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The possibility of formation of incommensurate vortex structures in systems with dipole interac- 
tion between the spins is considered. It is shown that the eigenvalue spectrum of the dipole-tensor 
Fourier components of compounds with hexagonal structure has a minimum inside the Brillouin 
zone; the wave vector corresponding to such a minimum is not symmetry-fixed. The incommen- 
surate structure produced as a result at intermediate temperatures is therefore vortical because of 
the transverse polarization of the dipole-tensor eigenvector. The vortical structure becomes de- 
formed in an external field and goes over into a sinusoidal (more accurately, a fan-shaped) struc- 
ture at a certain critical value. The effect of volume forces as well as of the hexagonal anisotropy 
on the structure of the vortical configurations is considered. 

1. INTRODUCTION 

There exist by now a number of magnetic materials in 
which the periods of the magnetic structures are not com- 
mensurate with the crystal-lattice periods. The causes of the 
formation of incommensurate structures vary. In crystals 
without an inversion center, a phase transition between the 
commensurate and incommensurate phases is due to the 
possible presence, in the free energy, of the isotropic-interac- 
tion terms described by the Lifshitz invariant. The mecha- 
nism of such a transition with onset of helical structures 
(spin-density waves) was first considered by Dzyalo- 
shinskii. ' 

Recent experiments with antiferromagnets2'g3 have re- 
vealed the existence of structures of intermediate tempera- 
ture and having an incommensurate magnetic phase. Shiba4 
(see also Ref. 5) has shown that these experimental data can 
be readily explained in terms of a conical-point instability6 
due to weak dipole-dipole interaction. It follows in particu- 
lar from his calculations4 that the temperature interval in 
which the incommensurate phase exists depends on the di- 
pole interaction of the spins; this agrees well with the ob- 
served values. 

At the same time there are many known substances in 
which the exchange interaction is substantially weakened. 
In these substances the dipole interaction predominates in 
the formation of the magnetic structure. Experimental in- 
vestigations, more than a decade old, of the thermal and 
magnetic properties of certain dipole systems, namely rare- 
earth compounds (the exchange interaction is weakened by 
screening of the 4f electrons by the outer 5s and 5p electrons), 
have shown that the critical point at which ordering from the 
paraphase takes place lies somewhat higher than the point of 
transition into a state with a commensurate magnetic struc- 
ture. It was indicated in this connection in Ref. 8 that for 
certain crystal lattices even pure dipole interaction can lead 
to a divergence in the susceptibility if the wave vectors do not 
correspond to the onset of some commensurate (ferro- or 
antiferromagnetic) structure, since the dipole interaction 
can be of either sign, depending on the direction. At the same 
time, a study of the ground and metastable states with a 

simple cubic lattice as the example has shown that dipole 
forces stimulate the onset of structures with vortical charac- 
ter.9 

The present study deals with the possibilities of forma- 
tion of intermediate-temperature vortical incommensurate 
structures due mainly to dipole-dipole interaction: 

where rij is the distance between the spins Si and S, which 
are normalized to unity. We consider below compounds 
with hexagonal lattice, such as many salts of rare-earth ele- 
m e n t ~ . ' ~ ~ "  Such lattices contain modulated structures be- 
cause the Brillouin zone contains a "random" minimum and 
because the eigenvalues of the dipole tensor depend on the 
wave vector. On the other hand, the character of the polar- 
ization of the eigenvectors (of the mean values of the spins) at 
the minimum points leads to a vortical configuration of these 
structures. We examine therefore the possibility of the onset 
of intermediate phases if a magnetic field is present in the 
dipole systems. Finally, we consider the influence of weak 
exchange interaction, as well as of hexagonal anisotropy, on 
the structure of the vortical configurations. 

2. DIPOLE TENSOR 

To find the ordered states that can be produced from an 
unstable paramagnetic state it is necessary to know the 
eigenvalues and the eigenvectors (see the next section) of the 
Fourier components of the dipole tensor 

i-j 

Using Ewald's method (see, e.g., Ref. 12) one can express the 
elements of the tensor Da8 (q) in the form of rapidly converg- 
ing sums. 

A symmetric dipole tensor in q-space has three eigen- 
values /Z (q) determined from the condition for vanishing of 
the determinant, viz., 

d e l  ( ~ a b  (q) - 1 6 a ~ )  =0. (2) 
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in a certain temperature interval. To determine the structure 

A;.__ 

ble, of the this let molecular phase us calculate and field the the approximation. temperature free energy Fwithin interval In this in the approximation, which framework it is sta- of 

the dipole Hamiltonian takes the form 

a - zef=- z H A 7  
L K  f 

where the components of the effective field Hi are connected 
with the components of h = gp,S h, (h, is the uniform exter- 

FIG. 1. a) Dependence of the eigenvalues A * on qx at q, = 0 and q, = r /  nal field) and with the tensor D Ep by the relation 
c; b) contour with radius q = q., along which the smallest eigenvalue 
L ( q )  is continuously degenerate; the arrows along an equipotential line 1 
show the direction of the polarization. H,'=h,--x D~'<s!) .  

,,a 
(3') 

Figure l(a) shows the two lower branches of the func- 
tionil (q, ) at qy = 0 and q, = n-/c (thez axis is along thec axis 
of the hexagonal lattice). The lowest branch A-(9, ) has a 
minimum at q, = q. , and crosses the A +  (q, ) curve at the 
point q, = qy = 0 (conical point K ). The smallest eigenvalue 
A- is continuously degenerate along a contour of radius 
q = q* [Fig. l(b)]. The value ofq. , on the other hand, is in the 
intermediate region and corresponds to neither ferromagne- 
tic nor antiferromagnetic ordering of the spin in the basal 
plane. The presence of a minimum inside the Brillouin zone 
is due to the difference in the character of the dipole interac- 
tion of the spins in different coordinate spheres: the interac- 
tion tends to ferromagnetic ordering of the spins for some 
spheres and to antiferromagnetic ordering for the others. It 
is the competition between these contributions that causes 
the sag of the function A-(q); the magnitude and location of 
the sag depend on the ratio of the parameters of the hexagon- 
al lattice.' 

Numerical calculations ofR (q) show that at an hexagon- 
al-lattice parameter ratio c/a 2 1.5 the eigenvectors corre- 
sponding to the smallest R (q) lie in triangular planes (perpen- 
dicular to the c axis); in the neighboring layers, however, 
they are antiferromagnetically ordered (q, = T/c). Thus, the 
smallest eigenvalue A- corresponds to a wave vector 
q: = q. + kn-/c, where k is a unit vector along the c axis; the 
period of a mode with such a wave vector q: is not commen- 
surate with the period of the lattice in the basal plane. The 
eigenvectors of the tensor Da8 (q) in the basal plane, however, 
are everywhere polarized along the tangent to the equipoten- 
tial line A-(q:) [Fig I(b)]. It will be shown below that just 
this circumstance leads to the existence of the vortical struc- 
ture. 

Allowance for the weak exchange interaction 

lifts the continuous degeneracy along the circle q: + qi = q? 
on the q , ,  qy plane. We shall discuss this case in greater 
detail in Sec. 4. 

The mean value of the spin at the site i is determ.ined in terms 
of the partition function Z = Sp exp( - Xe, /T )  by the 
expression 

Here B, ( x )  is the Brillouin function: 

The expression for the free energy F = - T ln Z is repre- 
sented as follows: 

where B ; ' is the inverse of the Brillouin function. To obtain 
F we used the relation (4). The equilibrium condition dF /  
d(S:) = 0 leads, naturally, to expression (3') for the effec- 
tive field. 

At low values of the order parameter ( S  7) the free ener- 
gy can be written in the form of a Landau expansion. Retain- 
ing terms up to sixth order in ( S  :) we have 

where 

(in this section we need only an expansion of F up to fourth 
order in (Sp)). Transforming to Fourier components 

3. VORTEX STRUCTURE. EXTERNAL FIELD in the expansion of the free energy (6) and diagonalizing it in 
The existence of a minimum of A-(q) inside the Bril- the vicinity of the transition point, we find that the coeffi- 

louin zone leads to the appearance of an intermediate phase cient of / (S, ) 1 2 ,  which is the reciprocal susceptibility, as it 
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FIG. 2. Pattern of spins in incommensurate structures at 
q. a<l .  a)-vortical structure; b--linear structure at finite 
value of the field h (fan-shaped). 

should, reverses sign at the point T. = - A - (q: )/3a corre- 
sponding to the extremum (minimum) of the function A- (q). 

At T = T. the paramagnetic state is unstable to con- 
densation of the transverse modes with q = q:, since the ei- 
genvectors (the mean values of the spins) corresponding to 
the smallest eigenvalue A-(q:), are orthogonal to the wave 
vectors q: viz. arrangement of the magnetic moments in Fig. 
l(b) along a tangent to the circle q?~ + q: = ql and their anti- 
ferromagnetic arrangement in the neighboring layers of the 
hexagonal lattice. The average spin projections, expressed in 
terms of normal transverse modes, take therefore in the basal 
plane the form 

(S?)=@, exp (iq,yi)+@,* exp (- iq*yi) ,  

( S i 9 = @ ,  exp (iq,x,) +@,* exp (-iq.xi) +m, 
(7) 

where 0, and QY are complex quantities of like amplitude, 
and m is the constant component of the spin along the mag- 
netic field (the vector of the field h lies in the same basal plane 
and is oriented, to be specific, along they axis). 

We consider first the solution for (Si ) in a zero field. 
Substituting (7) with m = 0 in the expression (6) for the free 
energy, we find from the equilibrium conditions aF/ 
a@ ,* = 0, aF/a@ ,* = 0 that 

the neighboring vortices is opposite. We emphasize here that 
the vortical character of the incommensurate structure is 
due to transverse polarization of the eigenvectors of the di- 
pole-dipole tensor DaB (q) along the contour on which the 
equipotential line has a minimum [Fig. l(b)]. 

With decreasing temperature, the vortex configuration 
becomes unstable: a transition takes place into a homogen- 
eous state with q, = q,, = 0 (but, as before, the spins are 
antiferromagnetically ordered in neighboring planes, 
q, = ?T/c). An estimate of the temperature region AT where 
the vortex structure exists can be obtained from the condi- 
tion that the free energies of the incommensurate and homo- 
geneous phases be equal. As a result we find, as we should, 
that this region is proportional to the depth of the potential 
well relative to A, =A-(q,) of the conical point 
QK = (0,O, T/c):AT-A, - A-(q:). 

Application of a magnetic field deforms the vortical in- 
commensurate structure; this is reflected in inequality of the 
oscillation amplitudes in (7) a.nd (8). Minimizing now the free 
energy (6) not only with respect to @, and @,, , but also with 
respect to m, we obtain at small h 

wherem = h /(A, + 3aT).  The freeenergy takes in this state 
the form 

thermodynamically stable state corresponds not to a one- hi1 ----++ \-;:\ 
mode state. but to a state with simultaneous condensation of 
two transvkrse modes of equal amplitude. The structure of I I ' _ Y';\ 
the produced state has a vortical configuration in the basal I I Icv \ \  
plane. The arrangement of the spins of such a structure is 

I 2  

I 
I 

shown in Fig. 2(a). 0 
Tv 

<SiT)= /@,I sin q,yi, (S,")=--i sin q.zi, FIG. 3. Phase diagram: IC,-region of existence of linear (fan-shaped) 
incommensurate phase, IC,- region of vortical incommensurate phase, 

from which it can be seen that the orientation of the spins in P-paraphase region. 
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Here A- = 3a(T - T I  ). As can be seen from (9), with in- 
creasing field h along they axis the difference between the 
amplitudes I@, I and I@,, I also increases, with the amplitude 
I@, I transverse to the field increasing and the longitudinal 
I@, 1 decreasing. Finally, when the field reaches the point 
h = h, the amplitude I@, I vanishes: the vortex structure 
collapse and becomes sinusoidal. 

Thus, a new phase exists in a field h > h, and corre- 
sponds to one transverse mode. To find the projections of the 
average spin for this incommensurate structure, we substi- 
tute again the expression (7) for ( S i  ) in the expansion (6) for 
the free energy, but assume now that @, = 0. As a result we 
obtain for the stable equilibrium 

(at small h the expression form coincides with the analogous 
expression in the vortical phase). The structure induced by 
the field is fan-shaped at finite values of h and is shown in 
Fig. 2(b). 

The amplitude I @, I in (1 1) becomes different from zero 
atthepoint TL = T. - 4m2B /3a, where thetransition from 
the paraphase takes place in a field h # 0. On the other hand, 
the transition point from the linear to the vortical structure, 
determined from the condition that the free energies F, and 
F, beequalin(l0)and (1 I), islocatedat Tv = T. - 28m2B / 
3a. Figure 3 shows the region of existence of the phases: with 
decreasing field, the temperature interval of the linear in- 
commensurate phase (TL - Tv - h  ') also decreases, and 
vanishes at h = 0. In weaker fields the transition from one 
incommensurate phase to another is of second order in the 
molecular-field approximation. 

4. ROLE OF EXCHANGE FORCES 

Consider now the influence of the weak exchange inter- 
action (3) on the form of the vortical configurations pro- 
duced at finite values of J. The perturbation of the initial 
eigenvalues upsets the isotropy A - (q: ), but a discrete degen- 
eracy still remains on a contour with radius 

- Ja 13 a2h- (4.) 
qi=q.- l3  ------- sin- q,a, I-" ( q . )  = 

h-'((q.) 2  dq.2 -. (121 

Since A 'L (q. ) > 0, the sign of the correction to the radius of 
the perturbed orbit is determined by the sign of the exchange 
interaction. Figure 4 shows the form of the eigenvalue A -(q) 
with account taken of the exchange interaction at J >  0. The 
minima of the potential surface A -(q) at q, = PIC are locat- 
ed at six equivalent points q = f e, s = 1,2,3, correspond- 
ing to degenerate values of the moduli of the wave vectors 
(ql = q, = 9,). The A-(q) minimum points are in turn sepa- 
rated by a barrier whose maximum is reached at the saddle 
points q = + G ,  f qb , f q, (q, = qb = q, ). If the ex- 
change interaction is antiferromagnetic (J < O), the positions 
of the characteristic points of the function A -(q) on Fig. 4 
change places: the minimum points correspond to saddle 
points and vice versa. 

FIG. 4. Equipotential lines A -(q) with allowance for weak exchange (fer- 
romagnetic) interaction. The minimum points are located at the vectors 
f 91, f q2, f q3; the saddle points are f q,, f q,, + q, . 

With decreasing temperature the paramagnetic state 
now becomes unstable at a point TI = - A-(q;)/3a in 
which the modes with wave vectors q,' = q, + kn/c con- 
dense. In the general case, besides the coexistence of one and 
two modes, three modes can coexist. The modulated struc- 
tures produced by a linear combination of three modes are 
known and have been considered in connection with solu- 
tions of other physical  problem^.'^-'^ Taking into account 
the polarization of the eigenvectors at points <, we represent 
the solution for the average spin projections (SP)  in the 
form 

(S,")=a,  cos ( q l r r i f  y , )  -2a2 c,os (qZrri+yz)  +as cos (q3'r i+y3) ,  

( S , " ) = Y T [ ~ ,  cos (qirr i+y, )  -a3 cos (q3 ' r ,+y3) ] ,  
(13) 

where a, and y, are the amplitudes and phases of the corre- 
sponding modes. The states with one or two & are thus ob- 
tained if one or two out of the three amplitudes in (13) are 
respectively different from zero. 

Let us compare the free energies of the different states. 
To this end we replace D $ in the Landau expansion (6) by - 
D * 1 1  = D a0 S J  - U S i  + , (the coefficients A, B, and C re- 
main unchanged here) and substitute next (13) in the so 
transformed expansion (6), in which now we retain terms up 
to sixth order in ( S  y ) .  As a result we find at h = 0 that F, in a 
state with one mode (a, = a,, a, = a, = 0) and F, with coex- 
istence of two modes (a, = a, = a,/fi, a, = 0) are equal 
and are given by 

where A, = 3a(T - T,). 
The state with simultaneous condensation of three 

modes depends on the sum of their initial phases. The free 
energy F, in this state (a, = a, = a, = a,/fi) assumes the 
smallest value at yl + y, + y, = (n + j ) ~ ,  where n is an in- 
teger, and is given by 

F3=Alao2+ 6Ba,l+ ( 2 0 - 1 0 / 3 )  Cao6. (15) 
From a comparison of (14) and (15) it can be seen that 

the formation of an incommensurate structure of three 
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modes corresponds to the lowest state and is due to the corre- 
lation between their initial phases. The structure of this 
state, which has vortices of two scales, is shown in Fig. 5a 
(y, = y2 = y3 = .rr/2); the spin directions in the neighboring 
vortices is opposite, just as in Fig. 2a. The temperature re- 
gion, in which the new vortical structure exists, is propor- 
tional to depth of the potential wells relative to the saddle 
points, which depends in turn on the exchange interaction J 
between the nearest spins2'; as J+O the region of existence of 
the new phase vanishes. 

It is easy to show that states with one and two qJ appear 
when additional account is taken, in the expansion for F, of 
the energy of the hexagonal anisotropy in the basal plane 

where K is the sixth-order anisotropy constant. If the easy- 
magnetization axes coincide with the directions of the eigen- 
vector polarizations-the easy axes are oriented along the 
vectors f q, , f qb , + q, , correspo?ding to saddle points 
(K < 0), a single mode state is realized at IK 1 2 0.06C. On the 
other hand, a vortical configuration with two q, (at the same 
values K 2 0.06 C )  is produced when the easy magnetization 
axes are directed along the vectors q, (K> 0), on which the 
minima of A -(q) are located. The structure of this state is 
shown in Fig. 5b (y, = y, = - ~ / 2 ) ;  it can be seen from the 
arrangement of the spins in the x ,  y plane that the force lines 
making up the vortex are oblate. 

5. CONCLUSION 

We have, thus, shown that incommensurate structures 
with vortical configuration can be produced in hexagonal- 
lattice compounds in which the dipole interaction plays the 
principal role. The existence of intermediate-temperature 
vortical states is due to the spectral properties of dipole ten- 
sor. The presence of a minimum inside the Brillouin zone 
leads to instability of the symmetry point q, = (0, 0, r / c )  at 
which the eigenvalues (the energy levels) intersect. On the 
other hand, at the minimum points the wave vector is not 
fixed by symmetry, and the modes produced have transverse 
polarization. When a magnetic field is applied, the vortical 
structure is deformed and becomes unstable in a definite 
temperature range in which it goes over into a fan-shaped 

FIG. 5. Incommensurate structures with vortical config- 
uration, due to the presence of weak exchange interaction: 
a-three-mode state; b-two-mode. 

Allowance for weak exchange interaction in dipole sys- 
tems leads to the onset of a new incommensurate phase with 
two vortex scales, so that two intermediate-temperature 
modulated structures are produced with a vortical spin con- 
figuration. The two-scale vortical structure is due to the co- 
existence of three transverse modes whose wave vectors 
form a three-prong star. If the hexagonal-anisotropy field in 
the crystal is strong enough, this structure is not realized. 
Depending on the sign of the anisotropy constant, its place is 
taken either by a simple (but deformed) vortex structure 
(K > 0) or by a purely sinusoidal one (K < 0). 

The author thanks V. A. Ignatchenko for a discussion 
of the work and for a critical review of the manuscript, as 
well as P. I. Belobrov, A. F. Sadreev, and I. S. Sandalov for 
helpful discussions. 

''Note the following: it was shown in a preceding paper9 that continuous 
degeneracy takes place also in structures with cubic lattice. In contrast to 
the present case, however, where the spins are located at the sites of an 
hexagonal lattice, in Ref. 9 degenerate values of the wave vector q corre- 
sponded to states with antiferromagnetic ordering of the spins (states 
with two antiferromagnetic sublattices-two simple sublattices-with 
arbitrary angle between their antiferromagnetism vectors). 

Z'Allowance for the finite radius y  ' of the exchange interaction leads to 
expansion of this region, inasmuch as at small y 1  the exchange interval 
becomes renormalized (see the Appendix of Ref. 16). 
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