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It is shown that when current flows perpendicular to an interface between two immiscible liquid 
metals, the interface becomes unstable under the action of the electromechanical forces that are 
concentrated near the surface and are due to disequilibrium between the electrostatic forces 
acting on the ions and the force of the electrons that drag the ions. The instability manifests itself 
in generation of capillary waves and in an effective reversal of the sign of the surface-tension 
coefficient. For a given metal pair, the instability sets in at a certain polarity of the current and 
when the current density exceeds a threshold value. The feasibility of inducing instability during 
thermal breakdown of semiconductors that are metallized when molten is considered. 

I. INTRODUCTION AND BASIC RESULTS 

The present paper is devoted to the stability of a plane 
interface of immiscible liquid metals carrying an electric 
current perpendicular to the interface. A known problem, 
the stability of a plane liquid-metal surface in an electric 
field, was dealt with by Frenkel.' The surface is stable be- 
cause the electric field E acting on the surface charges pro- 
duces in the metal an additional negative pressure E 2/8n-. In 
principle, the same circumstance can cause instability at the 
interface of liquid metal. This latter instability, however, in a 
perpendicular electric field, calls for special investigation, 
for in this case an electric current flows and produces elec- 
tromechanical (EM) forces that act alongside the already 
mentioned electrostatic field and will be shown to exceed the 
latter in a number of interesting cases. 

EM in a metal are due the imbalance (electron 
wind) produced, on the electron mean free path I ,  between 
the force exerted on the ions by the external field and the 
force with which the electrons act on the ions in the course of 
scattering. To understand the importance of the EM forces 
to the metal interface it suffices to use their estimate, given in 
Ref. 3, for a current parallel to the interface between crystal- 
lites. Per unit area, these forces are of the order of jopF/e, 
where jo is the current density andp, the Fermi momentum 
(this estimate will be confirmed in the main part of the paper 
also for the interface of liquid metals with different current 
direction). Obviously, these EM forces, which are linear in 
the field, prevail over the force E 2/8?r if the field is not too 
high. They become comparable when E a ap,/e, where a is 
the electric conductivity of the metal. For typical metals this 
field is fantastically strong, - 10'' W/cm. 

The EM force density F is uniquely expressed, accord- 
ing to Ref. 4, in terms of a nonequilibrium increment f (p, r) 
to the electron Fermi distribution function fo of the elec- 

face stability calls therefore for simultaneous solution of the 
hydrodynamic equations with the kinetic equation for the 
electrons and the electrodynamics equations. The situation 
is simpler, however, because the electronic processes can be 
regarded independently of the relatively slow hydrodynamic 
motions by assuming that the electron subsystem follows the 
latter adiabatically. Supporting this assumption are the 
short characteristic electron-relaxation times (of the Max- 
well time and the relaxation time in the kinetic equation) 
compared with the period of the waves on the interface. In 
addition, the action of the magnetic field H of the current on 
the electron distribution function can be regarded small 
enough and neglected, (er/mc)H(l (c is the speed of light 
and m is the electron effective mass). This limits in turn the 
current density and the system size dimension transverse to 
the current. To avoid complications due to the boundary 
conditions on the side surfaces, we shall nevertheless assume 
the system to be long compared with the other characteristic 
lengths, including the hydrodynamic ones. 

One more simplification is neglect of the displacement 
currents, since the metals have high electric conductivity. As 
a result of these simplifications f (p, r) is determined by the 
kinetic equation, by the conduction-current continuity 
equation, which is equivalent to the local electroneutrality 
equation5 

and by the equation V X E = 0. " Even in this case, however, 
the problem is quite complicated. Further simplification and 
a qualitative interpretation of the instability require a de- 
tailed analysis of the EM forces for different current direc- 
tions relative to the interface. This analysis is presented in 
Secs. 2 and 3. Here we report briefly the main results for 
specular reflection of the electrons from the surface. 

trons: If the current is perpendicular to the plane surface, the 
a Y a e  F a = - -  --- a J ~ a a ( ~ ) f ( ~ ?  r)dXp, (1) EM forces are also perpendicular to the surface, but are op- 

axe axs ( 2 r ~ A ) ~  positely directed away from its two sides, so that the total 
where AaB is a tensor determined by the electron energy and force acting on both metals is zero. For each metal, the EM 
p is the electron quasimomentum. The problem of the inter- force per unit surface area is estimated at k, fop,/e, where 
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k, is a numerical factor that depends on the conditions of the 
passage of the electrons through the interface. The mechani- 
cal effect of the EM forces constitutes in this case deforma- 
tion (compression or tension) of the metals in the subsurface 
layers. 

If the current is parallel to the interface, the EM forces 
act along the surface, likewise in opposite directions on its 
two sides. The total force acting on the two metals is zero. In 
this geometry the EM forces lead to relative motion of the 
metals along the common boundary. The force per unit sur- 
face of each metal is estimated at kt fop,/e, where kt is a 
numerical coefficient that depends on the conditions of the 
passage of the electrons through the interface and is not 
equal to k, . Moreover, cases are possible when one of these 
coefficients is noticeably smaller than the other. For exam- 
ple, if the coefficient T of electron passage through the inter- 
face is close to unity, then k, (kt and the normal component 
of the EM forces is small. This is the situation for a pair of 
metals whose electron Fermi energies differ little, and the 
probabilities of electron scattering by the ions differ substan- 
tially, so that the electric conductivi.ties of the metals are 
unequal. On the contrary, if T< 1, then k, )kt and the tan- 
gential forces are considerably weaker than the normal ones. 

Consider now the waves on the interface. The EM 
forces for this case are calculated in Sec. 4, and the waves 
themselves are investigated in Sec. 5. We present below a 
qualitative description of the main results. In the calculation 
the EM forces one cannot, strictly speaking, separate the 
normal and tangential current components, since the cur- 
rent changes direction in a subsurface layer of thickness l. 
Here, however, in the qualitative description, we shall as- 
sume this separation and justify the assumption by the fact 
that the wavelength is large compared with 1 in both metals. 
In the absence of EM forces on the interface, internal capil- 
lary waves are present and attenuate weakly if the viscosities 
of the liquids are small. The EM forces produced by both the 
normal and tangential components of the current alter the 
wave dispersion equation on the surface, but the main effect 
is due to the tangential component. This is shown by the 
following arguments. 

Assume that a low-amplitude plane wave is present on 
the surface. The action of the EM forces on the surface of the 
liquid is determined by a layer of thickness I near the surface 
(in the estimates that follow we assume for simplicity that the 
parameters of both metals, e.g., the electron mean free paths, 
the viscosities, densities, etc., are of the same order). We con- 
sider first the effect of the tangential component of the cur- 
rent. Along the surface, from the point of its maximum to its 
minimum, the tangential current changes by an amount 
-go q jo (where go is the wave amplitude, q the wave vector, 
and jo the unperturbed current density), so that in a layer of 
order 1 this current produces on the two sides of the surface 
volume forces 

that act in a tangential direction and make the liquids move 
in opposite directions. The normal component of the current 
along the surface also changes by an amount -go q jo, as a 

result of which a pressure drop -go qk, jop,/e and a corre- 
sponding pressure gradient VP(") -go q2kn jo p,/e are pro- 
duced along the surface. When comparing the action of the 
normal component of the current with the tangential one, 
VP'") must be matched to F ( t  ). It can be seen that compared 
with the tangential current, the effect of the normal compo- 
nentofthecurrentisql times weaker: I VP'"' /F(" I -qlk, /kt. 
We shall therefore focus our attention hereafter on the tan- 
gential component, and to get around the question of the 
normal component, we shall consider a metal pair for which 
k, <kt - 

The action of the EM forces on the surface is obvious- 
they launch capillary waves at one polarity of the current 
and contribute to their damping at the other. Indeed, the EM 
forces are linear in the current and therefore reverse sign 
when the current polarity is reversed. We choose the polarity 
such that the tangential components are directed from the 
minima on the interface to the maxima (see Fig. 1). This will 
be the case if the unperturbed current directed along the z 
axis into the lower metal, labeled by the subscript 1, has a 
higher electric conductivity than the upper (2). Let the elec- 
tron mobility in metal 1 be higher than in metal 2. The EM 
forces in metal 1 are directed from the minima to the maxi- 
ma, and conversely in metal 2. The direction of the EM 
forces can be easily established tkom the following consider- 
ations. The tangential electric field is the same on both sides 
of the interface, so that the electrons in metal 1 acquire a 
higher velocity than those in metal 2. Far from the interface, 
the forces exerted on the ions by the electric field and by the 
electrons are in balance. Near the interface, at a distance on 
the order of I, this balance is upset in such a way that the 
electrons in metal 1 have a lower directional momentum 
than in the volume, and therefore the dynamic equilibrium is 
upset in favor of the electric-field force. In metal 2, on the 
contrary, the equilibrium shifts towards the electron drag of 
the ions. 

In this situation the EM forces drag each liquid, at any 
phase of the wave, towards the crest of its surface and in- 
crease the amplitudes of the capillary waves with time. At 
low viscosity, when the liquid vortical-motion penetration 
length ( ~ / w ) ' / ~  (y is the kinematic viscosity and w the fre- 
quency) is small compared with the wave lengths, the liquids 
are set in motion in a layer of thickness -(v/w)"~ at the 

FIG. 1. Distribution of tangential components of the EM forces and of the 
fluxes in the case when the wave is unstable on the interface of liquid 
metals 1 and 2. The surface is marked by the heavy line, the forces F, and 
F, by short arrows, and the liquid flows are marked by the solid lines for 
metal 1 only. 
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surface with an additional velocity A V, -F"' 1 /v (7 is the 
dynamic viscosity), so that an additional volume of liquid 
- A  V, (v/w)'/' is injected into the crests of the waves in each 
liquid per unit time, meaning an increase f o  - A V, (v /w)  lt2q 
in the amplitude per unit time. The instability growth rate 
can be estimated as the ratio of the increase W of the wave 
energy per unit time to the wave energy. The wave energy 
increase is equal to the work performed against the surface- 
tension forces: W-a<o<o, where a is the surface-tension co- 
efficient and the wave energy is -agO2/2, so that the growth 
rate is 

If account is taken of expression (3) in the capillary-wave 
dispersion equation w z (a/p)1/2q3/2, where p is the sum of 
the densities of the liquids, we obtain 

wff-kr  (jopPIe) 45/~p-%a-'''y-'\ (4) 
This estimate differs from the calculated result given in Sec. 
5 by only an inessential numerical factor. The EM forces 
cause self-excitation of the waves when w" exceeds the 
damping decrement as a result of the viscosity. The thresh- 
old condition is Eq. (34). 

The action of the EM forces on the surface is not limited 
to the buildup of capillary waves. They also alter effectively 
the surface-tension coefficient, which is given by Eq. (29). 
The surface-tension coefficient decreases at the same current 
polarity at which the capillary waves are built up, and can in 
principle become negative. 

We investigate below the EM forces and the interface 
waves on the basis of the nearly-free-electron approximation 
in the theory of liquid  metal^.^ In this approximation the 
metals have different Fermi energies and different electron- 
ion scattering probabilities. For the tensor AaB we have the 
expression 

where m is approximately equal to the mass of the free elec- 
tron, and v, is the electron velocity. We consider first the 
EM forces for a plane surface. 

2. CURRENT PERPENDICULAR TO SURFACE 

If the current is perpendicular to the plane interface of 
the metals, electron scattering by the surface produces an 
additional electric field (on top of the volume field) needed to 
preserve continuity of the current. The distribution func- 
tions in such a situation were calculated for an intercrystal- 
lite interface to determine its electric resistance.' We assume 
first that the electrons are diffusely scattered from the sur- 
face. The problem of interest to us does not differ in principle 
from that in Ref. 7, and we present the result directly: 

Here is the electron energy, z is the coordinate normal to 
the interface and directed away from the first metal, the 
quantities pertaining to this metal will be labeled by the sub- 

script 1, and those for the second metal by 2. For metal 1 we 
have 

El is the field far from the surface, y = lcos 8 1,8 is the polar 
angle, (, = z/ll is the dimensionless coordinate, the super- 
cripts " + " and " - " denote the signs of the corresponding 
normal components of the electron velocity, 

%', (6 ) are integral exponential funct ion~,~ ~ ( 6  ) is a dimen- 
sionless potential whose gradient determines the additional 
electric field A E  produced by electron scattering from the 
surface: 

andxl ( l l )  is defined by the following integral equation: 

The solution of this equation was investigated in Ref. 7. 
Substituting (6), (7), and (5) in (1) we calculate Yap.  The 

only nonzero component is \y, : 

Similar expressions are obtained also for metal 2. The vol- 
ume-force distribution F, = dv,/dz that follows from 
them is shown schematically in Fig. 2. It can be seen that the 
forces to the left and right of the interface are directed along 
the electric field. Direct calculation verifies, however, that 
the volume forces are exactly offset by the surface force Fs 
due to the electron scattering from the interface. 
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FIG. 2. Distribution of the forces near metal interface perpendicular to 
the current flow. Diffuse scattering. 

The physical meaning of this result is the following. Far 
from the interface the volume density of the forces is zero 
because the electric force acting on the ion is balanced by the 
electron drag force. The electric field near the interface is 
increased by the additional electron scattering from the sur- 
face, so that the electric force prevails over the ion drag by 
the electrons, and the electron momentum acquired in the 
additional field is transferred to the surface in the course of 
the scattering. 

An approximate quantitative measure of the forces is 
the total volume force acting on one of the metals: 

According to (8), F,,,, = k,  jopF/e, where k ,  is a numerical 
factor that depends on the variation of the potentialx(6 ). In 
order of magnitude, k, - lo-'. 

It must be noted, however, that more realistic for the 
interface of liquid metals is specular scattering of the elec- 
trons, since the small-scale roughnesses of the surface, which 
are primarily responsible for the diffuse scattering, are 
smoothed-out by the surface-tension  force^.^' Still, solution 
of the problem w,ith diffuse scattering is expedient, since it 
can be carried through to conclusion. For specular reflec- 
tion, the problem is much more complicated and can be 
solved only in special cases. We shall not dwell on it, since 
the conclusions obtained for diffuse scattering remain in 
force here, too. Namely, the total EM force acting on both 
metals is zero--this is essentially the consequence of elec- 
troneutrality. The surface force and the volume forces of the 
metals in contact balance one another. Depending on the 
current direction and on the conditions of passing through 
the boundary they either compress or distend the metals in 
the subsurface layer. The order of magnitude of the force is 
k, jop,/l, where k,  is a factor that depends on the scatter- 
ing conditions and is usually small. 

An important particular case in what follows is specu- 
lar scattering from the interface of metals that have only 
different probabilities of electron scattering by the ions, 
while their Fermi surfaces are identical. This is a convenient 
model system for the analysis of waves on an interface. In 
such a system both metals have the same electron distribu- 
tion function, equal to its value far from the interface: 

$, = E,l,cos 8 = E212cos 8 = $,. Near the interface, over 
distances I, and I,, the waves are not distorted-the field 
changes from El to E2 over the screening length. There are 
no EM forces. 

3. CURRENT PARALLEL TO SURFACE 

When the current is parallel to the plane interface the 
electric field is independent of the coordinates and to find the 
distribution function it suffices to solve the kinetic equation. 
We direct, as before the z axis normal to the interface from 
metal 1 to metal 2 (Fig. 3a). A similar problem was solved by 
Kagaov and Fiks3 for crystallite interfaces. In our case the 
electron dispersion laws 8 (k) are different (Fig. 3b): 

where A = %',, - %',, is the difference between the Fermi 
levels of metals 1 and 2. 

We assume the scattering from the interface to be 
specular. Since the system is homogeneous along the surface, 
the refraction of the electron wave by the surface is deter- 
mined by the equations for the conservation of the tangential 
components of the momentum and of the energy, which lead 
to the following connection between the polar angles 8, and 
8 2  

sin B2=sin B,/sin B,, 

8, is the maximum incidence angle at which passage of a 
wave into metal 1 is possible (Fig. 3c). For the subsequent 
significant transitions on the Fermi level we have sin- 
8, = 8F2/8F, . The coefficient of transmission through 

the interface is 

FIG. 3. EM forces in the case of a current parallel to the interface: a- 
arrangement of metals; b-dispersion laws; c--equal-energy surfaces 
(k,, k',, and k, are the wave vectors of the incident, reflected, and trans- 
mitted waves); d-distribution of the forces. 
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4 cos Oi (sin2 Om-sin2 8 , )  'la 4. EM FORCES FOR WAVES ON THE INTERFACE 

T = [cos 0 , f  (sin2 0.-sin2 8 i ) t 1 f ] 2  
OiGOm, 

The functions $,(p, r) and $,(p, r) and the electric field 
I 0, Oi>8,. next to a nonplanar interface are determined by the kinetic 

equation Solving the kinetic equation with the following bound- 
ary conditions for $+ and $-: ~ d $ , , ~ / a r + $ , , ~ / . c , , , = E  (r) v 

$i-= ( I - T )  $i++T$2-, $2+=T11;,++ ( 1 - T )  q2- (9) and by the equation that follows from (2) and (6) 

and substituting the result in (I), we find the density of the J $ iSa  (PI. r )  sin 0 do dB-0, 
volume forces: 

SIU 8, where p is the azimuthal angle. The solution of these equa- 
x3 (sin2 Om-x2) Ih tions must satisfy the boundary condition (9) on the surface 

Fix=3eEn (I - ) 5 dx ( 1 - ~ 2 ) " +  (sin2 i n ' ~ - ~ 2 ) % ~  z = ( (x, y) and must be bounded as Izl-m. 

Ei  
We solve this problem below for plane linear waves 

X exp - z = ( (x) = cocas qx on the interface, assuming the waves to 

for z < 0 and be long compared with the mean free path (ql,, q12(l) and 
the amplitude to be small compared with I, and I,. To sim- 

E l l  9," 

x3 (1-x2) 'la 
plify the problem further, the calculation is for a model pair 

Fb=3eEn ( I  -d ) j dx [ ( l - x~ ) i*+ ( s in~  0m-x2)v%~2 of metals having different relaxation times but equal Fermi 
energies. The boundary condition (9) is then simplified be- 

" I cause now T = 1 and we have consequently on the interface 
X exp [- 

(sin2 Om-x2) % q i + = $ z + ,  $ t -=$2- .  (13) 
forz > 0, where 7, and T, are the relaxation times, and n is the 
electron density in metal 1, where $, is larger. 

It can be seen that the sign of the forces is determined by 
the ratio T,/T~, i.e., by the ratio of the electron mobilities. 
The metal with the lower mobility is acted upon by a force 
directed along the electron motion-counter to the current, 
and conversely for the metal with the higher mobility. A plot 
of the distribution of the forces is shown in Fig. 3d. The total 
forces 

The external field is assumed parallel to thez axis that is 
perpendicular to the unperturbed surface. Linearizing (1 I), 
we separate in the sought quantities $,, $, and E the incre- 
ments that are due to the wave and depend onx like exp(iqx): 

The subscripts "1" and "2" pertain here to metals that occu- 
py the half-spaces z < ( and z > 5; El and E, are the electric 
field strengths in metals 1 and 2 in the absence of a wave; 
they are connected with one another and with the unper- 
turbed current density by the relation 

acting on each of the metals are equal and opposite: E,I,=E,12=j,p,/e2n, $,= (joy,le2n) cos 0, 

F,,,, =- FtOt2 =eEnl, (1-.c2/zi) g (sin 'Om), (lo) Ap, and Ap, are the perturbations of the potentials in metals 
where 1 and 2. For the amplitudes A$,, A$,, Ap, and Ap, that 

a ~ n  B, depend only on z we have from (1 1) and (13) 

A plot of g(sin 8, ) is shown in Fig. 4. The function reaches 
its maximum value 3/16 at sin 8, = 1, i.e., when the Fermi '99 

energies of the metals in contact are equal and the interface - 1 

does not scatter the electron waves. With increasing differ- 
ence g,, - $,, the electron drag weakens rapidly. The -2 

physical reason is that T decreases when the difference 
$,, - g,, is increased, i.e., transitions of electrons -3 

between the metals become more difficult, and it is just these 
transitions that produce the electron-drag forces. - 4  

According to (lo), an estimate of the total tangential 
force can be represented in the same form as the normal 

-3 force: F,,, = kt jopF/e, where kt is a factor equal to (1 - r2/ 
7,) (sin g(sin 8, ) for 8, ) metal for metal 2. 1 and to (r1/7, - 1) ( g F  I /gF2 ) ' ~ g  FIG. I' 4. sin 8, 
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where we have introduced the dimensionless coordinates 
f ,  = z/l, and 6, = z/l, for z < 0 and z > 0, respectively, and 
designated 

E,, , = q1 ,, 2 ,  and E, are small parameters of the problem. 
The expressions that connect A$, with Ap, and Ap, differ 
from (14) by the replacement l a 2  and by the reversal of the 
signs of 6. 

Substituting A$, and A$, in (12) and,taking the contin- 
uity of the potential on the interface into account, we obtain 
a system of two equations for the potentials Ap, and Ap,. 
One of them is of the form 

( J,, is a Bessel function), and in the second the above-men- 
tioned subscripts and signs are interchanged. 

We seek for (15) a solution that vanishes far from the 
interface. This can be conveniently done by writing out ex- 
plicitly the asymptotic forms of Ap ,, , as 16 ,, , I-fm. These 
forms can be easily seen to be described by a Laplace equa- 
tionandaregivenbyApl,2(~l,~)aexp(+~l,2 {,,,).Weput 

In place of the coordinates {, and c, we introduce a single 
coordinate { that coincides with {, at z < 0 and with 6, at 
z>0 .  We introduce also a single function A@ ( f )  
= - {,) + Ap2(6,)@({,), where @(6) is the unit 

function. 
The equation for A@ (6 ) follows from (1 5) and (16). Tak- 

ing it into account in the calculation of the integrals that 
E,, , (1, we obtain, accurate to E:,~, 

where 

The function A@ (f ) describes the deviations of the potential 
from the asymptotic behavior over a distance scale on the 
order of 1 ,, , , where 16 I - 1, i.e., the deviations due to the 
finite value of the mean free path. This circumstance allows 
us to simplify Eq. (17). First, it is likewise convenient to sepa- 
rate in the coefficients A, and A, of (16) the parts caused by 
the fact that the mean free path is finite. The order of magni- 
tude of these parts is determined by the parameters E, and E,. 

We put 

where u,  and u2 are the electric conductivities of the metals. 
The quantity A determines the variation of the potential in 
the limit ql,, , = 0. Second, the kernel of the integral in (17) 
can be simplified: 

Changing next to the dimensionless quantities 

387 Sov. Phys. JETP 61 (2). February 1985 V. A. Sablikov 387 



FIG. 5.  

and leaving out terms of order higher than E:, , , we obtain an 
equation with a difference kernel 

I 

which can be easily solved by taking the Fourier transform. 
The solution of this equation tends to zero at infinity only if 

In this case 
m 

1 (3+t2)  In ( l + t 2 )  -3/2t (t+arctg t )  
U t a ) = -  j d t  cos ( g t )  . 

o t3  (t-arctg t )  

A plot of the function u(f ) is shown in Fig. 5. 
The final expression for the potential is 

The expression for Ap, differs from (18) in that the sub- 
scripts 1 and 2 are interchanged and the signs of 6 and A are 
reversed. 

This expression must be used next in the calculation of 
the function $ from (14), and the density of the forces from 
(I), (5), and (6). The calculation yields the following for metal 
1: 

The equations for the forces in metal 2 are obtained from (19) 
by using the same substitutions as in the equations for the 
potential. 

5. SPECTRUM OF WAVES ON THE INTERFACE 

When describing the motion of metals acted upon by 
EM forces it is necessary, generally speaking, to take into 
account the magnetic field of the currents, i.e., use a system 
of magnetohydrodynamics equations in which one adds in 
the Navier-Stokes equation the density F of the EM forces, 
which depends on the shape of the interface. Assuming the 
liquid to be incompressible, we have 

div Hi=O, 
div V,=O, 

where i = 1 or 2, Vi is the velocity of the liquid, pi is the 
density, and Pi is the pressure. We neglect the gravitational 
force, assuming the capillary constant to be large compared 
with the other characteristic lengths. 

We consider linear plane waves of the form 
exp[i(qx - wt )], for which Fi is given by (19). When linear- 
ized, Eqs. (22) and (23) take the form 

Here H, is the stationary magnetic field and AHi is the mag- 
netic field of the wave. Consider the case when H, is perpen- 
dicular to the wave-propagation direction. This case is most 
natural as the limiting case of waves of cylindrical geometry 
at large distances from the center. We then have in the right- 
hand side of (25) (H,.V) AHi + (AHi .V)H, = 0 and in (24) 
we have (Ho.V)Vi = 0. The terms (Vi .V)H, and iwAHi in 
(24) can be regarded as small in view of the low frequency of 
the hydrodynamic processes; an appropriate criterion will 
be given below. It turns out as a result that the magnetic field 
is described by the equation V2AHi = 0, which does not de- 
pend on the equations of motion of the liquid. 

The boundary conditions for this equation are likewise 
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independent of V. They follow from the fact that AH is 
bounded as (z(-+co and that the tangential components of 
AH and of the electric field are continuous. The latter con- 
tain the velocity of the liquid: 

E=j/o- ( l / c )  [VXH] , 
but here, too, the term (l/c)vXH can be omitted. The mag- 
netic field calculated in this manner is parallel to they axis 
and is equal to 

The current-density distribution obtained from (2.6) by 
using the equation Aj = (c/4~)curl AH, is valid far from the 
surface (Iz()I,, I,) and agrees with the asymptotic distribu- 
tion obtained for Aj from the conduction-current continuity 
condition used in Sec. 4. The conditions that allow us to 
neglect the motion of the liquid when the currents are calcu- 
lated are the inequalities 

0<c~q~/4ncr,,~, ~ ~ q ~ / 2 ~ n o ~ , ~ R ,  (27) 

where R is the conductor radius transverse to the current. 
With the wave spectrum that will be obtained below [Eq. 
(33)], the inequalities (27) impose on q the restriction 

which is well satisfied for typical metals. Thus, at a = 3.104 
fl-'.cm-', a = lo3 dyn/cm, p = 10 g/cm3, and R = 0.1 
this means that lop5 cm- '(94 los cm- '. We recall that, 
besides condition (27), neglect of the motion of the liquid 
imposes a condition on the electron velocity, viz., it must 
exceed considerably the velocity of the liquid. This condition 
reduces to the inequality 

Once the magnetic field is determined, the waves on the 
interface are described by Eqs. (21) and (25), which with 
allowance for the stipulated simplification and with change 
of notation P t  = Pi + H '/87r reduce to the hydrodynamic 
equations. The latter are subject to the following boundary 
conditions on the interface: 

The problem has three characteristic lengths that deter- 
mine the changes of the pressure and velocity in each of the 
liquids: the electron mean free path 1, , the wavelength q-I, 
and the length (yiq)-', where y, = [ l  - i w / ~ q ~ ] ' / ~ ,  which 
determines the depth of penetration of the vortical motion. 
When we determine solutions that do not vanish at infinity, 
we assume that q > 0 and Re y, > 0. The dispersion equation 
for the waves on the interface is 

(yi+byz) (p2+by,2) + (~i+byZ)~+b ( y i + y 2 )  '+3(yi+b2y2) 

where 
b = q 2  a*=a--2/,enA (I,+ I,) =a-0,4(jo/e)p~(li-l2). 

(29) 
In the derivation of (28) we used essentially the fact that E~ is 
small, not only compared with unity but also compared with 
l ~ i  I - I .  

We assume next for simplicity that the metals are me- 
chanically equivalent and put p,  = p2 = p  and 77, = 7, = 77. 
The dispersion equation is then simpler. It is convenient to 
formulate it for the quantity y(q), 

y ( q )  = [i-io/vq2] Ih, Re y>O, (30) 

rather than for w(q). Eliminating w from (28) with the aid of 
(30), we have 

y4+y"y"i+6) - y  (l+s+Q/q) + (a-Q)/q=O, (31) 
where 

Q=jopp(li-12)/10eqv, a=a/2qv, 

Case of low viscosity 

We consider first the case of low viscosity, when 1 yl) 1 
and the penetration length of the vortical motion is small 
compared with the wavelength. In addition, we confine our- 
selves to external fields that are not too strong, such that 
Q<a 1 y 1 - '. Under these conditions Eq. (3 1) is solved by iter- 
ation. In the zeroth approximation it leads to the dispersion 
equation for the inner capillary waves: 

o (q )  =va'"q%. (32) 

In the next approximation in 1 yl -' and Q 1 yl/a we have 

It can be seen that the imaginary part of the frequency 
w" is always negative at Q = 0. If Q < 0, then w" is positive in 
the interval 0 < q < q, = Q '/a and reaches a maximum at 
q = qm = 25/49 q, (Fig. 6). Thus, at Q > 0 the surface is un- 
stable to waves with wave vector q - Q '/a. The largest 
growth rate is w& = 55/2.7-7/2.2-112 VQ 712a-3'2 for waves 
with q, = 25/49Q '/a; their frequency is w: = (5/7)3~Q 3/ 

a.  
We present now the results in dimensional units. The 

instability sets in when the external electric field is directed 
away from the metal with the larger electric conductivity to 
the one with the lower: 
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The first term of (36) decreases exponentially with increasing 
1z1/1,, so that at a distance 121 &I1 from the surface we have 

FIG. 6 .  Growth rate of inner capillary waves w"(q): 1)  in the absence of 
current, 2) at Q < 0, 3) at Qz 0. 

The wave with wave vector q turns out to be unstable at 

The presence of a limiting value q, to which wW(q) > 0 
indicates that instability is excited in a bounded surface if the 
external field exceeds the critical, namely, Q > Q, - (a/R )'I2, 
where R is the transverse dimension. 

The conditions for the applicability of Eq. (33) are deter- 
mined by the assumptions used in its derivation: 1 ( 1  y 1 (EL:'  

and Q /a((q/a)'I2( 1. These equations contain w and q expli- 
citly. Eliminating o with the aid of (32), we obtain the in- 
equalities 

Q/a< (q la )  ' " ~ m a x  [ I ,  (al,) -", (a lz )  -v3] ], (35) 
which determines the validity of (33) in terms of q. As 9-0 
the left-hand inequality of (35) is violated. In this limit, or 
more accurately at qgQ, Q4/(a - Q )', Eq. (31) also has an 
unstable solution 

o ( q )  =ivq2 { [ (a-Q) IQ] '-- 1). 

It is however, of little interest because of the extremely small 
value of the growth rate. 

The cause of the instability is that the EM forces excite 
capillary waves. It can be seen from (32) and (33), within the 
framework of the approximations employed the function 
wl(q) differs little from the spectrum of the capillary waves, 
but the EM forces alter substantially the damping of the 
capillary waves, which become self-excited at Q >  (aq)'", 
with the growth rate considerably smaller than the frequen- 
cy. 

The EM forces produce vortical streams in liquids. The 
spatial velocity distribution obtained from Eqs. (2 1) and (25) 
takes for metal 1 the form 

il, 
i x  - dE1 d l  (qz-&,Ef) I 

where 
C i = ~ o ( ~ Q q + i o y ) / ( y - l ) ,  Di=-~o(vQq+io) l (y - l ) .  

In the same region, 

The fluxes corresponding to this velocity distribution are 
shown schematically in Fig. 1. 

We cite now a condition that allows us to neglect the 
electrostatic force. It is obtained by comparing the alternat- 
ing pressure on the surface, obtained from Eqs. (21) and (25), 
by an alternating pressure of electrostatic origin. For unsta- 
ble modes with q-q, this condition is 

For a, -a2 - lo4 R-'.cm-', p = 10 g/cm3, v = lo-' cm2/ 
s,p, = 10- l9 g.cm/s, and I, - I, = 3. lo-' cm the left-hand 
side of the inequality is of the order of lop4. 

High viscosity 

At extremely high viscosity Eq. (3 1) has a simple solu- 
tion because a and Q are small. One of its roots 

o ( q )  =-iv (a/2-Q) q,  (37) 
becomes unstable at Q > a/2. 

The instability can be attributed in this case to the rever- 
sal of the sign of the effective surface-tension coefficient a* 
by the action of the current, in accordance with (29). It  is 
precisely this surface-tension coefficient which determines 
the dispersion law (37). In the case of low viscosity the sur- 
face-tension coefficient is also renormalized, but this effect 
manifests itself at currents noticeably stronger than those at 
which the capillary waves become unstable; we neglected it 
by virtue of the condition Q(a. 

6. CONCLUSION 

Let us consider the feasibility of realizing the instability 
in experiment. A contact between two liquid metals that car- 
ries an electric current of high density is realized in natural 
fashion in semiconductor breakdown. It is known that the 
electronic stage of semiconductor breakdown, due for exam- 
ple to impact ionization, is followed by a stage of thermal 
breakdown, in which the current contracts to a thin filament 
and molten regions can be produced in the The 
molten region that covers the interface between the metal of 
the electrode and the semiconductor is a system in which the 
described instability might be realized. Indeed, when melt- 
ed, typical semiconductors such as Ge, Si, and GaAs turn 
into metals. l2  The transverse dimension of the molten region 
is of the order of several microns, and the current density can 
reach 10' A/cm2. If the instability develops rapidly enough, 
the mixing of the metals during that time can be neglected. 
The model pair of metals used in Secs. 4 and 5 of the present 
paper is close to realization in the Al-Si system, which is 
extensively used. For this pair, in the model of almost free 
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electrons, the ratio of the Fermi energies is 2FFSi/ 
2FFA1 =: 1.2, and the ratio of the electron mean free paths is 
I A l  / I s i  ~ 4 .  

Indirect evidence of the instability of the interface is 
provided also by experiment. It follows from recent data that 
the semiconductor breakdown is accompanied by transport 
of microscopic masses of the electrode metal into the semi- 
conductor in the form of a "filament" that penetrates to con- 
siderable depths.13-" The propagation direction depends on 
the polarity of the current and is reversible in a number of 
cases, viz., at one-polarity the metal is drawn into the semi- 
conductor where it forms a conducting filament, and at the 
other polarity the metal returns to the electrode. This pheno- 
menon has not yet been satisfactorily explained, but the idea 
that liquid metals can be moved by EM forces, as expounded 
in this paper, does explain it qualitatively. 

The author thanks M. I. Kaganov and V. B. Sando- 
mirskiy for a discussion of the work. 
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according to which the small-scale surface roughnesses are rapidly 
damped out. Numerically, the decrement for q-p,/fi is of the order of 
101 1 s- ' and is considerably higher than the frequencies of interest to us. 
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