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The s-d exchange model and the narrow-gap Hubbard model are used to obtain the exact (in an 
approximation linear in the carrier distribution function) expressions for the spin Green functions 
at absolute zero. A study is made of the spectrum and damping of spin waves. It is shown that an 
optical magnon is not a well-defined mode, with the exception of cases of the extremely large or 
extremely small values of s-d exchange parameter. The existence of a nonpole part of the Green 
functions may give rise to nonresonant absorption of energy from an alternating magnetic field in 
a wide range of frequencies and to inelastic nonresonant neutron scattering. 

1. INTRODUCTION 

Narrow-gap ferromagnetic semiconductors, in which 
an indirect exchange interaction via conduction electrons 
("double exchange"') plays a significant role, are important 
representatives of non-Heisenberg magnetic  material^.'.^ 
Theoretical studies of their magnetic properties are there- 
fore highly desirable. They are usually carried out within the 
framework of the s-d exchange model. The spectrum of spin 
excitations in wide-gap ferromagnetic semiconductors has 
been investigated repeatedly (see, for examples, Refs. 3-6) in 
the lowest orders of perturbation theory on the basis of the s- 
d exchange interaction. Moreover, the limit of a very narrow 
gap has been studied in the case of classical spins.3 However, 
it is known that an analysis of the electron spectrum made 
under these approximations ignores a number of important 
(specifically quantum) effects such as the formation of a 
bound state between an electron and a spin wave or partial 
spin depolarization of electrons.'-" We can expect these 
quantum effects in the spectrum of spin excitation to result 
in major changes compared with the quasiclassical pattern. 

Our aim will be to consider the spin wave spectrum of 
ferromagnetic semiconductors at absolute zero on the basis 
of a rigorous calculation of spin Green functions at a low 
carrier density. 

2. ELECTRON AND MAGNON GREEN FUNCTIONS IN THE S-d 
EXCHANGE MODEL 

We shall consider the Hamiltonian of the s-d exchange 
model 

i j m  ioo' 

where tU are the hopping integrals ofthes electrons; I i s  thes- 
d exchange integral; Si is the operator of a localized spin at a 
site i; a are the Pauli matrices. One-electron Green functions 
can be calculated more exactly for the ferromagnetic ground 
state if the gas approximation is At T = 0, we have 

where t ,  is the Fourier transform of the hopping integral 
(2, t, = O), and 

R ( E )  = x (E+ZS-I.) - I .  

We can see that, in contrast to the classical picture of spin- 
split subbands (which, however, is restored in the limit 
S--too, I - 4 ,  IS = const), the density of electron states with 
the down spin ("incorrect" projection for I > 0) differs from 
zero wherever the density of states with the up spin differs 
from zero. Therefore, mutual interpenetration of spin sub- 
bands takes place, i.e., states with different projections of the 
spin coexist at the same energy. Although the presence of a 
nonpole contribution to electron Green functions in the s-d 
exchange model has been known a long time, the problem of 
manifestation of such a nonquasiparticle behavior in the ob- 
served quantities has not been studied in detail. We shall 
show that the relevant effects are important in the magnon 
spectrum because in the case of the electron-magnon inter- 
action we can expect elastic scattering between states with 
different spin projections. 

We shall now calculate a magnon Green function for 
I>  0. It is important to note that in spite of the presence of a 
tail of the density of states with the down spin, the ground 
state now contains only electrons with the up spin because in 
the case of degenerate statistics of conduction electrons the 
tail in question terminates on the Fermi surface. This is man- 
ifested formally by the fact that when we allow for the finite 
occupancy of the conduction band, the expression for the 
resolvent (4) becomes 

where 

is the Fermi distribution function, so that the imaginary part 
of Eq. (5) vanishes for E < E, . (Conversely, if I < 0 and also 
in the narrow-gap Hubbard model'' the states with the "in- 
correct" spin projection appear below the Fermi surface.) 
Therefore, in calculating the magnon commutator retarded 
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Green function we shall drop the contributions proportional 
to ( a L  a,, ) . Going over from the spin operators to the Dy- 
son-Maleev operators for ideal spin wavesI3 b ,t and 6,  , 
deriving a chain of equations of motion, and ignoring the 
Green functions proportional to the magnon occupation 
numbers (b ,t 6,) (and, consequently, the terms small on 
the temperature scale), we obtain the following closed sys- 
tem of equations which is exact in the approximation linear 
in the electron density: 

Solving the systems (7) and (8) and substituting the results in 
Eq. (6), we obtain an expression of the type 

n cqo) =I E (tk+,-tk-o) nk+ 

2IS+ (tk+,-tk-a) [I- IR (ko) ] 
9 (10) 

where 

Equation (9) represents the first two terms of the expansion 
of the magnon Green function in terms of the density c of the 
conduction electrons. A comparison of Eq. (9) with the Dy- 
son equation 

shows that II(qw) is the exact (in the approximation linear in 
c) self-energy part of the magnon. Our calculation method 
corresponds to perturbation theory applied to the mass oper- 
ator in Ref. 13. It follows from Eq. (12) that the magnon 
frequency is 

The dispersion law (13) is of the non-Heisenberg type. When 
the quantity 21Sis small, compared with the width Wof the 
conduction band, Eq. (13) becomes identical with the results 
of a canonical transformation3 and of the variational princi- 
ple.14 It should be pointed out that for arbitrary values of 
21s / W the exact formula (1 3) begins to deviate from the re- 
sults of simple approximations, beginning from terms of the 

order of q4 in the expansion of the magnon frequency. It 
should be pointed out that the coefficient of n,, in Eq. (13) is 
exactly equal to the coefficient of (b ,,? b, ) in the expression 
for the temperature correction to the energy of an electron 
with a quasimomentum k (Ref. 10) and also identical with 
the expression for the amplitude of the electron-magnon 
scattering found by the diagram method in Ref. 15. 

We shall now consider the question of the existence of 
an optical magnon of frequency governed by the pole of the 
magnon Green function w, # 0 in the limit q-0. If q = 0, it 
follows from Eqs. (10) and (1 2) that 

At high values of I this equation has the solution 
wo = I (2S  + I), which describes transitions between states 
with the totalspins + 1/2 andS - 1/2 at asite. In the oppo- 
site case of small values of I, we find that w0z21S, which 
corresponds to the frequency of transitions between spin- 
split subbands. For 0 < w < W the function R (Ow) has a non- 
zero imaginary part 

Im R (Ow) =ng(tmi,+o), (15) 

whereg(E )is the "bare" (unrenormalized) density of states of 
the s electrons. Therefore, if I ( 2 S  + 1) < W, an optical 
phonon experiences a strong Landau-type damping (decay 
into single-particle excitations). This magnon cannot be re- 
garded as a well-defined mode, since its damping is generally 
speaking of the order of its energy. If IS( W, the ratio of the 
damping yo to the frequency deduced from Eqs. (14) and (15) 
is small: 

Therefore, in the case of extremely large and extremely small 
values of the s-d exchange integral an "optical magnon" does 
indeed exist. However, in the case of real substances the situ- 
ation is intermediate, so that at best an optical magnon may 
be manifested by a strongly broadened resonance in the scat- 
tering of neutrons or in the absorption of infrared radiation. 
This is probably true also of ferromagnetic metals. The 
above analysis may therefore account for the failure to ob- 
serve optical magnons experimentally. The conclusion 
reached in Refs. 5 and 6 that there is no optical magnon 
damping outside the Stoner continuum is based on the use of 
the lowest approximations for the Green functions, which 
ignore the interpenetration of the subbands and the electron- 
magnon scattering that are responsible for the optical mode 
damping. 

The imaginary part of the spin Green function which 
governs, for example, the absorption of the energy of a high- 
frequency magnetic field and the cross section for the inelas- 
tic scattering of neutrons, includes contributions not only of 
the poles corresponding to elementary excitations, but also 
of the cut corresponding to a transition between single-parti- 
cle states with different spin projections. Compared with the 
usual pattern of transitions in the Stoner continuum, the 
nonpole contribution to the absorption considered here and 
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associated with the interpenetration of the spin subbands has 
an important singularity: spin-flip transitions are possible 
without loss of energy and with an arbitrary change in the 
electron quasimomentum, since states with the "incorrect" 
spin projection are not well-defined quasiparticles. If q = 0, 
the magnon Green function is 

The presence of the imaginary part of Eq. (1 7) in a wide band 
of frequencies 0 < w < W means that energy from a homo- 
geneous alternating magnetic field can be absorbed. Natu- 
rally, in the case of identicalg factors of thes and d electrons, 
when the total magnetic moment is an integral of motion, 
absorption is impossible for q = 0 and the imaginary part 
found should cancel out if allowance is made for the contri- 
bution of conduction electrons. No such cancellation occurs 
when theg factors are different. The nonpole contribution to 
the magnon Green function can also give rise to inelastic 
nonresonant neutron scattering. 

We shall now consider qualitatively the more complex 
case when I<O. There is no penetration of the upper spin 
single-particle subband into the lower one at T = 0 (al- 
though it does occur at finite temperatures"). However, in 
addition to single-particle states with the down spin, there 
are also essentially nonband states such as a down-spin elec- 
tron + spin wave combination, states described by the cut of 
the Green function 

and playing a role similar to that of single-particle states 
with the "incorrect" spin projection when I >  0. The same 
situation occurs in the narrow-gap Hubbard model which, as 
shown below, is equivalent to the s-d exchange model in the 
limit when S = 1/2 and I = - W .  These states have been 
considered in the Hubbard model for the one-dimensional 
case.I6 Therefore, all the main features of the spin Green 
functions mentioned above are retained also for I<O. A 
quantitative analysis of this case is difficult to carry out for 
arbitrary parameters of the model because of the appearance 
of a cumbersome system of integral equations. We shall con- 
sider only the narrow-gap limit when I = + m .  It is then 
convenient to use the formalism of the Hubbard X opera- 
tors.'' 

3. NARROW-GAP S-d EXCHANGE MODEL AND HUBBARD 
MODEL IN THE ATOMIC REPRESENTATION 

The Hubbard operators are described by the expression 

where lia) is the complete set of many-electron states at a 
site. Since they are generalized projection operators, they 
satisfy the multiplication rule at a site 

and the completeness relationship 

We shall write down the Hamiltonian of the s-d ex- 
change model (1) in the X operator (atomic) representation. 
Using the values of the coefficients in the addition of S and 
1/2, and also the relationship between the one-electron and 
X operators," we find that 

Here, IM ) is a state without conduction electrons but with 
the localized spin projection M, whereas 1M 'a) and 1M 'p) 
are states with one conduction electron, total spin S + 1/2 
and S - 1/2, and spin projection M' .  The states with two 
conduction electrons per site can be dropped when the elec- 
tron density is low. The s-d exchange model has been used 
earlier in the atomic representation1' employing the diagram 
technique, but the results are not quite correct. In particular, 
complete agreement with the quasiclassical limit13 has not 
been obtained and the problem of high-frequency behavior 
of the spin Green functions has been considered incorrectly. 

The Hamiltonian of the s-d exchange interaction con- 
sidered in the X-operator representation reduces to the diag- 
onal form 

If I = m ,  since the transitions a+$ are forbidden, the 
operator H,-, commutes with all the operators that appear in 
the calculation of the spin Green functions and can be omit- 
ted; in the case of the electron Green functions it simply 
alters the point of reference from which energy is measured. 

In calculating the spin Green functions at T = 0 it is 
sufficient to retain in Eq. (20) only the terms with M = Sand 
M = S - 1. We shall consider the limit I = - w . Then, the 
states a can be omitted from the hopping Hamiltonian. In- 
troducing 

we find that 
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We note that i fS = 1/2 then the Hamiltonian (22) subject to 
the substitution tk+2tk becomes identical with the Hamil- 
tonian of the narrow-gap Hubbard model 

(compare with Ref. 12), where 12) refers to the states with 
two conduction electrons per site ("deuce"). It follows there- 
fore that in this case the two models are exactly equivalent 
(this was already pointed out in Ref. 3). 

In deriving a chain of equations of motion for the Green 
functions 

we shall drop the terms proportional to the occupation 
numbers of magnons or to the electron density if present as a 
square or higher power. The first equation is of the form 

Using the equation of motion for the function 

and the identity which follows from Eq. (1 8), 

Here, 
25 

12.*=(X-,2+X~+~>=f (t;) , t,*= - 
2S+ 1 tr* (28) 

which can be demonstrated by calculating the relevant 
"electron" Green function. Writing down the chain equa- 
tion 

substituting it in Eq. (27), and introducing the function 

we obtain the following closed equation for this function: 

Calculating the function Fwith the aid of Eqs. (29) and (18), 
and applying the Dyson equation, we find that the expres- 
sion for the self-energy part becomes 

we can transform Eq. (24) to 

where 

O (k I qor) = ( ( X - , ~ + X , + ~ + ~ X ~ + ~  1 XI: )),. 

In the equation for the function @ we have used Eq. (19) and 
also transformations similar to Eq. (25). When the resultant 
operator products are reduced to the "normal" form (in 
which the operators X -" are on the left of the operators 
X +") and dropping of the terms small on the temperature 
scale, we obtain 

(o-t , '+t , ')  @ ( k  I qor) = (6r.-1) %* 

+ ( 2 s ) '  EL; [ @ (q-k+r+f 1 qor) -2S@ (f I qor) 1 
1 

It should be pointed out that an integral equation analogous 
to Eq. (30) appears in calculations of the temperature correc- 
tion to the electron spectrum in thes-d exchange model con- 
sidered in the limit I = - w (Ref. 10) and also in the nar- 
row-gap Hubbard model.12 This equation was first solved by 
Nagaoka19 who considered the problem of the scattering of a 
hole by a spin wave in an almost half-filled Hubbard model. 
Therefore, it should be pointed out that if we go to the limit 
of the narrow-gap Hubbard model as described above 
(S = 1/2, t ,*+tk), then our results for the spin wave spec- 
trum become identical with those of Nagaoka. In contrast to 
Nagaoka's method,I9 our approach allows us to find also the 
damping of spin waves (see below). 

The presence of the second term in the brackets of Eq. 
(3 1) does not affect the spectrum of spin waves since the fre- 
quency of these waves is proportional to c. Equation (30) can 
be solved exactly for the simplest model dispersion laws. In 
the case of a simple cubic lattice, using the approximation of 
the nearest neighbors, we find that the expression for the 

spin rigidity constant D = lim(wq/q2) is (compare with Refs. 
a d  

19 and 12): 
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Equation (30) can also be solved by an iteration method 
which corresponds to expansion in terms of the parameter 1/ 
ZS (where z is the coordination number). If we ignore the 
integral term, we obtain the expression 

obtained by us earlier from the variational principle.'4 The 
corresponding Nagaev result3 differs from Eq. (33) by the 
substitution t Z+t, , which is unimportant only in the quasi- 
classical limit. The presence of the integral term in Eq. (30) 
gives rise to strong non-Heisenberg corrections to Eq. (33). 

A similar calculation in the I = + w case gives the fol- 
lowing expression for the spin Green function: 

G (qo) = (I-C) [o-TI (qo) I-', 

[tk+,-tk- (2S+I) 01  [ I-OR (ko) ] 
n(qm)= ~ S + R  (ko) (w-tk+,+tk) n s  (34) 

where nk is the Fermi distribution function and the function 
R is defined by Eq. (1 1). As expected, the magnon spectrum 
governed by the poles of the Green function (34) is identical 
with the results of $2 in the limit I-+ + w (although the 
function G differs from the magnon Green function, since 
the operators X c  - and b, are not proportional to one an- 
other). We can demonstrate the non-Heisenberg nature of 
the dispersion law by quoting the expression for the magnon 
frequency in the case of a simple cubic lattice when 
I = + co . It follows then from Eq. (34) that 

where the numerical value of the Watson integral19 is used. 
An analysis of Eqs. (34) and (31) shows that in the limit 

I-+ t w the Green functions G (Ow) have no poles for w +O. 
However, these functions have an imaginary part in a wide 
range of frequencies due to the cuts that originate from the 
resolvent R at I = + w and from the integral term in Eq. 
(30) at I = - W .  The physical meaning of this behavior is 
discussed at the end of $2. It is worth noting that the nontri- 
vial contribution to Im G (Ow) disappears at I = - w and 
S= 1/2 (and also in the narrow-gap Hubbard model). In 
such cases a carrier (which is a single "deuce") and a spin 
wave cannot be located at the same site and this is the special 
property of these cases. 

We shall now consider the problem of magnon damp- 
ing. It is related to the presence of a resolvent in Eqs. (10) and 
(34), and of an integral term in Eq. (30). However, the damp- 
ing cannot be studied by a linear approximation with respect 

to the electron distribution function, because calculations of 
the imaginary parts give rise to factors of the n,(l - n,) type 
with t, ~ t ,  , which differ greatly from n, in the degenerate 
statistics case. We shall calculate the damping including an 
expansion in terms of l/z, which can be carried out without 
recourse to the linear approximation and without assuming 
that T = 0. Each additional order with respect to 1/z corre- 
sponds to additional summation with respect to the wave 
vector in the argument of the Fourier transform of the hop- 
ping integral. We shall consider the specific simpler case of 
the Hubbard model of Eq. (23). Applying successively the 
equations of motion, we obtain 

oG (qo) =(X++-X--> 

Calculation of the Green function in Eq. (36) gives the self- 
energy part accurate to within the second order in l/z. Its 
imaginary part describes the damping 

Here w, is the magnon frequency in the lowest approxima- 
tion in l/z, whereas N, = N (w,) is the Bose distribution 
function. Allowance for w, (which is formally a third-order 
correction) in (37) is necessary for the correct calculation of 
the damping. It should be pointed out that the dependences 
of the damping defined by Eq. (37) are identical with those 
derived using a phenomenological theory of a ferromagnetic 
Fermi At T = 0 for q much smaller than the Fermi 
momentum, we find that 

where u, is the unit cell volume and c is the density of 
"deuces" (or holes). 

4. CONCLUSIONS 

The spectrum of spin waves of ferromagnetic semicon- 
ductors was considered at absolute zero. It was found that 
the magnons obey essentially a non-Heisenberg dispersion 
law. Moreover, magnons exhibit finite damping at T = 0. In 
the case of the optical branch this damping is very strong, 
with the exception of the cases of very large or very small 
values of the s-d exchange parameter. 
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The expressions obtained for the spin Green functions 
are exact in the approximation linear in the carrier density c. 
The more general case can be studied using an expansion in 
l/z. It can be shown that the description of the magnon spec- 
trum provided above remains qualitatively valid at all elec- 
tron densities and model parameters that satisfy the condi- 
tion of stability of a saturated ferromagnetic state. 
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