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The effect of the nonequilibrium electron distribution functions in the superconductors on the 
properties of a tunneling junction is investigated. The state of nonequilibrium gives rise to a sharp 
increase in the effective temperature of the junction and an increase in the decay probability for 
the metastable current state. When the state of nonequilibrium is at a level higher than the 
threshold level, the effective temperature is negative. In this case phase and voltage oscillations 
arise in the junction at a current value lower than the critical value. 

1. INTRODUCTION 

The current states of a superconducting tunneling junc- 
tion are metastable. At not too low temperatures the lifetime 
r -' of such a state is determined by the thermal fluctu- 
ations, and is proportional to 

I ' - 'aexp ( 6 U / T ) ,  (1) 

where T is the junction temperature and SU is the height of 
the potential barrier between neighboring minima: 

In Eq. (2) J i s  the strength of the current flowing through the 
junction and J, is the critical current of the junction. 

In a junction with a small Jc value the lifetime r -' of 
the current state is short when T- T,, but can be fairly long 
at low temperatures. 

At low temperatures it is easy to make the electron dis- 
tribution function in a superconductor a nonequilibrium 
one. Such a disequilibrium state can be produced by a high- 
frequency field, by means of tunneling injection of excita- 
tions through an auxiliary junction, or by irradiating the 
junction by fast particles. In this case the lifetime of the cur- 
rent state of the junction can be greatly shortened. The tem- 
perature Tin the formula (1) should in this case be replaced 
by an effective temperature T * that depends on the nonequi- 
librium electron distribution function. The determination of 
this dependence is the object of the present paper. 

Usually, the starting point of an investigation of the 
nonequilibrium situation is the kinetic equation. In the pres- 
ent case we must first of all derive such an equation. A char- 
acteristic of the case under consideration is the fact that we 
have a collective variable-the phase difference 2p between 
the order parameters of the two superconductors-as the 
only distinct degree of freedom. The kinetic equation for the 
distribution function of this generalized coordinate is de- 
rived in two limiting cases: the case of low viscosity and the 
case in which the quasiclassical approximation is applicable. 

For the investigation of the equilibrium situation the 

approach with imaginary time turns out to be convenient.'-" 
In the nonequilibrium case we shall use the method of func- 
tional integration in real time.5 

2. EFFECTIVE ACTION 

In superconductors separated by an impenetrable bar- 
rier, the physical quantities do not depend on the phases of 
the order parameters of the individual superconductors. A 
finite barrier penetrability leads to the appearance of a su- 
perconducting current that depends on the phase difference 
between the order parameters of the two superconductors. 
For the purpose of describing the quantum and thermal fluc- 
tuations we must treat the phase difference as a dynamical 
variable. The probability Wif for (i-tf) transition between 
different states can be written in the form of a path integral 
over this dynamic variable5: 

where C is the capacitance of the junction. The quantity 
W [p] is equal to 

PV 

-cp(t , ) )  I < ~ , a v ( t ) a , + ( t i ) ) < T , a , ( t i ) a , + ( t ) )  
+ exp[ - i (cp( t ) -cp( t i ) )  l<T,a,+(t)a,(tl))<T,a,+(t,)a,(t)) 
-exp[i(cp(t)+cp(ti))1~P,av(t)av(ti)~~~,a,+(t1)a,+(t)~ ' 

-exp[ - i (cp( t )+cp( td)  l < P , a , + ( t ) a , + ( t t ) ) ( ~ , a , ( t i ) a , ( t ) ) ) ,  

(4) 
where T,, is the transition matrix element connecting the 
states Y andp of the left and the right superconductors, and 
?'c is the operator effecting the ordering on the Keldysh con- 
tour going traced the initial moment of time ti to the final 
moment of time tf and back; the integration in (3)  and (4) is 
performed over this contour. 

The Green functions in the formula (4) depend only on 
the energies of the states Y andp, and possess a sharp maxi- 
mum in the vicinity of the Fermi surface. The matrix ele- 
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ment I T,, 12, averaged over the states at the Fermi surface, 
can be expressed in terms of the resistance R ,  of the junction 
in the normal state. The summation overp and v gives rise to 
Green functions integrated over the energy variable. 

It is convenient to go over from the integration over the 
Keldysh contour to integration from the instant ti to the 
instant t,-, and introduce for this purpose the matrix Green 
functions 

Each of the functions g is a ( 2x2 )  matrix in the Gor'kov 
sense: 

Let us also introduce the (4 X 4) diagonal matrix 4 (t ) with 
elements 

In this notation the formula (4) for W [p ] assumes the form 

X 
w[r 1 = ~ X P  {- J ~ d t d t ,  Sp[erp  ( i $ ( t ) )  bcL) ( t ,  ti) 

i 

In the formula (7) the superscripts L and R denote the left 
and right superconductors respectively. 

The Keldysh function f can be expressed in terms of 
the Green functions and with the aid of two distribu- 
tion  function^,^ f '"and f '". Usually, even in the nonequilibri- 
um case the Green functions 2 depend only on the time dif- 
ference, and for the Fourier transforms we have 

Here f 'I)(&) is an odd, and f "'(E) an even, function of&; they are 
connected with the occupation numbers n(&) by the relations 

The Green functions eA(&) are little affected by the state of 
nonequilibrium, and can be replaced by their equilibrium 
values. Because of the long energy relaxation time, the distri- 
bution functions f "*2) can change greatly even in the case of 
weak external influence. 

The effective action given by the formulas (3)  and (7) can 
be considered to be the action for a single particle with coor- 
dinate p. The capacitance C/e2 plays the role of particle 

mass and In W describes the retarded potential and the tran- 
sitions between the states in this potential. For a sufficiently 
large capacitance, when the oscillation frequency of the par- 
ticle is low compared to A,  the effects of the retardation and 
the transition probabilities are small. The effective potential 
in this case is equal to 

where J,,  J,,  and a will be found below. 
For current strengths J close to J,  the motion of the 

"particle" turns out to be slow even when the capacitance is 
small. In this case it is essential to renormalize the capaci- 
tance C, whose renormalized value can be found by separat- 
ing from In W the term proportional to (dp/dt )'. For identi- 
cal superconductors on the left and right of the barrier 

C=C+3n/32RNA. (1 1) 

The C * values for the case in which the superconductors are 
different is given in Ref. 5. In deriving the formula (1 1) we 
assumed that the current strength is close to the critical val- 
ue and that the phase p is close to the extremal value r/4. 
Furthermore, we took the electron distribution function in 
the superconductors at zero temperature. The degree of ac- 
curacy aimed at here would have been exceeded if we had 
allowed for the temperature dependence of C*, since the 
contribution of such corrections is small compared to the 
contribution of the dissipative terms in In W. 

For current strengths not close to the critical value, the 
effective capacitance C * depends also on the phase p. But in 
this case the adiabatic approximation holds only when the 
unrenormalized capacitance Cis large and the renormaliza- 
tion effects are small. 
3. THE CRITICAL CURRENT OF A NONEQUlLlBRlUM 
JUNCTION 

In the adiabatic approximation the phases p, and p2 are 
slowly varying functions of the time. Furthermore, the phase 
p, is close to p,. In this approximation the effective action 
A [p] can be written in the form 

-5 ~fLU(cp.)-U(rp2) I ,  (12) 

where m* = C */e2. 
Evaluating the integral in the formula (7) in the adiaba- 

tic approximation, we obtain for U (p ) the expression (lo), 
where 

I ,  cos (2qS.a) 

x[FRR(~)+FRA(e )  l f L i '  ( 8 )  I 
+ i  sin Brp I d e [ P L R ( e )  + h * ( ~ )  I 
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In superconductors without magnetic impurities 
A 

FR ( E )  =- [ F A  ( e )  ]'= [ ( E + ~ V ) ~ - A ~ ] ' ~ ' ; '  

In this approximation the angle a is small. For identical su- 
perconductors 

l c  A  
Jc= - 

mNe 
[ f L ( ' )  ( A )  + fL i )  ( A )  I .  

The quantity Ja is nonzero only in nonequilibrium supercon- 
ductors, in which the even part of the distribution function 

f2(&) is nonzero. In such nonequilibrium junctions the 
strength of the "critical" current depends on the direction, 
and is equal to J, + Ja . If the junction is included in a super- 
conducting circuit with a large inductance, then the total 
current J flowing through the junction, which is equal to 
J = Ja + J, sin2p, changes little when nonequilibrium exci- 
tations are produced in the superconductor. But now it is 
equal to the sum of the superconducting current and the 
current Ja produced by the nonequilibrium excitations. 
Therefore, there will occur a significant change in the phase 
q, and, consequently, in the magnitude of the magnetic flux 
in the circuit. In particular, to the ground state corresponds 
the magnetic flux 

The nonequilibrium distribution function f '2) can be 
produced through, for example, the injection of quasiparti- 
cles from an auxiliary tunneling junction with a sufficiently 
high voltage potential across it. The distribution function f "' 
in this case is found in Ref. 7 (see also Refs. 8-10). In the 
notation of Ref. 7 the current Ja is equal to (pumping into the 
right-hand superconductor, in which the order parameter A 
has a large value) 

In the case of fast injection of the excitations there arise mag- 
netic-flux oscillations that relax into the new equilibrium 
configuration (1 5). The relaxation time is determined by the 
viscosity, which will be found below. 

4. PERTURBATION THEORY 

In the adiabatic approximation the Josephson junction 
is eqivalent to a quantum particle with mass m* = C */e2 
moving in the potential field U (p ). In the zeroth approxima- 
tion in the adiabaticity parameter, such a particle can occu- 
py any quantum level for an infinitely long time. Allowance 
for the next terms leads to the appearance of a finite prob- 
ability for transition between the states and the establish- 
ment of a distribution function N (E ) for these levels. Let us 
find the probabilities for the transitions i+f between the 
states under the assumption that these probabilities are 
small. The transitions between the states occur because of 
the presence in the effective action of terms that contain p, 
and p2 at the same time. Assuming these terms to be small, 

and dropping them from the argument of the exponential 
function, we obtain 

Jr 
wit=- J d t  J d t i  ~ g i ~ r p ,  e x p  ( i ~ . [ c p l  ) 

x S p { e x p  (icpi ( t )  z z ) g L c  ( t ,  t i )  exp  (-icpr ( t i )  ~ ~ ) $ ~ ' ( t ~ ,  t )  
+ e x ~ ( i c p ~ ( t )  zZ)gL'(t ,  t i )exp(--irpi  ( t i )  zZ )gRc( t i ,  t ) ) .  (17) 

The functional integral in the formula (17) is computed 
with the effective action A&], which corresponds to the 
motion of a particle in the potential field U(p). Therefore, it 
can be expressed in the usual manner in terms of the matrix 
elements of the quantum-mechanical problem. The Green 
functionsg* depend on the time difference t - t,. Therefore, 
for sufficiently long periods Wif is proportional to the transi- 
tion time tf - ti, i.e., Wif = (tf - t i )Wg .  Expressing the 
Green functionsg* in terms of the distribution functions f '1.2' 

in accordance with the formulas (5) and (8), we obtain 
1 

%,=- J ~ E { - I  ( f  lexp(icp) l i ) l Z p L ( e ) p R ( e - a )  
2RNez  

X [  (f:') ( & ) - I )  (fR(" ( 8 - a )  + I )  +fj2'  ( ~ ) f ? '  ( e - ~ ,  1 
+ V 2 [ ( f  1 exp(icp) I i ) '+(f  1 e xp  (-icp) ( i ) ' ]  

x [ F , - ( e ) F , - ( ~ - a )  

-FL+ ( e ) F R - ( e - m )  f,"' ( E )  (fAi)  ( & - a )  + I )  1 )  (18) 

where w = Ef - Ei and 

In deriving the formula (18) we took into account the fact 
that f 'I)(&) and 9-(E) are odd functions of&, while f '2 ' (~) ,P(~) ,  
and Y+(E) are even functions. In superconductors without 
magnetic impurities 

In this case the quantity f " ' ( E ) ~ + ( E )  is small, and the last 
three terms in the formula (18) vanish. 

For the majority of the numbers i the matrix elements in 
the formula (18) can be expressed in terms of the Fourier 
components of the quantity exp( + ip) on the classical trajec- 
tory: 
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where § denotes integration over a period of the motion and 
w is the frequency of the classical periodic motion. For the 
low-lying energy levels we can use the oscillator approxima- 
tion. In this case the only nonzero transition matrix elements 
are the ones connecting neighboring levels: 

where q,, is the minimum point of the potential U (q, ) (the 
formula (10)) and 0 is the frequency of the oscillations about 
the minimum: 

5. THE KINETIC EQUATION 

The distribution function Ni, which is equal to the prob- 
ability of finding the quantum particle in the ith state, satis- 
fies the equation 

For an equilibrium electron distribution, when f "' = 0 and 
f " ) ( ~ )  = tanh(e/2T), it follows from the formula (18) that the 
transition probabilities Wii satisfy the relation 

T i j = P ' j i  exp [- (Ej-Ei) IT] . (25) 

From this it follows that Eq. (24) possesses in this case the 
steady-state solution 

Ni=exp ( -EAT) .  (26) 

In the case of a nonequilibrium electron distribution the 
transition probabilities Yii are not connected by a simple 
relation of the form (25). But in this case also a steady-state 
solution to Eq. (24) can be sought in the form 

The quantity T *(E ) plays the role of an effective tempera- 
ture, and varies little over energy ranges of the order of the 
level spacing. The matrix elements Yii decrease rapidly as 
the difference li - jl increases. Therefore, from the formulas 
(24) and (26) we obtain the following equation for the effec- 
tive temperature: 

6. HIGH EFFECTIVE TEMPERATURE 

Let us consider the important particular case when the 
effective temperature is high compared to the characteristic 
frequency wii -0 at which the drop in the transition prob- 
ability Yii occurs. When this condition is fulfilled, the dis- 
tribution function varies slowly, and Eq. (24) reduces to the 
differential equation 

where w(E) is the distance between nearest levels, which is 
equal to the frequency of the classical motion in the potential 
well U(q,), 

1 
A = (Ej-Ei) Rj+. B = -C (Ej-Ei) 'Vji. (30) 

f 
2 

f 

In the steady state case the solution to Eq. (29) has the form 
(27), with the effective temperature 

The expression (31) for T* can also be obtained from the 
formula (28). Let us assume that the electron distribution 
function varies little at energies E-0 .  Using for the matrix 
elements the formula (21), we obtain for the effective tem- 
perature [Eq. (3 I)], in the case of identical superconductors 
on the left and right of the barrier, the expression 

where p(t ) is the solution to the classical equation of motion 
with energy E. In (32) we have dropped the terms propor- 
tional to the product f @'(E) f $I(&), which are usually small. 
Equation (32) can be simplified further if the current 
strength J is close to the critical value, and cos 2q, = 0, or if 
the correction to the distribution function f "'is concentrated 
in the vicinity of the threshold in the narrow energy region 
where IF-(&)[ =P(E). In both of these cases the time inte- 
grals in the numerator and denominator of (32) cancel out, so 
that 

If only one superconductor is pumped, and the correction to 
the distribution function f "' has the form of a step of width 
eV - A concentrated in the neighborhood of the gap in the 
superconductor, then 

In deriving (34) we found the numerator in the expression 
(33) for T * with logarithmic accuracy. If the correction to 
the distribution function does not have the form of a step, 
then the denominator of (33) also contains a large logarithm. 
In this case 
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The case of superconductors with different order-parameter 
values A,,, will be considered below. 

7. THE LANGEVIN EQUATION 

For the motion in the quasiclassical region, we derive, 
following Schmid," the Langevin equation for the phase p.  
In this case the phases p, , ,  at one and the same instant t  in 
the "forward" and "backward" motions in time are close: 

Expanding the effective action A [ p ]  up to terms of second 
order in y, and evaluating the Gaussian functional integral 
with respect toy, we obtain for p the Langevin equation 

where ( is a random quantity with a Gaussian distribution 
and with a correlator: 

Using Eqs. (3) and (7) for the action A [ p ] ,  we obtain the 
expression 

n 
K ( t ,  t') =- - Sp (7,  exp (irp ( t )  z , )  

8RNez 

+gL> ( t ,  t i )exp (-irp(td z , )  T&R< ( t i ,  t )  I + (t*ti) 1. 
(38) 

In the region of high temperatures, where Tis much greater 
than the characteristic frequency of variation of the phase p, 
the correlator K (t,t ') is a 6-function of the time difference 
t  - t  ', i.e., the noise is converted into white noise: 

K ( t ,  t') = K 0 ( o ) 6  ( t - t ' ) ,  o=eV=drp/dt; 

+i sin 2rp(t) [ ~ L + ( E ) F R - ( E - ~ ) ~ F '  ( ~ ) f : "  (&--a)  

For example, for a junction with different superconductors, 
in the case when thesuperconductor with the higher order- 
parameter value A ,  is pumped, 

In the effective-temperature problem under considera- 
tion in this paper the voltage drop V across the junction is 
equal to zero. We have nevertheless cited a more general 
expression, (39), for the correlator K,(w), i.e., an expression 
that is valid for a finite, slowly varying voltage potential 
across the junction, since this expression may be useful in 
other problems, e.g., in the problem of the emission-line 
width of a Josephson junction.12 The formula (39) describes 
thermal noise (e V g  T)  and shot noise (e V> T ). 

In this approximation Eq. (36) has the form 

where J is the total current flowing through the junction, 

In the case when the phase p varies slowly Eq. (40) has 
the form 

where the potential energy U ( p )  is given by (20) and r ]  is the 
coefficient of viscosity: 

az,(o> a z 2 ( ~ )  
q= do + cos 2rp- -I- sin 2rp - azi(o) . (43) d o  d o  

In the case of weak viscosity the equation (29) of diffu- 
sion in energy terms can be obtained from Eq. (42). The coef- 
ficientsA and B [the formulas in (30)] are connected with the 
coefficient of viscosity r] and the kernel KO by the relations 

Thus, from the Langevin equation we obtain for the 
effective temperature T * the same expression obtained from 
the high-T * perturbation theory [Eq. (3 I ) ] .  In particular, in 
the case of identical superconductors we obtain for the effec- 
tive temperature the formulas (32) and (33). 
8. NEGATIVE TEMPERATURES 

In the case when the superconductors on the left and 
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right of the barrier are different and the superconductor with 
the higher order-parameter value (say, the right-hand super- 
conductor: A, >A,) is pumped, the integrals I,,, and the 
coefficient of viscosity 7 are equal to 

Ar. (2nTAn) " z2 = 

0 

dee  
"" = .f (e2-An2) 

. [ 1-fit' ( 8 )  I .  (45) 
Am 

At low temperatures the viscosity coefficient 7 can vanish 
and become negative even under conditions of weak pump- 
ing. At the pumping level at which the viscosity coefficient 7 
vanishes, the static solution to Eq. (40) with J <  J, is unsta- 
ble. The question of the loss of stability under conditions of 
high-frequency irradiation of the junction was first consid- 
ered by Aronov and Spivak.13 They investigated the contri- 
bution of only the first term of the formula (43) to the viscos- 
ity. Notice that the second term of the formula (43) becomes 
negative at a lower pumping level. As a result there arise a 
number of interesting effects: the instability threshold de- 
pends on the strength of the current flowing through the 
junction, and increases with increasing current strength. 
Another effect, which occurs at J = 0, is that the negative 
temperature first arises for the state with minimum energy. 
Therefore, the energy distribution function for the contact 
has a sharp peak in the vicinity of the point E,, at which 
T(E,,) = W .  The higher-energy states have positive tem- 
perature, and the phase p exists in a separate potential well 
for an exponentially long time. From the formula (44) we 
find the equation for E,, : 

j d q ~ E ~ ~ - u ( ~ )  =o, 
q1 

where p,,, are the turning points. 
In the vicinity of this energy the distribution function is 

equal to 

here 

The noise spectrum possesses a sharp peak at the fre- 
quency w(Ec,) of the classical motion: 

At sufficiently high pumping levels the effective tem- 
perature can, depending on the current strength and the val- 
ue of the ratio A,/A,, be negative at all energy values 
E < SU. In this case there arises across the junction a high 
voltage is close to e V =  A, + A,. 

9. LOW EFFECTIVE TEMPERATURES 

Usually, the capacitance of a Josephson junction is fair- 
ly high. Therefore, the level spacing f2 in the potential U (p) is 
small, and the equation (29) of diffusion in energy terms is 
applicable in a broad range of temperatures T )a. Low-ca- 
pacitance junctions have been developed in the last few 
years, so that the temperature region T 5 R  has become 
accessible. In this temperature region, the diffusion approxi- 
mation is inapplicable, and, to determine the effective tem- 
perature T *(E ), we must use the general equation (28). 

For the low-lying levels the phase q, is close to the exter- 
nal value p,; therefore, we can replace the potential U(p) by 
the oscillator potential, and use for the matrix elements the 
formula (22). In this approximation Eq. (28) can be easily 
solved, and for the effective temperature T *(E )we obtain the 
expression 

exp (Q/T' ( i )  ) ~3jyi.i-i/ri-i,i=ri+i,i/ri,i+i 

- - KO (a, po) +I3 ( Q )  + cos 2qoT2 (P) + sin 2q0Ti ( Q )  
KO (Q,  cpo) -Ts ( Q )  - cos 2qor2 ( Q )  - sin 2%Ti ( Q )  

' 

(46) 
T,(SZ) s i l , [ I , , ( Q )  - I , ( -Q)  I ,  k = i ,  2,  3, 

where the quantities KO and I, are given by the formulas (39), 
(39a), (41), and (45). When Tand T * are much higher thanR, 
the formula (46) goes over into the expression (3 1) for T *. 

For the high-lying levels the oscillator approximation is 
inapplicable, but the matrix elements can be found from the 
quasiclassical formula (2 1). If the current strength J is close 
to the critical value, the phase p is close to ~ / 4 ,  and the 
potential U (p) has the form of a cubical parabola. In this case 
the matrix elements 

n% ((cp-cps) 
<f lqji>-- 

2kZKZ ( k )  sh ( n a )  ' 
Here 

nK' ( k )  

where p, <p ,  <q,, are the roots of the equation Ei 
- U (p) = 0, while K (k ) and K '(k )are complete elliptic inte- 

grals. Equation (28) for the effective temperature assumes 
the form 
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where w is the frequency of the classical motion in the poten- 
tial field U ( p )  of a particle with energy Ei. When the energy 
E, is close to the height of the potential barrier, the frequen- 
cy w and the coefficient 5 are close to zero. For such energies 
the sum over n in the formula (48) can be replaced by an 
integral. In this case the level spacing w is small, but the 
transition to the high-temperature limit occurs only when 
T * s o / &  -0. 

10. LIFETIME OF THE METASTABLE CURRENT STATE 

The qualitative picture of the decay of the metastable 
state in the nonequilibrium case will look the same as in the 
equilibrium case. There exist two broad regions, depending 
on the magnitude of the effective temperature T *: the classi- 
cal region of high T * values, in which the decay occurs as a 
result of above-the-barrier transitions, and the low-tempera- 
ture region, where the decay is due to quantum-mechanical 
tunneling. Each of these regions can, depending on the mag- 
nitude of the viscosity, be divided into two regions: regions of 
strong and weak viscosity. In the high-temperature region 
we have with exponential accuracy a decay probability pro- 
portional to the distribution function at the top of the bar- 
rier. In the case of weak viscosity, when g/m* < 0 ,  the dis- 
tribution function is given by the formula (27). In the case of 
strong viscosity, when g/m* > 0 ,  we can obtain from the 
Langevin equation (36), (40) a diffusion equation in terms of 
the coordinate p. The solution to this equation has the form 

In those cases when the effective temperature 
T * ( p )  = K0(p)/2g(p)  does not depend on p, we obtain for 
N ( p )  the standard Arrhenius formula with T * given by the 
formulas (33) and (34). The pre-exponential factor in the de- 
cay probability for high temperatures and arbitrary viscosity 
can be found in much the same way as has been done in the 
equilibrium case. '"I7 

The strong-viscosity limit in the nonequilibrium case 
has not been investigated in the low-temperature region. In 
the weak-viscosity region g/m* < 0 the decay probability 

Here y(E) is the probability for tunneling decay from the 
state with energy E: 

a ( E )  exp ( -w  ( E )  ) , 7 w = -  
2n 

w ( ~ ) = 2  J d q [ 2 m * ( ~ ( c p ) - ~ )  IY, 
(51) 

where w(E ) is the frequency of the classical motion of a parti- 
cle with energy E. The sum over the states in the numerator 
in the formula (50) can be replaced by an integral. At low 
temperatures we can use for N (E ) the formula (27) and com- 
pute the integral in the numerator in the formula (50) by the 
method of steepest descent. 

In the classical case of high temperatures the weak-vis- 
cosity region (g/m* < 0 )splits into two subregions: the "me- 
dium-viscosity" subregion, where the energy SE = 2n-A / 
w(E ) lost by the particle in a period during the motion in the 
vicinity of the top of the potential barrier is large compared 
to T *, and the very-weak-viscosity subregion, where the op- 
posite limit obtains. The pre-exponential factor in the 
expression for the decay probability in the high-temperature 
region has been found in the limiting cases by KramersI4 and 
in the intermediate case by Mel'nikov.17 In the case of medi- 
um viscosity the transition from the classical to the quantum 
regime occurs at 

T*=Q/2n= ( -wl ) - '  (52) 

(the derivative w' is taken at an energy SU equal to the 
height of the potential barrier). This transition is investigat- 
ed in Ref. 18, and can be obtained from the formula (50) 
through integration over E up to SU with the distribution 
function given by the formula (27). The transition from the 
classical to the quantum regime in the limiting case of very 
weak viscosity needs to be investigated further even at equi- 
librium. In the case of very weak viscosity the transition 
from the classical to the quantum regime occurs at a tem- 
perature lower than the temperature obtained from the for- 
mula (51). For such weak viscosity the distribution function 
N (E ) in the important energy region becomes depleted be- 
cause of the quantum tunneling processes, which must now 
be taken into account in Eq. (24): 

t 

The probability yi for tunneling decay depends exponential- 
ly on the energy. Therefore, when yi < Yii the last term is 
insignificant, and N ( E  ) has the form (27). More precisely, the 
boundary E, of the region above which the distribution func- 
tion falls off rapidly can be found from the condition 

(54) 
where the quantity w ( E )  is given by the formula (51). The 
transition from the classical to the quantum decay regime 
occurs in a narrow neighborhood of the temperature 

To-'=-w' ( E , )  . ( 5 5 )  

In the neighborhood of the temperature To the summa- 
tion over the energies in the numerator in the formula (50) is 
performed over a broad range of energies around E,. In this 
region N (E ) is given by the formula (27) when E < E, and is 
small when E > E,, while 
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As a result, for y we obtain the expression19 

w' (E,)  + T-' (E,)  x 1+@ [ ( (ZW"(E.))'~* 

X 
exp ((0' (E,) +T-' (Ec)  ) /2wU (E,)  ) 

(2nw" (E,) ) " 7 

where 

is the error integral. 
If we add to the diffusion equation (29) a term describ- 

ing the tunneling, which depends exponentially on the ener- 
gy, then for the decay probability we obtain19 

2~ Q r ( i - v )  
a 2- (E.) a, (E.) sh( w) 2-" ~ ( I + v )  

At high temperatures the formula (58) goes over into the 
Kramers formula, and joins onto the formula (57) as T *-+To. 
In the intermediate region there appears in the formula (58) 
an additional factor of the order of unity as a result of the 
inapplicability of the diffusion approximation. We can find 
this factor if we go over in Eq. (53) from the sum over the 
states to an integral over the energy. In the quasiclassical 
approximation the matrix elements Yii decrease rapidly as 
the difference Ji - jl increases, and depend smoothly on the 
state number i. Equation (53) in this approximation can be 
solved by a method similar to the one expounded in Ref. 17. 
As a result we obtain 

where the energy E, is given by the formula (54), while 
sa 

R - [ (rdw') exp (- J ~ E / T *  ( E )  )] [ ~ i n ( n / T *  (Eel ww') I-' 
0 

[ -otg (n ( zCIIT ' )  )]) x ctg - 
W' w ' 
a 

J ( t )  = J dz exp (-tm)Xa z=Ej-E{. 

When the temperature T * is close to ( - w')-', the last 
factor in the formula (60) is equal to unity. As a result the 
decay probability 

1 dE SZ 

w'f i /T'  (E . )  (- J ) -?&) sh ( 2 ~ )  ' 

When the temperature T * is not too close to ( - w')-', the 
expression (61) goes over into the formula (57). 

At high temperatures the important values of r in the 
formula (60) are of the order of 1/T *. For such small values 
of the quantity r we easily find that 

7 ( z )  =Y (0) +o (E,) B z  ( z+ l /T . (Ec )  1, (62) 

where the quantity B is given by the formulas (30) and (44). 
Substituting this value ofS(7) into the formula (60), and eval- 
uating the r integral, we obtain 

The expression (63) coincides with the formula (58) when 
T * ) (  - w')-' and with Kramer's result.14 

CONCLUSION 

One of the methods that can be used to observe the ef- 
fects considered in this paper consists in the establishment of 
a state of nonequilibrium with the aid of an auxiliary tunnel- 
ing junction. The application of a voltage potential (eV> A ) 
across the auxiliary junction leads to a sharp increase in the 
effective temperature and a decrease in the lifetime of the 
metastable current state. The same effect is produced by the 
irradiation of the junction by a high-frequency field. The 
effective temperature is, generally speaking, a smooth func- 
tion of the energy. At a certain pumping level the effective 
temperature becomes negative in some energy region. In this 
casithe voltage potential across the Josephson junction un- 
dergoes oscill~tions. 
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