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We consider the fields and the Cherenkov radiation in the case of a toroidal dipole moment 
moving with constant velocity in a medium with permittivity E and permeability p .  In vacuo the 
fields outside the moving toroidal dipole vanish as for a toroidal dipole at rest. However, in a 
medium fields occur outside the dipole which are proportional to ~p - 1 and are caused by the 
fact that in the framework of the macroscopic electrodynamics of a uniform medium this medium 
can also be thought to fill the dipole itself. Toroidal dipoles, including point dipoles, which are not 
filled by the medium do not radiate when they move uniformly. The problems analyzed here are 
mainly of methodological interest and they facilitate, in particular, the understanding of the 
peculiarities of the radiation by other sources moving in a medium, first of all by magnetic dipole 
moments. 

It has only recently been fully recognized that there ex- 
ists apart from electric and magnetic dipole moments a to- 
roidal dipole moment independent of them (see Ref. 1 and 
the literature cited there and also Refs. 2-5). For instance, a 
"current toroid" possesses such a dipole moment and no 
other kind; this is a solenoid curved round into a torus with a 
winding guaranteeing the absence of a current component 
"along" the torus (the presence of such an azimuthal compo- 
nent would lead to the appearance in the torus of a magnetic 
moment also). Clearly, the magnetic field in the toroid is 
nonvanishing only inside it while the electric field is every- 
where zero (we are now talking about an uncharged toroid at 
rest with a constant current). 

The toroidal dipole moment is given by the expression1 

where j(r) is the current density. In the case of a point toroid 
the toroidal moment density equals T8 (r) and 

j=c rot rot (T6 (r)} . (2) 
One can say that in that case the magnetization is equal to 
M = curl TS (r). For an extended distribution one can for 
qualitative considerations replace in (2) the 8-function by 
some nonsingular form-factor. Without specifying it we 
shall in what follows associate a toroidal dipole with such a 
small current toroid. 

The toroidal dipole moment T is a vector which trans- 
forms in the same way as j, i.e., it is a polar vector, changing 
its sign under time-reversal. The toroidal moment T defined 
according to (1) has the same dimensionality as an electrical 
quadrupole moment DUB; in the case of point charges one 
can write 

1 
Ta = -x e ( r ,  (vr) -2Pu.), D.8- e {3rar8-r26aa), 

1oc 
where v is the velocity of the charge, r = { r ,  ) is its radius 
vector, and the summation is over all charges (we drop the 
corresponding index). 

Of course, systems such as a current toroid have been 
considered for a long time but the vector T and Eqs. (I), (2) 

are usually not introduced or not connected with a complete- 
ly explicit form of current toroid. Moreover, an explicit in- 
troduction of the toroidal dipole moment and its density 
greatly facilitates the understanding of the physics of the 
problem. This is clear from the example of toroidal magnetic 
structures in the case of  solid^.^ 

Because of what we have said a solution of various prob- 
lems for systems possessing a toroidal moment is of interest. 
In particular, as far as we know nobody has as yet considered 
the fields and radiation of toroidal dipole moments moving 
in vacuo or in a medium (although this problem was briefly 
touched upon in Ref. 6). In what follows we dwell therefore 
on the calculation of the fields and radiation of a toroidal 
dipole moment (which is static in its own rest frame K ') mov- 
ing uniformly in a fixed medium (laboratory frame K ). In the 
case of a uniform medium when one need deal only with 
Cherenkov radiation, this is the simplest problem of the the- 
ory of radiation in a medium and moreover it is undoubtedly 
of methodological interest (see Refs. 6, 7 and the literature 
cited there). A characteristic feature of the fields of moving 
toroidal dipoles is that when there is no medium these fields 
are localized inside the sources, while if there is a medium 
present they extend outside the sources. Moreover, the latter 
conclusion is valid only for standard applications of the 
equations of macroscopic electrodynamics. For microscopic 
toroidal dipoles it is, in general, untrue. This specific feature 
encouraged us to present this work in considerable detail. 

1. We shall assume that in the laboratory frame K there 
is a nonabsorbing medium at rest which is isotropic and 
characterized by a dielectric permittivity E and a magnetic 
permeability p which are independent of the field strengths. 
Except in the last sections of this paper in which we consider 
transition radiation and problems associated with the mo- 
tion of a source in a channa, we assume the medium to be 
uniform. We neglect in our equations the frequency disper- 
sion of E andp, since it is well how to include it in 
the final expressions for the radiation power. Thus we start 
from the usual equations 

4n E 6'E 
ro tH=- j+ - -  div ~E=4np,  

c  c a t '  
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div pH=O, 

where j and p are the "external" current and "external" 
charge densities. 

For a toroid at rest (rest frame K '  the same as K )  we 
assume that the current j has the form (2) and thatp = 0 or, 
choosing the z - and z'-axes along T = T', 

where T = T, , T, = T, = 0 and r,, , = y, r,, , = x .  The so- 
lution of Eqs. (3) for such a j has the form 
H = 4 ~ c u r l  ( TS (r) ] or 

d a 
H,=O, H,=4n - T6 (r) , H,=-4n - T6 (r) , 

a Y ax (5) 

i.e., the field is concentrated inside the toroid; if we have in 
mind an extended toroid, the field H inside it can be assumed 
to be constant in magnitude and directed along the azimuth. 

Now let the toroid be moving with a velocity v along the 
z-axis along which the vector T lies. Equations (4), (5) then 
refer to the rest frame K ', and using a Lorentz transforma- 
tion for/ = (cp, j J we find in the laboratory frame K 

j,=-cA,T6 (r,) 6 (z-vt), 

v 
p=- - A,T6 (z-vt) 6 (r,) 

C 

Here we have used the fact that 

2. At first sight it may appear that the fields in the sys- 
tem K can also be obtained from (5) using a Lorentz transfor- 
mation. When a medium is present, however, this is no long- 
er the case, since we can obtain only the fields in the frame 
K " in which the medium moves with a velocity v (i.e., with 
the velocity with which the source moves in the medium). 
However, in the vacuum case the fields of a moving toroidal 
moment are, of course, obtained from (5) as the result of a 
Lorentz transformation. Then 

a 
=4n - T6 (z-vt) 6 (r,) , 

a Y 
d 

H,=-4n - T6 (2-vt) 6 (r,) , 
dx 

Naturally, the fields H and E are nonvanishing only inside 
the toroid. Writing the velocity v = (0,O, v )  we can put the 
current (6) in the form 

j=pv+jT, div jT=O; jT,Z=-c 1 - - A,T6 (2-vt) 6 (r,) , ( 

We consider now the case when in the laboratory frame there 
is only a toroidal moment for which 

j=jTU=c rot rot {TUG (2-vt) 6 (r,)) ; p=O, T,= (I-v2/cZ) T, 

(9) 
which for a velocity v along the z-axis corresponds to Eq. (8) 
with p = 0. 

A moving toroidal moment described by (9) 

in its rest frame. For such a toroidal moment the electric 
field no longer vanishes in the frame K '; it is given by the 
equation 

4n v 
div Ef=-Aq'=4npT' = - A,'T6 (r') . 

C 
(1 1) 

Hence p' = (v/c) A T (rf)- ' and when r' $0, by virtue of 
A '(r l ) -  = 0, 

i.e., the field E' = - Vp' is the field of the electrical quadru- 
pole moment D AD. On the other hand, the magnetic field H' 
retains its form (5). In other words, the toroidal moment (9) 
at rest is a combination of the toroidal dipole (4), (5) and an 
electric quadrupole. One can check this also for the model of 
an extended current toroid-in that case the quadrupole 
forms electric dipoles fanned out in the y', x'-plane (i.e., at 
right angles to the moment T). 

The field of the toroidal moment (9) in the frame K in 
contrast to the field of the moving toroidal dipole (6)-(8) is no 
longer localized in the region of the moment itself. This is 
clear from general considerations. It follows from the more 
general solution given below which is valid when there is a 
medium present. 

3. We turn to finding the fields of toroidal moments 
moving in a medium by means of Eqs. (3). They give rise to 
the equation 

In (13) we shall substitute for j expressions (6) or (9). The 
limits of applicability of such an approach and, especially, of 
Eq. (13) itself, will be touched upon in what follows. Expres- 
sions (6) and (9) are such that d /dt = - vd/dz and we can 
Put 

Therefore Eq. (13) gives for the case (6) 
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v2 d2+ 4 n v ( ~ p - 1 )  
A ~ $ + ( I - - ~ p ) - = -  c2 dz2 A , T ~  ( z - v t )  G (r,) . 

28 

More precisely, from (1 3) one gets Eq. (1 5) operated on by (d / 
dy) (d2/dz2) or (d/dx) (d2/dz2) and Eq. (16) operated on by d / 
dz. However, in the problems of interest to us we can use Eqs. 
(15) and (16). For a current with the density (9) one must 
replace the right-hand side of Eq. (16) by 

A,T6 (2-vt)  G (r,) . 
C 

In vacuo when E = p = 1 the right-hand side of Eq. (1 6) van- 
ishes and one can put $ = 0, i.e., E, = 0, and we have from 
(15) 

Hence [see (14)] the field E turns out to be equal to the field 
(7) as it should.. 

When a medium is present, i f ~ p  # 1, the fields of a mov- 
ing toroidal dipole are no longer localized in the region it 
occupies. The same is true for the toroidal moment (9), when 
the right-hand side of Eq. (16) is non-vanishing, already in 
vacuo by virtue of the substitution (17). Of course, such a 
toroidal moment now has the indicated electric field in the 
rest frame (see (1 I), (12)). 

4. We turn to the solution of Eqs. (15), (16). We shall do 
this in the Fourier transformation 

$ =J  *,a erp{ ixr ,+ ik(z -uf ) )dr  dk,  
(19) 

rp= q * , ~  exp{ixr ,+ik(z-ut))dr  dk. 

Substitution of (19) into (15), (16) leads to the result 

q 1 ; ~ = 4 n v ~  [ ( 2 n )  'eel-', 

where 

R ' = X ~ + ~ ~  ( ~ - E ~ u ~ / c ~ ) .  

The terms e,, and pf;,, in (20) and (21) in the coordinate 
representation are proportional to S (z - vt )S(r,), i.e., they 
correspond to a local potential of the toroidal dipole moving 
in the medium. In that case the expressions for e;, and pFk 
are proportional to ~p - 1 and in vacuo vanish in agreement 
with what has been said earlier ($,,, vanishes also in the 
rather peculiar medium9 with ~p = 1). We can write the 
expression for pf;, , also in the form 

where the second term, like $,, ,, is connected with the cur- 
rents in the medium. 

The fields corresponding to ck and p rk are nonlocal, 
i.e., in the coordinate representation they extend outside the 
source, 

Let the condition for the occurrence of the Cherenkov 
radiation, 

( V I C )  1/Ep> 1 (24) 

not be satisfied. Even in that case the potentials vL and pNL 
and the corresponding electrical field decrease slowly with 
distance from the source. Indeed, integrating (23) over the 
angle between x and r, we have 

vT d2 
=--- - v2 

E'l~o( kr,( 1  -- e p ) " )  cos k ( z - v t ) d k  
nc dz2 E c2 

We put here E = const and p = const, where J,, and KO are 
the familiar Bessel functions. If there is frequency disper- 
sion, E = ~ ( k v ) ,  and one can formally assume that also 
p = p(ku). Of course, one can then not integrate over k in a 
general manner. According to (25) the potential decreases 
with distance in the same way as an electric quadrupole mo- 
ment [thus, for t = 0 and r, = 0 the potential pNL 
= - ~ U ( E P  - ~) /CEZ~] .  

A toroidal dipole is thus one example of a source for 
which in a vacuum the fields do not extend beyond the 
source but in a medium they are then nonvanishing also out- 
side the source. Another example is an infinite solenoid with 
current moving in a medium, or a constant magnet (with 
axes at an angle to the velocity). In a familiar sense one can 
also relate to this a current magnetic moment for which in 
the rest state j = c curl (mS (r))  and 

B 3r(mr)  -mr2 H = - =  
15 

+.4nm6 ( r )  . 
s P 

(26) 

The second term corresponds here to the field which is re- 
stricted within the source. However, when the latter moves 
in a medium the fields connected with the 6-term are now 
nonvanishing also outside the dipole. At this point one can 
see the reason for the different radiation from current and 
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"true" magnetic dipoles which move in a medium (see Ref. 
6). 

From an intuitive point of view the extension of the field 
beyond the limits of a source which moves in a medium can 
be explained very simply. In macroscopic electrodynamics 
[and particularly when one uses Eqs. (3)] the medium is as- 
sumed to fill all of space, including the region inside the 
sources. Therefore for a source which moves in a fixed medi- 
um this medium continually passes through the source (or, 
using the graphic terminology of M. A. Miller, "is blown 
out" of the source. This blowing out is still more pictorial 
when we consider the process in the rest frame of the source, 
so that the medium moves with a velocity - v). However, 
the medium in the source is polarized even by the field local- 
ized in it, as a result of which the polarization together with 
the corresponding part of the field now appears outside the 
source. 

5. In the light of what we have said it is clear that when 
condition (24) is satisfied the toroidal dipole moment (6) will 
be a source of Cherenkov radiation. 

The energy Q emitted per unit time can be evaluated by 
different methods (see, e.g., Ref. 7). One of them consists in 
evaluating the work done by the field on the source (current): 

Substituting here the Fourier components corresponding to 
expressions (6), (14), (15) we have [see also (19) to (21)] 

where we have used the fact that w = I k I v and when integrat- 
ing over x2 have used the relation 

If one is dealing with the emission from a "pure moving" 
toroidal moment (9) we get similarly 

Of course, = n is the refractive index of the transpar- 
ent medium considered; the integration over the frequency is 
carried out over the region where v>c/n(w). Expression (29) 
is the same as the one given in Ref. 6 where it was specified 
through T, = T. 

Another method of evaluating the emitted power con- 
sists in calculating the change in the energy of the field per 
unit time. The calculation was given in detail in Chapter 7 of 
Ref. 7 for a source of charge e,  electric dipole p, and magnetic 
moment m and a current density of the form 

a 
j=evS (r-vt) +c rot (m6 (r-vt) ) + -{pi3 (r-vt) ) . (30) at 

In this case we put ,u = 1 in Ref. 7, but the generalization to 
the case ,u# 1 can be made very simply (see Ref. 6). If the 
source, however, also has a toroidal moment one must clear- 
ly add to (3) expressions (6), (8), or (9). We restrict ourselves 
here to the last case. We then get instead of Eq. (7.44) of Ref. 
7 
ijv+~:q~j= (4n/&) ' {e (a,v) -c (a,T,) k,2+~(cm[aijk~l 

- (pahj) ( ~ x v )  ) ) exp {-i ( ~ A v )  t )  , (31) 
where w: = (c2/&,u)k: and the a,, are polarization vectors 
for waves of wavevector k, where for an isotropic medium 
a,, a,, = S,, k, a,, = 0, i, j = 1, 2. It is clear from (3 1) that 
the emission from a toroidal moment interferes with the 
emission of a charge but not with the emission of an electric 
or magnetic dipole. Without performing any new calcula- 
tions one can easily obtain a general expression for Q, gener- 
alizing Eqs. (6.61) and (7.45) from Ref. 7. We restrict our- 
selves here to the results for the case when only the moment 
T, is present, i.e., e = 0, rn = 0, and p = 0. In that case 

If the moment T, is directed along v we get from this the 
result (29) since one of the vectors a,, may be assumed to be 
orthogonal to T, and for the other polarization 

(aaT,) = (T,) sinz 0, cos 8=c/nv. 

The third method for finding Q consists in evaluating 
the flux of the Poynting vector through a surface surround- 
ing the charge trajectory. This way, which was used in the 
first paper on the theory of the Cherenkov effect,'' is, in 
particular, convenient for evaluating the emission when 
there is a circular channel present in a dielectri~.".'~ We 
touch upon the problem of the emission by a toroidal dipole 
in a channel in what follows. 

6. For reasons expounded in the next section of the pa- 
per the consideration of Cherenkov radiation and transition 
radiation for toroidal moments using macroscopic electro- 
dynamics has only a very restricted value. Nonetheless it is 
expedient to dwell here briefly upon the transition radiation 
of a toroidal dipole at the boundary of two media. We restrict 
ourselves to the simplest case (at least, the one simplest for 
calculations), in which the toroidal moment T is directed 
along the velocity v, the boundary dividing the media per- 
pendicular to v and, moreover, 

A qualitative idea about the nature of the radiation can be 
obtained also without detailed calculations. As for the radi- 
ation of a quadrupole, the radiation by a toroidal moment 
must contain (compared to the radiation from a charge) an 
extra factor proportional to w4. The spectral density of the 
radiation of an ultra-relativistic charge W, in the forward 
direction (along the direction of motion of the charge) is well 
known8 to be approximately constant up to frequencies of 
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theorderw,, (E /Mc2), wherew,, = (4.rre2~ /m)'12 is theplas- 
ma frequency of the medium, and after that decreases as 1/ 
m4. Hence, the spectral density of the radiation from a toroi- 
dal moment will be proportional to w4 when w (up, (E /Mc2) 
and after that will be constant when w)wpe (E /Mc2) (in the 
spectral region considered p = 1 and E = 1 - o%/w2). 

Such a flat spectrum can, in principle, stretch up to very 
high frequencies (we indicate the bounds below). We find the 
constantdetermining the spectral density of the radiation on 
the flat part of the spectrum. By a standard methods for a 
sharp boundary, for instance, when a toroidal dipole passes 
from the medium into vacuum, we get for the forward emis- 
sion at a small angle 8 2( 1 to the velocity and for E /Mc2( 1 
the expression 

The upper limit is here determined solely by the fact that we 
have made the approximation 8 24 1. When w2/wie )(E / 
Mc')~ we can neglect the frequency dependence in the inte- 
grand of (33) and when ln(E /Mc2)> 1 we can neglect terms of 
order 1 in comparison with ln(E /Mc2). As a result 

At lower energies, when the condition ln(E /Mc2)> 1 is 
not valid, emission at an angle 8- 1 becomes important al- 
though it only determines a numerical factor in the argu- 
ment of the logarithm. We can then systematically neglect 
termso~,/w2 compared to 1 - v/c and 1 and rigorously inte- 
grate over angles. For the forward emission (0 < 8 < ~ / 2 )  we 
get when E /Mc2) 1 

There is thus in (34) an additional additive constant ln f i  
- + = - 0.737 which must be taken into account when 

ln(E /Mc2) is not too large. One can also write Eq. (35) in the 
form 

It is interesting that in this case the spread in the bound- 
ary can determine the maximum emitted frequency. Let Az 
be a characteristic size determining the change of E at the 
boundary from its value E = 1 - o$/w2 to E = 1. The zone 
where the radiation is formed is given by the expressionS 

In the case of emission by a charge the spread in the 
boundary can be important only ifAz (the characteristic size 
of the spread) is larger than the zone Lf where the "maxi- 
mum" frequency wpe(E /Mc2) is formed. As for the latter 
frequency Lf - (4.rrc/wPe ) (E /Mc2) the condition for a sharp 
boundary, Az(Lf or E /Mc2>wpe Az/4.rrc is usually well sat- 
isfied when E /Mc2> 1, if AZ < 4m/wpe. For normal solids 
this inequality means Az < cm and is usually easily sat- 
isfied. 

For a toroidal dipole the situation is radically changed. 
The main interest lies in the frequency range w2/oie>(E / 
M C ~ ) ~  where the spectral density W, is constant [see (36)] 
and 

For fixed frequency w the formation zone is largest when 
8 = 0 (strictly forward). The intensity is cut off if 

In the radiation the first thing that happens is that those 
waves will cut off which propagate at an appreciable angle to 
the velocity-the radiation becomes more directed. 

When 8 = 0 

and we get from (39) 

For a plateau W, = const to exist the value w,,, must lie on 
that plateau, i.e., w,,, >ape (E /Mc2). 

Hence it follows that under the condition 

E / M c Z >  ( w , , / c ) A z  (42) 

the maximum emitted frequency is, indeed, given by (41). 
When inequality (42) is satisfied we get an estimate for 

the total emitted energy: 

This expression is just an estimate because, as we noted, with 
increasing 8 the angular distribution is limited (waves are 
mainly emitted along v). Calculations show that for a bound- 
ary described by the relation 

there is no logarithmic factor in the integral intensity and 

For an extended toroidal dipole this result, which shows that 
the total emitted energy is proportional to E 2, is valid only 
when 

where I is the characteristic size of the toroid in the direction 
of its motion in its proper frame (the factor Mc2/E arises in 
(45) due to Lorentz contraction). According to (41) condition 
(45) takes the form 

E lo , ,  

or 
E/Mc2< Az /4n l .  (46) 
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Together with (42) this means that Eq. (44) under the condi- 
tions discussed is applicable as long as 

It should be noted that we do know of no realistic prob- 
lems in which transition radiation by relativistic toroidal di- 
pole moments would be meaningful. 

7. In the foregoing we used macroscopic electrodynam- 
ics and assumed that the medium is uniform everywhere, 
including the inside of the toroidal dipole (the point dipole 
assumption was used essentially only to simplify the calcula- 
tions). It is clear that such an approximation (model) can be 
of real value only in exceptional cases. For instance, in a 
plasma there may be currents present corresponding to a 
current toroid and the dielectric permittivity of the plasma E 

may be almost the same inside and outside the toroid. How- 
ever, even in that case it is in general necessary to take into 
account the effect of a magnetic field on E or, more precisely, 
to consider the  tensor^,^(^, H). It is true that it is difficult to 
produce a fast-moving toroid even in a plasma but, in gen- 
eral, the analysis of toroidal dipoles moving in a medium 
may turn out to be useful for several plasma applications (see 
Ref. 2). (One should then bear in mind that there are, in 
general, slow waves in a plasma and the Cherenkov condi- 
tion may thus be satisfied also for low velocities.) For toroi- 
dal dipoles of atomic or even smaller application of 
macroscopic electrodynamics without taking into account 
spatial dispersion is already, in general, inadmissible. 

In this respect the fields of toroidal dipoles (and similar 
sources with a field localized inside them) are particularly 
sensitive to the state of the medium near the sources. Indeed, 
it is well known that a charge at rest with a spherically sym- 
metric densityp(r) in a continuous medium with permittivity 
E outside the charge gives rise to a field which is independent 
of whether the medium penetrates the charge itself or the 
permittivity E,#E in the region where p+O (charge in an 
empty spherical cavity, and so on). Even for an electric di- 
pole this is not the case and, for instance, for a dipole in the 
center of a spherical cavity with a permittivity E, the electric 
field outside changes by a factor ~E/(E, + k) in comparison 
with the case when E = E ~ .  For a magnetic moment the situa- 
tion is similar (the role of the "filling" of the magnet by a 
medium with permeability po placed in a medium with per- 
meability~ was analyzed in Ref. 14, § 74). The effect of the 
vicinity of the dipole on the field produced by it in the medi- 
um is closely connected (as is already clear, for instance, 
from the reciprocity theorem) with the problem of the field 
acting upon a dipole in a medium (we are dealing here with 
the difference between the acting or effective field E, and 
the average macroscopic field E; for magnetics one must, of 
course, also distinguish He, and H). It is well known that 
Eeff in its general form cannot be expressed in terms of E and 
E. The result depends on the structure of the medium and 
the problem continues to be debated.l5*l6 

For a toroidal dipole at rest [with a given value ofT, i.e., 
with a given current density (2)] the field H inside the toroid 
does not depend onp outside and inside the toroid, while the 
induction B = p H  outside the toroid always vanishes. For a 

toroidal dipole (2), (4), (6) moving in a uniform medium with 
constant velocity the picture was explained above and the 
Cherenkov emission is proportional to (E,U - 1)'. If the medi- 
um does not penetrate into the dipole there will be no Cher- 
enkov radiation (see, however, footnote*). In particular, this 
statement is valid under conditions such that the problem 
can be rigorously solved in the framework of macroscopic 
electrodynamics. In fact, let us consider a toroidal dipole 
(with current density (6)) moving along the axis of a circular 
channel with radius a in a medium with permittivity E and 
permeability p while in the channel the permittivity is E, and 
the permeability p,. One of us (V.N.T.) has completely 
solved this problem (under the assumption that ~ ~ v ' / c '  > 1 
and E ~ ~ ~ U ~ / C '  < 1). For the emitted power in the case of a 
narrow channel one then gets Eq. (28) with ~p - 1 replaced 
by E, p0 - 1. Hence, for an empty channel (E, = p0 = 1) the 
emission vanishes. As stated this result is a completely gen- 
eral and explicit result and it will be valid for any empty 
channel, gap, etc. If one has to deal with problems of the 
fields and emission of microscopic toroidal dipoles, one can 
state that the fields outside the dipole may arise only if the 
medium surrounding it to some extent penetrates into the 
dipole (at a microscopic level one may be dealing with, for 
example, the entrance of separate particles from the sur- 
rounding medium into the dipole, or something like that) or, 
at any rate, it interacts with them." What we have said re- 
fers, of course, only to a uniformly moving toroidal dipole 
with a time-independent toroidal moment T = T '  in the rest 
frame. If the moment Tchanges with time and (or) the dipole 
undergoes acceleration, radiation can, of course, take place. 

As the problem of the effect of a medium on the fields of 
toroidal dipoles (and similar sources) has mainly a method- 
ological character, especially in application to micro-di- 
poles, it is particularly relevant to emphasize the usefulness 
of understanding this problem for other sources. Specifically 
we have in mind in the first instance current and "true" 
(made up from magnetic monopoles) magnetic dipoles. The 
difference in the power of the Cherenkov radiation and of the 
transition radiation for these two kinds of dipoles in the past 
would appear to be real also in the application to point (mi- 
croscopic) dipoles (see Refs. 7, 8 and the literature cited 
there). However, now it is clear that there are no differences 
whatever in those cases (both kinds of point dipoles radiate 
in the same way and have exactly the same fields far from the 
dipoles). For macroscopic magnetic dipoles the whole prob- 
lem is connected with the role of the medium, which may fill 
different dipoles differently, while for a current magnetic 
dipole the presence of the term 4 d  (r) in Eq. (29) is impor- 
tant. This problem is elucidated in detail in Ref. 6. 

The authors express their gratitude to D. A. Kirzhnits 
for a discussion of the last section of this paper. 

"Any interaction between the source and the medium for v > c/n(w) gives 
some Cherenkov emission. In particular, the impenetrability of the 
source to the external medium means that particles of that medium 
somehow are repelled from its surface and therefore produce some per- 
turbation. The intensity of the resulting emission can, however, not be 
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calculated in the framework of macroscopic electrodynamics neglecting 
spatial dispersion. It seems to us rather obvious from physical consider- 
ations that the intensity of the Cherenkov radiation for microscopic to- 
roidal dipoles will be very small, even without taking into account the 
fact that the values of T themselves are small. If one is dealing with a 
dipole which is impenetrable to particles of the surrounding medium, 
this smallness is connected with the fact that the corresponding scatter- 
ing cross-section is small. If, however, the particles of the surrounding 
medium (say, a plasma) can enter the dipole, the value of the wavefunc- 
ti011 of the plasma electrons inside the toroidal dipole will be significant, 
but even in that case one may expect the effect to be small. The corre- 
sponding class of problems clearly deserves a more detailed analysis. 
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