE CURRENT-VOLTAGE 
CHARACTERISTIC 

For the time being we ignore the Langevin operator of 
the "fluctuation current" 7(t ). The quasicharge q is then a 
well-defined classical variable according to Eq. (27). Finding 
the solutions q,(t ) for various values of the average current7 
(the average here is over the time), we can also find the cur- 
rent-voltage characteristic (cvc) of the junction, Fv), since 
an averaging of (27) over the time gives us 

- 
V=G-' (1-7). (28) 

In particular, if the current remains constant over time, 
I (t ) =I,  then for all currents below the threshold value 

It=G (dE'O'ldq) ma, (29) 

there exists a stable solution go = const (point A in Fig. 1). It 
can be seen from (28) that such low currents correspond to a 
linear initial region of the cvc: F= G -T (Fig. 2). 1fTis in- 
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FIG. 2. Voltage-current characteristic of a junction for various values of 
the ratio EJ/EQ. 

stead greater than I , ,  then the solution qo(t ) is periodic in the 
time with a frequency w, which increases monotonically 
with increasingz Because of the strict 2e periodicity of the 
function E "'(q), this frequency is 2?r(a/2e), so that the rela- 
tion 

a,= (nle) ( I - G V )  (30) 

holds in all cases, according to (28). Here the second term in 
(28) partially cancels the first, so that a region with a negative 
slope, R, = dF/dT< 0, appears on the cvc of the junction 
(Fig. 2). 

The oscillations in (30) are an exact analog of the "Bloch 
oscillations" (or "Stark oscillations") which are well-known 
in solid state theory and can arise in spatially periodic con- 
ducting structures to which a static electric field is applied 
(Refs. 14 and 15, for example). Although we know of no 
direct experimental detection of such oscillations, the result 
of their quantization-the so-called Wannier-Stark energy 
ladder14s'9-has apparently been detected in several experi- 
ments with narrow-gap s emicond~c to r s .~~~~ '  In experiments 
with semiconductor superlattices with extremely thin ( -  1- 
nm) layers it has been possible to observez2 a descending cvc 
region induced by Bloch oscillations. 

To the best of our knowledge, Eq. (30) was first written 
for Josephson junctions, in an incomplete form (a, = G/e ) ,  
by Widom et a1.,23 who did not prove it (it was written essen- 
tially on the basis of dimensionality considerations). This 
equation was derived by Widom et al. in Ref. (1 1), in the 
same incomplete form, on the basis of an analogy between 
our system and a quantum particle, although the validity of 
this analogy was not proved. Finally, two of the authors of 
the present paper made a brief report in Ref. (24) of the deri- 
vation of Eq. (30), in its general form, from Eq. (27). 

Since the oscillations in (30) are of fundamental impor- 
tance to the dynamics of small Josephson junctions, we will 
"translate" the familiar description of this process in solid 
state theory14.15 into the language of Josephson junctions. 
We consider the most graphic case: EJ <EQ (Fig. 1). In this 
case the macroscopic quantum tunneling of the phase 
through the maxima of the potential UJ is so intense that the 

state of the junction is described, not by any classical value of 
p ,  but by a broad wave packet, (9) ("broad" along the p 
scale). According to the uncertainty relation ApAq 2 e, such 
a packet can have a small width along the scale of the quasi- 
charge q in the limit T 4 ,  so that q is nearly a classical 
variable. 

As long as the value of q is not close to any of the points 
ne, the corresponding wave number k = q/2e does not coin- 
cide with the half-period of the reciprocal lattice of the po- 
tential UJ (p ); accordingly, the reflection of Bloch wave (9) 
from the maxima of the potential UJ is slight. In this case, 
the packet in (9) is almost a simple plane wave exp (ike, 1,  and 
the expectation value (over the quantum ensemble) of the 
supercurrent, (I, ) a (k lsin p Ik ), is essentially zero. Ac- 
cordingly, at q fne  there is simply a recharging of a capaci- 
tor with the difference between the currents I (t ) and (I, ) 
(point A in Fig. 1). This result can also be seen from Eq. (27) 
when we note that with q + ne the expectation value (over the 
ensemble) of the real charge Q is approximately equal to 
(q - ne), so that we have2' 

< Q > = Z ( t )  -<Q>/.t,  .t=C/G. (31) 

When q approaches the boundary of the first Brillouin 
zone (e.g., the value q = e; see points B-D in Fig. I), however, 
the coherent above-barrier reflection of the Bloch wave from 
the maxima of the potential UJ leads to the formation of an 
intense standing wave with a wave number k=; 1/2. Here the 
expectation value of I, becomes nonzero, and as q cuts 
through the crest of the lower zone (as it goes from B to D in 
Fig. 1) the supercurrent transfers precisely one Cooper pair, 
A(Q ) = - 2e, from one superconductor to the other. Ac- 
cordingly, at point D the junction is recharged, 
(Q ) z q  - 2 e z  - e, so that it will subsequently undergo a 
reverse recharging by the current (3 I), to the value + e; then 
the process will repeat at the frequency (30). It is important 
to note that although this system also contains "ordinary" 
Josephson oscillations with the frequency w, = 2eF/fi these 
oscillations are of negligible importance in the expectation 
values (over the ensemble) of V and Q. 

Returning to the cvc, we note that although its shape 
depends slightly on the relation between EQ and E,, we have 

(j2-I) '12 

p i -  for E,BEQ 
2 -  j -  for E Q B E J 7  

(32) 

wherev = F/V,, j =7/1~ > 1, and Vt = G -'It, the thresh- 
old value It itself depends strongly on this relation. If EQ 
( E j ,  both It and V, are exponentially small: 

(n/2) 6("G/e for E,BEQ 
I* =* { (33) 

eGIC for E J ~ E Q '  

where S 'O' is the width of the lower energy band, given in the 
case E, )EQ by 

13(~)W?o, exp  { - 8 E J / f i o p ) ,  h o p =  (8EQEJ)"' .  (34) 

If now we pass not only a direct current but also an 
alternating current through the junction, I (t ) =I+ I, 
cos wt, this current can synchronize the Bloch oscillations in 
(30) both at the fundamental frequency w, = w and at its 
harmonics and subharmonics w, = (n/m)o. According to 
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FIG. 3. Effect of an external microwave current of amplitude I, on the 
voltage-current characteristic of a junction with E,/EQ = 1.  

the general formula in (30), this effect gives rise to strictly 
parallel "resistive steps" with an identical slope R, = G - ' 
on the cvc (Fig. 3). These steps (or their continuations) inter- 
sect the current axis at the values 

P=Z,,,,= ( d m )  2ef, f=o/2n. (35) 

It is quite obvious that this phenomenon could in prin- 
ciple be exploited to develop a fundamental current stan- 
dard, which would make it possible to close the "metrologi- 
cal triangle" for the quantities w, I ,  V (along with the 
"ordinary" Josephson effect and the quantum Hall effect).24 

5. INTRABAND FLUCTUATIONS 

Let us examine the effects which disrupt the coherent 
Bloch oscillations. We begin with fluctuations of q in the 
lower band, whose sources are described by the Langevin 
term?(t ) in Eq. (27). As long as the fluctuations Q = q - q,(t ) 
are small, we can-in precisely the same manner as in the 
"classical" theory of the Josephson effect (Chap. 4 in Ref. 
3)-linearize Eq. (27) in terms of these fluctuations, trans- 
form to the Fourier representation, and immediately calcu- 
late the symmetrized spectral density of the quantity 4. With 
I (t ) =7we find by this procedure 

s, (0) = 
[ I  + (oT~)-']-' SI (o) for I f I S I t  (36) , 
(1 + I Rd llR)- y, 1 a, 1' SI (O - ~ O B )  

u 
n for I T  I> It 

where the moduli of the coefficients a, (w) in the limit w 4  
decrease rapidly with increasing n (a, = I), especially if 
I7 I ,I,. 

As Eqs. (36) show, we have S 4 ( w ) 4  as w--+O under the 
condition I? 1 <I,, so that the system simply undergoes small 
fluctuations near the value of q,. At I? I >I,, however, the 
value of Sq (0) is nonzero, so that there is a nonzero diffusion 
of the total phase of the Bloch oscillations, 0 = w, t + rQ/e, 
i.e., these oscillations have a nonzero line width 2 r B .  If the 
fluctuations satisfy the condition for a classical nature, 

then S, (w) is constant over the interval 0 < w 5 rB , and the 
line has a Lorentzian shape with a half-width 

rB=n (n / e )  '8, (0). (39) 

According to (36) and (39), at currents~slightly above I, the 
line half-width rapidly approaches the value 

rT= (n /e )  'GT. (40) 

If condition (38) does not hold, i.e., if quantum fluctu- 
ations are predominant,3' we can estimate TB by equating 
the mean square value of the fluctuations of the instantan- 
eous Bloch frequency, & = (r/e)a, to the contribution of 
the Langevin force in the band 0 < w 5 T,. If the current is 
not too small (T- I, 2 I, ), we find by this procedure 

r,=rT (1-GR,) -', RoxRQ=nfi/2e2. (41) 

The expressions given above for TB are quantitatively 
correct under the condition I?, (w,, but they can also be 
used to estimate the values of the parameters for which the 
intraband fluctuations completely "smear" the Bloch oscil- 
lations. For this purpose we must equate T, to the charac- 
teristic value of w,, which is (r/e)I,. We then find the fol- 
lowing conditions under which the effects of the thermal and 
quantum fluctuations, respectively, are small: 

We note that the quasiparticle conductance of the junc- 
tion, G -', must be substantially larger than the quantum 
unit of resistance, RQ z 7  k f l .  On the other hand, narrow- 
band Josephson oscillations are possible only if GR, , 1. For 
E, 2 E,, therefore, it is the value GR, - 1 which serves as 
the boundary between the two possible oscillation effects in 
Josephson  junction^.^' 

6. INTERBAND TRANSITIONS 

Bloch oscillations can also be disrupted by transitions 
of the system to upper bands. These transitions are analyzed 
more conveniently by switching from Langevin equations 
(12) to equations for the density matrix p"'(q,q'), averaged 
over the heat reservoir. We will write the conditions (which 
follow from these equations) under which the probabilities 
for interband transitions are small, since these conditions 
lend themselves to a simple physical interpretation. 

Thermal excitation to the higher-line bands is negligible 
as long as Tis below the energy gap between the fundamental 
value (s = 0) and the next higher band (s = 1). We therefore 
have the conditions 

A current may also cause an excitation to higher-line bands 
through Zener tunneling.14 This effect will be kept weak if 
the quantum of frequency of the higher significant harmonic 
of the function q,(t ) is smaller than the energy gap between 
the bands: 
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Finally, a nonzero quasiparticle conductance G leads to 
a loss of coherence of the states with different values of q over 
a time on the order of .r = C /G. This effect is unimportant as 
long as the corresponding "smearing" of states along the 
energy scale, S E z f i / ~ ,  is much smaller than the energy gap 
between the lower and upper bands: 

where w, = (.rr/e)I,. 

7. CONDITIONS FOR EXPERIMENTAL OBSERVATION 

The set of relations (42)-(46), the inequality IT ( 2 I,, and 
the conditions for the applicability of our analysis 
[eV, (A,,, (T)] determine the conditions for an observation 
of the Bloch oscillations in Josephson junctions (the first step 
might be to simply measure cvc of the type in Figs. 2 and 3). 
A comparison of these conditions shows that if EJ)EQ the 
effect will be very difficult to observe because of the expon- 
entially small width of the lower band, S 'O', in (34). Accord- 
ing to (42) and (46), this circumstance will lead to a slight 
smearing of the oscillations by fluctuations. On the other 
hand, if E, falls below 2EQ, restrictions (44) and (45) will 
loom extremely large. Accordingly, for fixed dimensions of 
the junction, i.e., for fixed values of C and EQ,  we should 
choose a Josephson coupling force such that E, is compara- 
ble in magnitude to EQ , more precisely, such that E, - 2E,. 
When this choice is made, the conditions written above re- 
duce to 

To estimate the parameter values, we choose the small but 
attainable capacitance C ~ 3 - 1 0 - ' ~  F, i.e., EQ = e2/2C 
=: 5.  10WZ4 J, which corresponds (for example) to tunnel junc- 
tions made from lead alloys with an area S z 0 . 1  pm2. The 
value E, =: 2EQ is reached at I, =: 30 nA in such a junction; 
i.e., we have j, = Ic/S=:30 A/cm2. Such a critical current 
density is a completely typical value for tunnel junctions. 
The threshold voltage V, of such a junction would be 
V, =:0.5e/C=:30 pV for 2A/e=: 3 mV, so that the adiabatic 
Hamiltonian (6) which we have used should still be com- 
pletely suitable. Assigning the product I, G - ' the complete- 
ly realistic value of 10 mV, we find G - ' =: 3.10' a. This value 
is much larger than RQ, so that conditions (46) hold over the 
frequency range lo9 Hz 5 w, / 2 ~  5 101° Hz at tempera- 
tures5' T40.3 K. 

This region of parameter values may not be the best 
possible choice. Nevertheless, these estimates clearly reveal 
the main difficulties which must be overcome in the design of 
an experiment: It is necessary to fabricate junctions of small 
area, to use low temperatures, and to keep the technical fluc- 
tuations of the current at extremely low values (the effective 
amplitude of the technical fluctuations must be much lower 
than the threshold current I , ,  which is -0.1 nA in our case). 
However, all of these difficulties can be overcome at the 
present state of the art in thin-film technology ar.d in low- 

temperature experimental techniques, so that we might hope 
to see an early experimental observation of the effects dis- 
cussed in this paper. 

8. CONCLUSION 

We have used the simple adiabatic Hamiltonian in (6) to 
derive a theory for some extremely specific processes which 
should be observed in Josephson junctions of very small area 
at extremely low temperatures. The picture of these pro- 
cesses drawn above, including Bloch oscillations at the fre- 
quency in (30), seems to us to be quite realistic for junctions 
with parameters on the order of those described above. 

Nevertheless, we must stress the urgent need for the 
derivation of a microscopic theory for such effects, based, for 
example, on the familiar tunneling Hamiltonian,12 to which 
some terms Q '/2Cand - (fi/2e)I ( t  )p are added. Such a the- 
ory would automatically incorporate the quantization of not 
only the electric charge carried by the supercurrent but also 
the charge carried by the quasiparticle component of the 
current (judging from the results of Refs. 27 and 28, 
allowance for this quantization will simply expand the re- 
gion of parameters in which narrow-band   loch oscillations 
occur). Finally, the microscopic theory may answer the 
question of how Bloch oscillations are related to other conse- 
quences of the quantization of electric charge which are im- 
portant at e2/C2 A(T) (Ref. 29, for example). 
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