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The macroscopic quantum phenomena that occur in spin-polarized Boltzmann gases of the 3He t 
and H t  types are considered. The thermodynamic functions for arbitrary values of the degree of 
polarization of the gas are computed. The equations of weakly-dissipative spin dynamics that 
allow for the collective effects are derived from first principles. The spectrum and the conditions 
for the existence of weakly-damped spin waves in the gas are determined on the basis of these 
equations. The results agree with the experimentally observed phenomena. It is shown that the 
quantum collective effects lead to the existence in the gas of long-range spin correlations that fall 
off at large distances according to the power law r- I. The collective spin modes and the correla- 
tion functions in liquid 3 H e ~  and 3Het-4He solutions are investigated. It is concluded on the basis 
of the experimental data that the spin waves are suppressed in the solution at concentrations of the 
order of 1-3%. The contribution of the magnons to the thermodynamics, the magnon Bose 
condensation, high-temperature ferromagnetism, and the dissipative helical structures in quan- 
tum liquids are discussed. 

1. INTRODUCTION 

Quantum gases are remarkable objects, in which essen- 
tially quantum effects can clearly manifest themselves even 
in the classical temperature region. We shall use the epithet 
"quantum" to designate those gases for which the mean de 
Broglie wavelength A of the particles of the system is signifi- 
cantly greater than the atomic dimensions r,. Indeed, as the 
temperature T is lowered, we shall, if the gas does not con- 
dense before, get into the extremely interesting region 

~~==CT<<h~/mr,~ ,  (1.1) 
where E, is the quantum-degeneracy temperature and m is 
the gas-particle mass. The existence of the region (1.1) is 
guaranteed by the smallness of the gas parameter Nri ( 1, 
which is the natural parameter for systems with a short- 
range particle-particle interaction potential (here N is the 
number of gas molecules in a unit volume). The condition 
(1.1) is equivalent to the following hierarchy of characteristic 
lengths in the system: 

N-">A>r,, A=h/mv,=h (rnT)lh, (1.2) 

which indicates that we are dealing with a quantum gas, and 
not with a quantum liquid. Nevertheless, although the gas 
molecules obey the Boltzmann statistics, in the region (1.1) 
the scale of the particle delocalization turns out to be greater 
than the particle dimensions, i.e., A )r,, so that we can ex- 
pect the system to exhibit qualitatively new-in comparison 
with the classical gas-and essentially quantum properties. 

One such property that is nontrivial and extremely in- 
teresting is the possibility, predicted by the present author in 
Ref. 1, of propagation of weakly-damped magnetization os- 
cillations in spin-polarized quantum gases. The characteris- 
tics of the macroscopic quantum phenomena that occur in 
Boltzmann systems were studied in greater detail in the par- 
ticular cases of nondegenerate semimagnetic semiconduc- 
tors and some other objects in later papers.2 In 1982 the 

collisional absorption of spin waves was also computed by 
Lhuillier and Laloe3 on the basis of spin-dynamics equations 
of the type of the Leggett equations4 for a Fermi liquid. 
Meyerovich's paper5 is also devoted to the formulation of the 
macroscopic equations of motion of the magnetic moment in 
spin-polarized Fermi systems. 

The overwhelming majority of gases condense quite 
long before the condition (1.1) begins to be fulfilled, and the 
principal claimants for the ability of exhibiting quantum ef- 
fects are the gaseous isotopes of hydrogen and helium (the 
traditional objects of investigation in low-temperature phys- 
ics), which possess appreciable saturated-vapor pressure 
even in the temperature region (1.1). Spin-polarized atomic 
hydrogen H t does not condense at all even as T -, 0. As 
follows from the results obtained in Refs. 1 and 2, for the 
existence of weakly-damped spin waves in a Boltzmann 
quantum gas to be possible the degree of spin polarization 
must be sufficiently high: 

iZaBr,/A. (1.3) 

On account of (1.3), the most natural candidate for the obser- 
vation of spin oscillations in it is spin-polarized atomic hy- 
drogen H T  in which a=; 1. Recently, Johnson et ~ 1 . ~  experi- 
mentally confirmed for the first time with the aid of nuclear 
magnetic resonance the existence of spin waves in the Boltz- 
mann gaseous H t  at T < 0.8 "K in the case when N Z  1016 
cmP3 and H = 7.7 T, where H is the magnetic field. In Levy 
and Ruckenstein's paper6b a quasiparticle approach to the 
description of the properties of gaseous H t is developed, and 
a quantitative interpretation of the experimental data re- 
ported in Ref. 6a is given. Recently, a high degree of spin 
polarization was achieved in gaseous 3He as well with the aid 
of optical pumping. In the experiments performed by the 
Paris group7 the value a z 0 . 7  was obtained at room tem- 
perature and the value a z 0 . 2 5  at T = 4.2 OK. These a val- 
ues gave us reason to hope that collective magnetic phenom- 
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ena would be detected in the gaseous phase of 3Het. Let us 
emphasize that the period of time during which the gas re- 
mains magnetically polarized after the optical pump has 
been switched off turns out to be extremely long (the de- 
polarization time has been founds to be more than two days 
at T = 4.2 OK), which is very convenient for the experimen- 
tal investigation of the polarized quasiequilibrium state of 
3He t . Though highly damped, the collective spin modes in 
gaseous 3He t have been experimentally detected by Nacher 
et aL9 (the first researchers to do so) in the 2<T<6 "K 
1016<N< 10" cm-3 regions under conditions when a = 0.3. 

The most surprising characteristic of the Boltzmann 
gases is the fact that there can propagate in them undamped 
high-frequency magnetization oscillations for which wr, 1, 
where w is the wave frequency and T is the characteristic time 
interval between two-particle collisions. Indeed, the descrip- 
tion of the scattering processes in a classical gas with a short- 
range particle-particle interaction potential amounts to the 
fact that all the changes in the states of the particles occur 
only at the instant of collision, and that between two colli- 
sions, i.e., on the mean free path, a molecule ofthe gas moves 
freely without any external influence. In classical gases, 
when the weak long-range van der Waals forces are neglect- 
ed, all the spatial (equal-time) correlation functions decrease 
sharply over distances of the order of the atomic dimensions 
r,. For this reason it is certainly impossible for any macro- 
scopic superstructure or collective mode to exist in such sys- 
tems. But in spin-polarized quantum gases the very existence 
of undamped high-frequency (017, I )  magnetic-moment os- 
cillations indicates the presence of long-range spatial corre- 
lation between the spins of the gas molecules. This pheno- 
menon is explained by the effects of the nondissipative 
quantum refraction that occurs during the mutual scattering 
of the particles under conditions when A,ro. In fact, in the 
case of the propagation of a beam of low-energy particles 
through a rarefied medium of scattering centers the contri- 
bution of the interaction to the real part of the index of re- 
fraction of the beam is significantly greater than the corre- 
sponding contribution to the imaginary part,'' which 
describes the beam dispersion. The correction to the real 
part of the refractive index indicates the existence of some 
correction to the self-energy of a beam particle. This correc- 
tion is linear in the forward-scattering amplitude, is a func- 
tional of the distribution function for the entire ensemble of 
scattering centers, and can be considered to be the result of 
the existence of a distinctive self-consistent quantum-me- 
chanical field of the Fermi-liquid type. It is the presence of 
such a field that makes the appearance of quantum collective 
effects possible even in the classical temperature region. 

Also of considerable interest is the investigation of the 
long-wavelength spin fluctuations in spin-polarized quan- 
tum Fermi liquids. A consistent description of the spin col- 
lective modes on the basis of the Landau theory of the Fermi 
liquid1' has been constructed by silin12 in the case of liquid 
3Het and by Meyerovich and the present author" for the 
case of dilute degenerate 3Het-4He solutions. Recent inves- 
tigations by Corruccini et aI.,l4 Sholtz,15 Owers-Bradley et 
al., l6 and Gully and Mullin" furnish convincing experimen- 
tal proof of the existence of collective spin waves in normal 

liquid 3Het and superfluid 3Het-4He solutions. The contri- 
bution of the magnons to the thermodynamics of liquid 3Het 
turns out to be quite large. Under certain conditions the 
competition between the magnon and fermion contributions 
to the free energy gives rise to a situation in which spontane- 
ous ferromagnetic ordering in liquid 3He becomes possible at 
finite temperatures. " 

In the present paper we investigate the thermodynam- 
ics of spin-polarized quantum gases. We formulate the kinet- 
ic equation with allowance for the quantum collective ef- 
fects, and compute the generalized susceptibility and the 
dynamical magnetic form factor for polarized gases, liquid 
3Het, and superfluid 3 H e t - ~ e  I1 mixtures. The spatial spin 
correlation function and the spectrum of the magnetization 
oscillations in the high-frequency regime are analyzed in de- 
tail for the above-enumerated cases. Under certain condi- 
tions spatially inhomogeneous phases and superstructures 
can exist in spin-polarized quantum gases and quantum li- 
quids. The possibility of the occurrence of high-temperature 
equilibrium magnetic order in liquid 3He and of magnon 
Bose condensation in liquid 3Het is discussed. 

2. THE THERMODYNAMIC FUNCTIONS OF SPIN-POLARIZED 
GASES 

We shall, for definiteness, consider a system of spin-4 
particles. Certain aspects of the effect of magnetic polariza- 
tion on the thermodynamic properties of systems are dis- 
cussed in Refs. 19 and 20. The thermodynamic functions of 
dilute 3Hef-4He solutions are computed in Ref. 13 in the 
limit of very low temperatures. In the present paper we de- 
rive for the macroscopic characteristics of spin polarized 
Boltzmann gases expressions that are valid at arbitrary tem- 
peratures. We shall first consider a spin-polarized gas in the 
absence of an external magnetic field, e.g., gaseous 3Het po- 
larized by means of optical pumping. 

Owing to the presence of a natural small parameter, 
Nri < l ,  all the thermodynamic functions of the gas can be 
represented in the form of the corresponding virial expan- 
sions, which are equivalent to the functional series expan- 
sion in powers of the distribution function for the ideal gas. 
In the case of pair collisions the contribution of the interac- 
tion between the particles to the free energy of the gas can be 
represented in the following manner: 

where a, 0, y, and Y are the spin indices (summation over 
repeated indices is implied), and we have introduced the sin- 
gle-particle polarization density matrix nEb(p) for ideal gas- 
es, which has in the Boltzmann temperature region the form 

Here 9Jl is the unit vector in the direction of the spin polariza- 
tion, the uaB are the Pauli matrices, N+ and N- are the 
numbers per unit volume of gas particles with spins oriented 
along and oppositely to 9Jl, so that N+ + N- = N, and the 
Maxwellian distribution function 

no (p) ='lzN (2nftZ/mT)" exp ( -p2 /2mT) .  (2.3) 
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In the nonrelativistic approximation the interaction poten- 
tial for the gas particles does not depend on their spins. Fur- 
thermore, in the second-virial coefficient approximation 
used the interaction function @ from (2.1) is, contrary to 
what obtains in, say, the case of a dense Fermi liquid, not a 
functional of the density matrix, and is determined only by 
the amplitude of the two-particle scattering in a vacuum. 
Therefore, the function @ does not depend on the degree a of 
polarization, and coincides with the value in the unpolarized 
gas. The spin dependence of the interaction function is deter- 
mined solely by the exchange effects. Thus, in the exchange 
approximation the function @ for an arbitrary value of the 
degree of polarization can be represented in the traditional 
form: 

Substituting (2.4) into (2. I), we obtain 

Thus, the interaction-governed dependence of the correc- 
tions to the thermodynamics of the gas on the degree of po- 
larization reduces to a quadratic function in the case of arbi- 
trary (not necessarily small!) values of a. The next problem is 
to carry out a macroscopic computation of the functions $ 
and 6. 

With the aid of a direct virial expansion of the partition 
function by the Beth-Uhlenbeck m e t h ~ d , ~ ' . ~ '  we can obtain 
an expression for the thermodynamic potential 0 :  

m T  
A.(q)= -- 4n'z { R e  1, (0, q )  +- m F, 

where Dl; ' and D j; ' are the contributions to the thermody- 
namic potential from the interaction between the particles in 
the triplet and singlet states, P and q are the momenta of the 
center of mass and the relative motion of the particles, p is 
the chemical potential of the gas, and f+(8, q) and f-(8, q) are 
the values of the amplitude of the scattering of two particles 
in the triplet and singlet states. According to the theorem on 
small corrections, Din, = Fin,. Substituting into the formu- 
las (2.1) and (2.4) for the unpolarized state of the gas the 
eigenvalues of the operator uap a,, for the triplet and singlet 
scattering, and comparing with (2.6), we obtain 

Since the functions $ and ( depend only on q, we can go over 
to the variables p and q in the expression (2.5), and perform 
the integration over the center-of-mass variables, which 
yields 

F, , ,=N2[X(T)+aZY ( T )  1, 

The total free energy of the spin-polarized gas is determined 
by the sum of Fin, from (2.8) and the term corresponding to 
the contribution of the ideal Boltzmann gas, with allowance 
made for the quantum-mechanical corrections quadratic in 
N+ and N - .  Finally, we have 

The expressions (2.9) allow us to find any thermodynamic 
characteristic of the system. Thus, for the pressure P we ob- 
tain the expression 

When the condition (1.1) is fulfilled, the interaction between 
the gas particles reduces essentially to s scattering: 

f a a , r v = - ( ~ / 2 ) ( l - i q ~ l f i ) ( 6 a e 6 a v - ~ a e ~ p v ) ,  la]-ro. (2.11) 

Substituting (2.11) into (2.6)-(2. lo), we find 

AZ A s -  
ma2 ' 

As can be seen from the expressions (2.10) and (2.12), the 
correction to the pressure, which arises as a result of the 
magnetic polarization of the gas, is of the order of the virial 
correction in the unpolarized gas, multiplied by a2, so that 
for sufficiently large values of a the observation of the mag- 
netomechanical effect is certainly experimentally feasible at 
the present time. In the limiting case T<fi 2/mrc and a -+ 1 
we obtain 

3. THE KINETIC EQUATION AND THE COLLECTIVE EFFECTS 
IN A GAS 

We shall be interested in those virial corrections in the 
kinematic part of the kinetic equation, which make a non- 
zero contribution to the hydrodynamic equations for the im- 
perfect gas. It is obvious that such corrections exist. Indeed, 
by differentiating the pressure (2. lo), we can obtain the virial 
expansion of the sound velocity in the gas. But if we wish to 
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compute the velocity of sound with the aid of the kinetic 
equation, then we should integrate this equation over phase 
space, thereby obtaining the continuity equation. Further- 
more, we should also integrate the kinetic equation, after 
multiplying it by the momentum, in order to obtain the Euler 
equation. As a result of the two integrations, the collision 
integral will vanish because of the laws of conservation of 
particle number and total momentum. Consequently, the 
left-hand side of the kinetic equation should contain terms 
that do not vanish in theindicated integrations, and yield the 
virial corrections to the velocity of sound in the ideal gas. 
Below we shall call these terms kinematic virial corrections 
in the kinetic equation. 

It is convenient to derive the kinetic equation with 
allowance for the collective kinematic corrections with the 
aid of the Bogolyubov method.23 

In the second-quantization representation the Hamil- 
tonian of the system has the traditional form 

where&, is the single-particle energy matrix, the (ik 1 U 1 Im) 
are the pair-interaction matrix elements, and ii,+ and 2, are 
the Fermi creation and annihilation operators with the usual 
anticommutation relations: 

In the Heisenberg representation the equation of motion for 
the density operator Aki = 2+8, has the form 

It follows from the requirement that the wave function of a 
system ofidentical fermions be antisymmetric, i.e., essential- 
ly from the relations (3.2), that 

Let us define the single-particle density matrix with the aid 
of the usual relations 

Let us assume that the interaction between the particles of 
the system is not strong, so that the condition for the applica- 
bility of perturbation theory is fulfilled. Let us average the 
Liouville equation (3.3) with the Hamiltonian (3.1) ,with 
allowance made for the relations (3.4). Expanding the equa- 
tion obtained as a result of the averaging in powers of the 
weak interaction, and using the Wick theorem, we finally 
obtain 

an2,/at+ (il t i)  [ e ,  n] ,,=St n2,,  (3.6) 

where B,, is the energy matrix for a single particle in a self- 
consistent field of the Fermi-liquid type: 

the commutator of the matrices Sik and nik is given by the 
standard formula 

and Stn,, is the collision integral, which is quadratic in the 
interaction, and whose specific structure will not be of inter- 
est to us here. Let us, in order to emphasize the analogy with 
the equations of the theory of the Fermi liquid, note that the 
following equality obtains: 

Indeed, we have for the total energy E of the system the 
expression 

Varying E from (3.10) according to the formula (3.9), we 
arrive at the expression (3.7). Equations of the type (3.6) were 
obtained for a Boson gas in Ref. 24. 

Next, going over from the density matrix n,l=n,,,8; ,,, 

in the momentum representation to the mixed Wigner distri- 
bution function 

we arrive in the quasiclassical approximation, at the follow- 
ing Fermi-liquid-type kinetic equation: 

where [Z, nIaB is the commutator in spin space, while for the 
renqrmalized self-energy BrrB we have from the relations (3.7) 
and (3.9) the expression 

1 
r., = Laa,+ {[ u (01 - -Z u ( p - p l )  ] 6.06, 

2m p ,  

In real gases the interparticle interaction is by no means 
weak. Nevertheless, it turns out that we can use the pertur- 
bation-theory results to derive the kinematic virial correc- 
tions in the kinetic equation in the temperature region (1.1) 
with the aid of Fermi's renormalization method.'' Let us, in 
conformity with this method, introduce an effective complex 
potential (r) satisfying the condition for the applicability of 
perturbation theory: 

1 U ( r )  1 ~ A 2 / m F o 2 ,  YO- I f *  l (3.14) 

and normalized in such a way that the forward-scattering 
amplitude, computed for the pseudopotential E ( r )  in the 
Born approximation and with allowance for the identity of 
the colliding particles, coincides with the true zero-angle 
scattering amplitude fa8, ., (0, g), which cannot be obtained 
by perturbation theory at all. These renormalization rela- 
tions have the form 
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The subsequent procedure consists in the application of per- 
turbation theory to the pseudopotential @(r), and, as long as 
the results can be expressed only in terms of combinations of 
the form (3.15), i.e., in terms ofthe true scattering amplitude, 
the use of perturbation theory can be considered to be justi- 
fied. Substituting the potential 3 ( r )  into (3.13), and using the 
relations (3.15), we obtain 

We have, in accordance with the optical theorem for scatter- 
ing, that 

Im fap, rv(O, q )  = (q14nfi) (JuP, rv, (3.17) 

where is the total cross section for two-particle scat- 
tering. Therefore, when ro<A, we find that ]Re faB, ., (0,q)I 
> 1 Im fa@, ,, (0,q) 1, so that, using the expression (2.1 I), we 
find in the leading approximation that 

Since we retain the gradient terms in the left member of 
the kinetic equation (3.12), we should, in principle, retain on 
the right-hand side of the equation the nonlocal gradient 
corrections in the collision integral: 

St nap~Gn,BNr,2uT ( l+kA)  , (3.19) 

where k -' is the characteristic scale ofthe spatial inhomoge- 
neity. In the temperature region (1.1) the nonlocal correc- 
tions in (3.19) turn out to be significantly smaller (by a factor 
of the order of ro/A (1) than the kinematic self-consistent 
corrections with EaB given by (3.18). Therefore, allowance 
for the quantum-mechanical self-consistent field in the 
Boltzmann equation with a local collision integral at the giv- 
en temperatures is quite justified. At higher temperatures, 
i.e., for n f i  2/mri, the pseudopotential method is ineffec- 
tive, and the nonlocal corrections to StnaB, which are pro- 
portional to Nriu,kr0SnaB, become greater than, or compar- 
able with, the kinematic virial corrections, so that we shall be 
exceeding the accuracy if we allow for the self-consistent 
field in the kinetic equation with a local collision integral at 
high temperatures. (The term Vn,,d~,~/dp on the left-hand 
side of the Boltzmann equation is significantly greater at any 
temperature than the nonlocal corrections in Stnap because 
of the smallness of the gas parameter Nr: (1.) In computing 
the velocity of sound, however, we can take the kinematic 
virial corrections into account at arbitrary temperatures be- 
cause of the fact that the exact collision integral vanishes 
when the appropriate integrations are performed in the 
course of the derivation of the macroscopic hydrodynamic 
equations. 

It can be shown that, in virtue of specific circumstances, 
the kinetic equation with a local collision integral can also be 
used to describe the collective spin modes at arbitrary tem- 
peratures when allowance is made for the kinematic virial 
corrections only in the spin commutator [E,  n],@. In this case 
all the gradient terms, except the term Vn,,dEYB/dp, are 
dropped in the Boltzmann equation, and the role of the inter- 
action-governed self-consistent correction to the gas-parti- 

cle energy is played by the variational derivative SEin,/ 
SnB, (p), where Eint = Fint is given by the formulas (2.1), 
(2.4), (2.6), and (2.7). Similar equations are used in Ref. (20) to 
describe the magnetic resonance in binary gas mixtures. But 
at TZfi 2/mri, because of the violation of the condition 
(1.3), the spin waves are always strongly damped. In the pres- 
ent paper we shall investigate only weakly damped spin 
waves, since it is precisely these waves that are of greatest 
interest. Therefore, we shall limit ourselves here to the deri- 
vation and solution of the kinetic equation valid at low tem- 
peratures, i.e., at T(fi '/mr;. Notice that, even when the 
condition (1.1) is fulfilled, we would be exceeding the accura- 
cy if we allowed for the terms of the next order in r,/A ( 1 in 
the scattering amplitude fa8, p v ,  i.e., if we allowed for the 
scatterings with higher momenta, without making 
allowance for the damping because of the violation of the 
inequality (1.3) for the corresponding terms. 

The analogy between the kinetic equations for a quan- 
tum Boltzmann gas and the equations of the theory of the 
Fermi liquid does not only lie in the relation (3.9) and in the 
fact that the correction to the particle energy (3.16) can be 
expressed in terms of the zero-angle scattering amplitude, 
but also has a more profound physical meaning. As T -+ 0, 
all the results for a gas of Fermi particles naturally go over 
into the corresponding Galitzkii results25 for a tenuous Fer- 
mi liquid. But in a low-density Fermi liquid the excitation- 
damping constant is proportional to the square of the gas 
parameter, and is small even in the region far from the Fermi 
surface, and extending right up to the highest momenta 
p 5 fi/ro. Therefore, even in the Boltzmann region extending 
right down to temperatures T-fi '/mr; we have well-de- 
fined long-lived quasiparticles with the energy spectrum 
(3.18). [The problem of proving the existence of kinematic 
gradient corrections in the left member of the kinetic equa- 
ton is in a sense simpler in the case of a Fermi liquid than in 
the case of a gas, since in the former case the right-hand side 
of the equation, i.e., the collision integral, always contains 
the small factor ( T / E ~  )' - 0.1 Nevertheless, we must not 
wholly identify the cooperative properties of the quantum 
Boltzmann gas with the high-temperature "echoes" of the 
properties of the Fermi liquid as a system of fermions. In- 
deed, it can be seen from the very method of deriving the 
kinetic equation (3.12) that in the region (1.1), where the 
quantum-degeneracy effects are negligible, an equation of 
the type (3.6)-(3.8), (3.12) is valid and can be derived in a 
similar fashion for particles with an arbitrary spin value, 
regardless of whether they are fermions or bosons. 

4. THE SPIN-WAVE SPECTRUM AND THE CORRELATION 
FUNCTIONS 

It is convenient to use the generalized paramagnetic 
susceptibility to investigate the correlation properties of a 
spin-polarized gas. Let us introduce the effective external 
field Z ( r , t  ) a exp(ikr - iwt ), and seek the linear response of 
the system to this perturbation in the form 

(0) 
nae (p) -naB ( p )  =tina@ (p) = h ( p )  aae, L ( P )  meikr-imt . (4.1) 

In this case the renormalized gas-particle energy (3.18) in the 
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external magnetic field is equal to 

Substituting (4.2) into the kinetic equatio%(3.12), and linear- 
izing it in the small deviations A (p) and R, we obtain 

- 
(w-kv)  h ( p )  + {kv (%+ 2) F (A, 26') 

d e  d e  

wherep is the elemental magnetic moment of a particle, and 
n+ and n -  are the equilibrium occupation numbers for 
states with opposite spin orientations. Choosing thez axis in 
the direction of the vector m, and going over to the circular 
variablesA + =A, iA,, X, = Rx i R y  , we arrive at 
an equation describing the transverse-magnetization dy- 
namics in a spin-polarized quantum gas: 

(o-Qznt--kv) A- ( p )  

-[ k u ( > + s ) +  

The equation for A + is obtained from (4.4) through the sub- 
stitution w -+ - o and k + - k. Since in the exchange ap- 
proximation the absolute value of the magnetization is con- 
served, in the case of homogeneous distributions with k = 0 
the integration of Eq. (4.4) over momentum space leads to 
the vanishing of the collision integral StA -, so that the colli- 
sion-governed relaxation time of the transverse spin waves 
with small k is clearly dependent on k, the dependence being 
such that T,,~~ ( k  -+ 0) -+ UJ . The possibility of neglecting the 
collision integral in the kinetic equation for small k is predi- 
cated on the fulfillment of the inequality 

f i - ' I [&,  n]ae(B'>(St  nael, (4.5) 

which is equivalent to the condition Iflint /r&1, where 
T - ' -  N ~ V , .  The substitution of flint from (4.4) again leads 
to the criterion (1.3), which was obtained earlier' from the 
condition for the existence of a region in which both the 
Landau damping and the collisional absorption of spin 
waves are weak. A similar criterion arises automatically in 
the formulation of the macroscopic equations of spin dy- 
n a m i c ~ . ~ . ~  

In the collisionless regime, i.e., when the condition (1.3) 
is fulfilled, we find after integrating Eq. (4.4) the magnetic 
moment SM, = SM, + i8My induced by the external 
magnetic field: 

~M*=X*%+. 

x- ( a ,  k )  = x + * ( - w ,  - k )  = P 2  R ( * , k ) + Q ( @ , k )  
I - g R ( a ,  k ) - g Q ( * ,  k )  ' 

where the functions R and Q are given by the expressions 

2 n+-n- 
~ ( o , k ) = - Z - .  A o - k v  

In the case when the distribution functions n  + and n- are 
Maxwellian, the functions R and Q from (4.7) can be ex- 
pressed in terms of the error function of the complex vari- 
able: 

ZaN T 2 
~ ( o , k ) = - [ I - - ~ ( a , k ) ] ,  fio N e r f ~ z = ~ ~ e ' ~ d t .  

The pole of the generalized magnetic susceptibility (4.6) de- 
termines the law of transverse-spin-wave dispersion: 

I-gR (a-Qint, k )  -gQ (a-Qi,, ,  k )  = D l @ ,  k )  =O.  (4.9) 

In the long-wavelength region kv, <lfli,, 1, Iwl <laint 1 the 
dominant contribution to D (w, k) is made by the function Q, 
and, after a simple algebra, we find from (4.8) and (4.9) in the 
approximation linear in r,/A < 1 that 

@'=Re a=-  ( k ~ , ) ~ / S 2 ~ , ~ ,  

The condition, expressed by the inequality kvT<laint 1, of 
applicability of (4.10) ensures the weakness of the collision- 
less, Landau-damping-related spin-wave absorption. Let us 
note that it is impossible to determine the region of applica- 
bility of (4.10) in the scheme of the Leggett equations,335 since 
collisionless damping does not figure there at all. Also be- 
cause of Landau damping, spin waves, like, incidentally, any 
zero-sound-type oscillations governed by a linear dispersion 
law, cannot propagate in the short-wavelength region 
k v ~  % Iflint 1. 

It is easy to verify that the elements of the generalized 
susceptibility matrixx, (w, k), defined by the usual relation 

6Mi(co, k ) = x i k ( o ,  k ) Z k ( o ,  k ) ,  i, k=x, y ,  (4.11) 

can be represented in terms of x + - (w,k) as follows: 

xXS=xYY= ( x + + x - ) / 2 ,  xYz=-xq=-i(x+-x-) /2.  (4.12) 

The dynamical magnetic form factor 
m 

~ , , ( w ,  t) =I d3r d t e 7 ( - f - k r ) ~ . k ( t ,  7) , 
-- (4.13) 

Stk( t r  I . )  = ( 6 M i ( t i ,  r , )  6Mk(tz, rz) ), t=tt-tz, r= lri-rzl 

of the system can be expressed with the aid of the dissipa- 
tion-fluctuation theorem in terms ofx, : 
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In the long-wavelength region kv, ( loint I we find from (4.6) 
and (4.8) that 

where w'(k ) is the spin-wave spectrum given by the formula 
(4.10). With the aid of the well-known relation 

we find from (4.12), (4.14), and (4.15) that 

Srx(o,  k) =S,,(o), k) 

The presence of S-function terms in (4.17) corresponds to a 
contribution by the magnons, which constitute the collective 
Bose branch of the long-wavelength elementary excitations 
in the gas. 

The static structure factor 
m 

determines the purely spatial correlation of the transverse 
spin fluctuations in the system. It follows from the obvious 
inequality 

,%'I a1 3h2/ma2<~d<<T<<h2/ma2 (4.19) 

that the inequality filOint l(T always holds in a quantum 
gas; therefore, when k(lOint (/uT, the performance of the 
trivial integration in the formulas (4.18), (4.17) leads to the 
result 

fik2vT2 2PNa 
S,,(k) =P2Na cth = 2 n l a l  ( T )  = ~ , , ( k ) .  

2 1 Qint ( T 
(4.20) 

Carrying out direct computations with (4.15), (4.12), and 
(4.14), or carrying out the integration in the formula 

which can be obtained from the Kramers-Kronig formulas, 
we find 

S,,(o, k) =-SzY!o, k) 

- - 1 
l - e - h o l T  

+ 
2BzNa [ a+ ( k 2 ~ T 2 i  Q;., 1 j W- (kZvT2/  1 QirLi  1 ) 

(4.22) 

and in the case when fiJw J/T( 1 we obtain the natural result 
Syx (k ) = - Sxy (k ) = 0 with the same accuracy with which 
the final expression, (4.20), for Sii (k ) was obtained. 

The Fourier inversion of the formula (4.20) for Sik (k ) 
allows us to find the correlation functionsi, (r) in the coordi- 
nate representation: 

Si,(r) =2 la1 ( P N ~ ) ~ r - ' 6 i ~ ,  (4.23) 

which falls off with distance according to the law that ob- 
tains in a cubic ferromagnet with localized spins. The final 
answers for the correlation function (4.20), (4.23) and for the 
magnon energy k ' ( k  ) given by (4.10) do not contain the 
Planck constant, which is a reflection of the fact that, in spite 
of the essentially quantum nature of the cause of spin waves 
in a gas, in the statistical sense these waves behave like classi- 
cal fluctuations, and can be considered to be the spatially 
inhomogeneous precession of the macroscopic magnetic mo- 
ment. The correlation between the spins of different parti- 
cles over macroscopic distances results in the existence of a 
definite macroscopic inhomogeneity energy. Let us repre- 
sent the corresponding change that occurs in the free energy 
as a result of the transverse-magnetization fluctuations in 
the form 

1 
A F = - ~ T (  2 r )  6M (r , )  6M ( r z )  d3r, d3rz, r= 1 ri-rz 1 .  (4.24) 

Within the framework of the theory of classical fluctu- 
a t i o n ~ , ~ ~  it is not difficult to relate the magnitude of the 
Fourier transform of the function p(r) and the static form 
factor: 

Sik (k) =GikTlv ( k )  , (4.25) 

whence it immediately follows that 

Usually, the free energy due to the slow variation of the di- 
rection of the vector M along the system is represented in the 
form of an expansion in a series in powers of the magnetiza- 
tion gradients: 

Comparing (4.27), (4.24), and (4.26), we find 

A= ( T / 2 n l a I )  (2pNa)-' .  (4.28) 

The prescription of the coefficient A from (4.27), (4.28) al- 
lows us to fully describe the long-wave magnetization oscil- 
lations in a purely phenomenological manner. Indeed, it is 
easy to verify that the substitution ofAF from (4.27) with the 
coefficient A given by (4.28) into the Landau-Lifshitz equa- 
tion 

reproduces the spectrum wf(k ) given by (4.10). This implies 
that an essentially hydrodynamic situation obtains in the 
long-wavelength region ku, 4 (Oint / despite the "high-fre- 
quency" character of the spin oscillations. 

The expression (4.20) for Si, (k ) is valid for small values 
of the wave vector kv, (Iflint 1, so that the formula (4.23) is 
also suitable for the description of spin correlations over fair- 
ly large distances r)rint =uT/JOlnt (. The characteristic pa- 
rameter rint can be interpreted as a distinctive correlation 
scale in the self-consistent quantum field, i.e., as a scale char- 
acterizing the difference between the correlation properties 
of a quantum gas and point correlations, which are charac- 
teristic of a classical gas. Thus, the function p(k ) can be ex- 
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panded in even powers of kr,,,, which corresponds to the 
exponential decrease of the function p(r) at large distances 
r)rint.  In this case, on account of the natural-for a gas- 
inequalities 

the sphere of radius ria, (the correlation zone) always con- 
tains a macroscopically large number of particles: Nr;, ) 1 ,  
which qualitatively accounts for the long-range spin correla- 
tions in the system. 

When the condition (1.3) is fulfilled, small imaginary 
corrections to the spectrum (4.10) can also be easily ob- 
tained; these due to the collision-governed spin-wave ab- 
sorption: 

where T is the relaxation time, which has a gas-kinetic order 
of magnitude: r - ( N r ~ v T ) - ' .  In this case, we find for the 
imaginary part of the generalized susceptibility, and, hence, 
for the absorption line shape obtainable in magnetic-reso- 
nance experiments, 

T mu, T"k2 A o - k 2 - - c n -  
a2 ii2N NaZ ' 

i.e., as k increases, the linewidth increases and the peak in- 
tensity 1 ( 0 )  decreases, while as T decreases, or a increases, 
the lines narrow down and become more intense and the 
number of observable lines increases. It is precisely these 
dependences that have been observed in experiments.' 

In conclusion, let us note that the presence of a constant 
external magnetic field H leads to the appearance of an addi- 
tional term S E , ~  = - fluaB . H in the expression for the 
particle energy, the appearance of a gap in the spin-wave 
spectrum: 

I,)=-2gIflh- (kuT)  ' / Q n t ,  (4.33) 

and the screening of the spin correlations at very large dis- 
tances: 

where the magnetic correlation length r ,  is given by the 
relation 

5. LIQUID 3 H e ~  AND THE 3Her-He II SOLUTION 

The collective oscillations in liquid 3He and degenerate 
3He-4He solutions are described by the kinetic equation of 
the Landau theory of the Fermi liquid." For small values of 
the degree of polarization, i.e., for a( 1 ,  it is possible to ob- 
tain an exact analytic solution for the transverse-spin-wave 
spec t r~m'~:  

where Z, and Z, are the first harmonics of the spin part of 
the local Fermi-liquid function and m* is the effective Fer- 
mi-excitation mass. In principle, the nonlocal character of 
the Fermi-liquid interaction also gives rise to quadratic-in 
k-corrections to the magnon spectrum, which are, how- 
ever, important only in highly polarized Fermi liquids, and 
can be neglected when a( I .  Indeed, it can easily be verified 
with the aid of the kinetic equation that the first nonlocal 
correction 

to the single-particle excitation energy leads to the appear- 
ance of the following term in the spectrum (5.1): 

which is always smaller than ( 5 . 1 )  by a factor of the order of 
a(1. 

At T -+ 0 the spin fluctuations in a degenerate Fermi 
system are quantum fluctuations, so that the classical rela- 
tions (4.25) and (4.28) are no longer applicable. As pointed 
out in Ref. 18, we do not exceed the accuracy of the theory of 
the Fermi liquid if we allow for the contribution of the trans- 
verse spin waves to the thermodynamics of the polarized 
system. Let us represent the Hamiltonian corresponding to 
this contribution in the form 

where S $(r,t ) is the Heisenberg operator for the slight de- 
flection of the magnetization vector from the equilibrium 
direction of 9J2. Averaging the Hamiltonian (5.4) for T = 0 
over the ground state, we find the zero-point oscillation en- 
ergy of the magnon field: 

A similar approach was developed earlier in the hydrodyna- 
mics of He I1 by PitaevskiLZ6 I t  follows from the phenomen- 
ological spin-wave theory based on the Landau-Lifshitz 
equations and from the relation ( 5 . 5 )  that in the small-k re- 
gion 

S, (k)  =S , , (k )  = A o ( k )  /Ak2=pZNa.  (5.6) 

In the collisionless regime we have for the generalized sus- 
ceptibility the expression 

Im x- (I,), k )  = B ~ ( I , ) - b k 2 )  b=hB(Z)/ '2m*a.  (5.7) 

The coefficient B in (5.7) is not a function of the temperature, 
since in the kinetic equation for the Fermi liquid, with the 
aid of which the expression (5.7) was derived, the tempera- 
ture is contained only in the collision term, which we ne- 
glect. The temperature corrections in the kinematic part of 
the kinetic equation can lead only to a weak dependence of 
the spin-wave spectrum on T, i.e., to the renormalization of 
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FIG. 1. 

the quantity b. Computing the static form factor with the aid 
of the formulas (4.12), (4.14), (4.18), and (5.7), and normaliz- 
ing the quantity B by the value ofSlk (k ) from (5.6) for T = 0, 
we obtain 

- !J 2 J f ( k )  dkb,. 
( 2 9 x 1  ir -- 

The function f (k ) has poles of order one at k = 0 and at the 
points k = k, : 

Therefore, choosing the integration contour as shown in Fig. 
1, we find 

S ( 1  6 -- Res i ( k )  1 ,=,+a ~ e s  f ( k )  1 , "Na 4n  r [ 
1 

Basically, the law of decrease of the correlation function 
Sik (r) at large distances is determined, as before, by the pow- 
er-law dependence r- '. 

The magnitude of the collision-governed spin-wave ab- 
sorption is determined by the value of the parameter Rint7, 
which can be computed exactly with the aid of the Leggett 
equations4: 

where Do is the coefficient of spin diffusion. If IL!,,, I T >  1, a 
condition which is easily fulfilled because of the presence in T 

of the large factor (&,/T)') 1, then the collisional damping is 
weak, and the spin-wave spectrum contains only a small 
imaginary correction: 

o=bk2[1-i(Q,, , t)- 'I .  (5.12) 

The condition for weak collisionless damping, kv, ((O,,, 1, 
determines the regions of wave vectors and distances 
r>rInt =v,/lRlnt I where the expressions (5.1) and (5.10) are 
valid. 

The contribution of the magnons with the dispersion 
law (5.1) to the thermodynamics of the Fermi liquid is cut off 
at high frequencies lo1 4 lfiin, I. Therefore, such a contribu- 
tion will have its maximum value at T S  fijL!,,, I .  If the polar- 
ization of the spins of the system is produced by an external 
magnetic field, then the spin-fluctuation spectrum contains 
a gap. 

o=QH+bkZ, a=3hQH/4&,(1+Z0), AQH=2PH, (5.13) 

and the inequality TSfijL!jn, 1 reduces to the relation 
TSW,/B(Z) .  If B ( Z ) 2  1, then we shall always have 
bk 2cL!H, and the contribution of the spin waves to the ther- 
modynamics when T(fi.0, /B (Z  ) and b > 0 turns out to be 
exponentially small: 

1 hbk4 d k  
E" -sJ e x p [ ( h b k L t h R H ) / T ] - l  

When B (Z )< 1 and b > 0, the magnon contribution to the to- 
tal Fermi-liquid energy in the region of sufficiently low tem- 
peratures, specifically, in the region T < W H  , is also given by 
the formula (5.14), i.e., turns out to be significantly smaller 
than the quadratic-in pH /&,-Fermi corrections. The sit- 
uation is entirely different in the temperature region 
W, (T<WH/B (Z), where the dominant contributions to 
the thermodynamics that arise as a result of the presence of 
the external magnetic field are made precisely by the spin 
waves, and not by the Fermi excitations. With the aid of the 
formulas obtained in Ref. 18, we obtain for the specific heat, 
after substituting the value of b from (5.7) and (5.1 j, the 
expression 

The case b < 0, which is realized in liquid 3He, will be consid- 
ered at the end of the section. 

If, on the other hand, we are dealing with the quasi- 
equilibrium spin-polarized state of the Fermi liquid in the 
absence of an external field (e.g., liquid 3Het with a lifetime 
of the order of 5 min, obtained by rapidly melting the polar- 
ized crystalline phase2'), then the thermodynamics of the 
spin waves has an entirely different character. Indeed, since 
we are considering times shorter than the relativistic relaxa- 
tion time of the absolute value of the magnetization, and the 
probability for decay of a spin wave into two Fermi excita- 
tions with parallel spins is exponentially small, the number 
of magnons in the system is conserved: it is temperature in- 
dependent, and is equal to the number of spin waves that 
were excited at the initial moment of time during the cre- 
ation of the polarized state. In this case the system of mag- 
nons is characterized by a nonzero chemical potential p, 
which is given by the normalization condition 
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where N,,, is the fixed number of magnons. The temperature 
T = To, at whichp vanishes: 

determines the critical point of the Bose-Einstein condensa- 
tion in an ideal magnon gas, which, under the assumption 
that the degeneracy has been lifted and that there exists only 
one condensate, implies the appearance of spontaneous 
transverse magnetization. In the region TOgT<+iC2,,,/B (Z) 
the contribution of the spin waves to the thermodynamics 
reduces to a temperature-independent term in the expression 
for the specific heat: 

In the region T <  To, T%+iC2,,/B (2) we find for the thermo- 
dynamic functions of a spin-polarized Fermi liquid the ex- 
pressions 

where NE) is the number of magnons in the condensate and 
A (aC,/dT) is the jump in the thermodynamic derivative at 
the phase transition point. 

In Ref. 18 the possibility of the occurrence of an equilib- 
rium ferromagnetic order at finite temperatures in a Fermi 
liquid possessing a large paramagnetic susceptibility, i.e., in 
the case 1 1 + ZoJ (1, is considered. In liquid 3He, in which 
1 + ZOz0.3, the temperature region where this effect could 
manifest itself falls on the boundary of the region of applica- 
bility of the theory of the Fermi liquid, so that there is, of 
course, no absolute certainty that a high-temperature ferro- 
magnetic phase occurs in liquid 3He. Appreciable anomalies 
in the magnetic properties of liquid 3He at the corresponding 
temperatures were experimentally observed in Ref. 28. On 
the other hand, no appreciable deviations were detected by 
Sen and Archiez9 in their measurements of the specific heat 
of 3He in a magnetic field. We must, in searching for the 
indicated phase, bear in mind the following important cir- 
cumstance not noted in Ref. 18. The system's maximum geo- 
metrical dimension d for which the spatial distribution of the 
magnetization in the system is still homogeneous can be esti- 
mated from the obvious relation3' 

Ifthe system has a dimension greater thand, a spatially inho- 
mogeneous distribution is realized in it, with a possible par- 
tial, or even complete cancellation of the magnetic moment. 
The specific picture of the magnetization distribution de- 
pends on the boundary conditions and the shape of the sam- 
ple. Let us emphasize that we are not talking about the do- 
main structure, since the dimension of a domain wall under 
these conditions can be significantly greater than the dimen- 
sion of the system. Substituting A from the results of Ref. 18, 
or from the formula (5.6), into (5.20), we obtain 

d- (N-"4/a) [ (l+Z,/3) /(Zo-ZJ3) ] 'h>>N-'ia. (5.21) 

Although the parameter d is of macroscopic scale, estimates 
show that it is nonetheless significantly smaller than the geo- 
metrical dimensions of standard experimental cells, which 
must thus exhibit macroscopic magnetic inhomogeneities. 
But the formulas of Ref. 18 imply a homogeneous magneti- 
zation along the system, i.e., a micromagnetism of the sam- 
ples, for example, in pores of diameter I ,< d. 

All the expressions obtained above describe degenerate 
concentrated 3He-4He solutions as well. In the case of weak 
solutions the harmonics Zo and Z, can be computed in their 
explicit form with the aid of the method used in Ref. 3 1: 

We can obtain in the leading approximation inil results that 
are valid at arbitrary values ofa .  Noting that, in the case of a 
tenuous ensemble of impurity 3He quasiparticles with 
N l ~ ) ~ ( l ,  the relation 

IQ(a, k)  I-hra/fi1~intI~kv~N/e~I~,,tl-(R(~, k) 1, 

k~FK1Qint/, (5.23) 

is always fulfilled, we obtain from Eq. (4.9) with the Fermi 
distribution functions 

where 8 (E) is the Heavyside function, the expression (cf. Ref. 
13) 

3 fik2 ( I+a)v3- ( l -a)v~  
a=---, 

40 m'h a2 

The generalized susceptibility in the vicinity of its pole 
w = bk * has the natural form: 

Im X- (w, k )  = lim P2 Im 
v-ro 

In their explicit form, Im R and Im Q can be computed with 
the aid of the standard rule for bypassing the poles: 

J ( p ) d r  = 5 fOdr +inj f ( p )  6 (a-kv) dI', (5.27) 
a-kv-i6 a-kv 

and turn out to be equal to 

Im Q(o ,  k )  = (m2/2nfi4k) [ % + € I  (x,) -x-8 ( x - )  1, 
~ ~ + = F F ( I * C Z )  "- (mw2/2kZ), 

(5.28) 
Im R(w, k) =- (m2w/4nfi3k) [ O  (q,) +0 (q- )  I ,  
q,=kup(If a)'"--o. 

The experimental spin-wave spectrum data reported in Ref. 
16 yield the valuesZo~0.08 andZ, ~ 0 . 3 4  for a 5% solution, 
so that IZ,I < /2 , /3  1, B (2) < 0. On the other hand, at suffi- 
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ciently low concentrations we have Z , z  - U > O ,  
IZ, I ) /Z,/3 1, B (Z  ) > 0. Therefore, there exists a critical con- 
centration value x, at which 2, - (Z,/3) = 0, while the 
function B ( Z )  changes sign at the discontinuity point: 
B (Z )  = + co when x = x, 0, i.e., /aint ( T  = 0, and an os- 
cillating spin-wave solution does not, in general, exist: only 
purely diffusive spreading of the magnetization occurs. Esti- 
mates show that the concentration region around x, where 
laint I T <  1 and the propagation of weakly damped spin waves 
turns out to be impossible lies in the 1-3% range. The diffi- 
culty in experimentally observing spin waves at x = 0.01 is 
noted in Ref. 16. When the concentration in the 3He-4He 
solution is lowered further, there again appear spin waves, 
whose observation certainly lies within the limits of experi- 
mental possibilities. Thus, using the expressions for the line 
widths and intensities obtainable in NMR measurements, 
i.e., the expressions 

Ao=[fiB (2) k ]  (2rn'a) 'Do,  I ( 0 )  -Io=2P2Na/hAm, (5.29) 

the formulas of the theory of dilute ~olutions,~'  and the ex- 
perimental data reported in Ref. 16, we find the relative 
characteristics of the lines in solutions with x = 0.05 and 
x = 0.005: 

Ao ( X = O . ~ ~ / O ) / A O ( X = ~ ~ ~ )  ~ 0 - 5 ,  
(5.30) 

Zo(x=0.5% )/I0 (x=5% ) =0,2. 

The condition ]ain, 17% 1 for weak damping of the spin waves 
in the region x <x, is equivalent to the inequality 

10arVla 13h2/m*aZT>>1, (5.3 1) 

which, under the conditions of the experiment reported in 
Ref. 16, is satisfied at all reasonable concentrations 
x, >x>5.8X when OH = 925 kHz and T =  0.3 mK 
and at not too low concentrations x, >x%5.8X lod3 when 
T = 3 mK. Since the function B (Z )changes sign in the region 
x <x, , the shift of the resonance frequency relative to 0, 
will also have the sign opposite to the one that was observed 
at x = 0.05, i.e., in the region x > x, . The determination of a 
by measuring the resonance-frequency shift in dilute solu- 
tions will allow a more accurate estimate of the critical tem- 
perature T, of the transition of the 3He in a 3He-4He solu- 
tion into the superfluid state.32 Let us emphasize that the 
detection of zero-sound-type longitudinal spin waves with a 
linear-in k-dispersion law is impossible in the region of 
temperatures where the impurity 3He atoms form a nonsu- 
perfluid system, since the criterion for their observation,13 
T<EF exp( - I/lA I), contradicts the condition 
T >  T, -EF exp( - /lA I). 

The spin waves in nondegenerate dilute solutions are 
described by the formulas for quantum Boltzmann gases 
with m replaced by m* (Ref. 13). If the polarization of the 
solution is effected with the aid of an external magnetic field, 
then the condition (1.3) for weak damping of the spin oscilla- 
tions, i.e., the condition 

14th(pH/T)>.>la.>l/A, T > E ~ ,  (5.32) 

implies the use of sufficiently high, but practically attaina- 
ble, fields PH /E, %N 'I3 la I. In this case the temperature re- 
gion where the propagation of weakly damped magnetiza- 

tion oscillations is possible in the nondegenerate solutions is 
given by the relation 

An extremely interesting situation arises in the case 
when the quadratic-in k-term in the spin-wave spectrum 
in an external magnetic field has the negative sign: 

o=QH+bk2, b<O. (5.34) 

Such a situation can be realized if we polarize the system in a 
certain direction 'DZ with the aid of some dynamical method, 
e.g., by optical puming, by melting the magnetically-ordered 
crystalline phase, or through injection of a polarized beam, 
and then apply a weak external magnetic field oriented in a 
compensating manner (HT  1'DZ) if b > 0, or parallel to 'DZ 
(HT T'DZ) in the case b <O. In that case, if the field intensity is 
not too high, i.e., if fl,/Ib I =k $ (\aint I '/ug for a Fermi 
liquid and k $(laint 1 '/u$ in the case of a quantum Boltz- 
mann gas, then the spin-wave frequency will vanish at 
k = k ,  in the wave-vector region where undamped magne- 
tization oscillations still occur. 

This does not, however, imply the onset of thermody- 
namic instability, since we are talking about a polarized qua- 
si-equilibrium state, and over the long relativistic longitudi- 
nal-relaxation time, during which the true thermodynamic 
equilibrium sets in, the dynamically induced polarization 
vanishes completely, and the system goes over into a new 
state with 'DZf f H  and an a value determined by the external 
field. Nevertheless, this implies the possibility of the exis- 
tence of a dissipative helicoidal superstructure with a spatial 
period 2n-/kH and a lifetime 

t = ~  ( 1 Qint I 1 1 b 1 k ~ ~ )  =-G ( 1 Qint 1 /QH) Bz, (5.35) 

which turns out in the case when &,ST -+ 0 to be arbitrarily 
long, since under these conditions T (E,/T) '. If b < 0, and 
the polarization of the system is effected through the appli- 
cation of an external magnetic field, so that the absolute val- 
ues of a and b are themselves determined by the value of H, 
then in the overwhelming majority of cases the spin waves 
begin to attenuate strongly before their frequency vanishes, 
i.e., k k l i n t  1 u for a Fermi liquid and 
k k (aint 1 '/u$ in the case of a nondegenerate gas. In cer- 
tain cases with special relations between the Fermi-liq- 
uid harmonics, there can, in principle, exist the situation in 
which k < jflint 1 '/v$ even when the system is polarized by 
an external magnetic field, which may indicate the thermo- 
dynamic instability of the homogeneously magnetized state. 

I express my gratitude to A. F. Andreev for the regular 
and fruitful discussions, as well as to F. Laloe, who regularly 
acquainted me with the results of his investigations of the 
properties of gaseous 3 H e ~ .  
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