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The effect of defects on the properties of substances near second-order phase transitions is ana- 
lyzed. It is assumed that either the temperatures or the media are such that the Landau theory of 
phase transitions is applicable. The analysis uses the approach of Levanyuk, Osipov, Sigov, and 
Sobyanin, [Soviet Phys. JETP 49, 176 (1979)], in which the substance is described in the contin- 
uum approximation, while defects in the substance are taken into account by means of boundary 
conditions on the continuum equations. These conditions are specified at the core of a defect (the 
core is the microscopic region around a defect in which the continuum approximation breaks 
down). A method is proposed within the framework of this approach for reducing the problem of a 
phase transition in a system with many defects to the problem of a phase transition in separate 
small volumes, each containing only a single defect. This method is used to completely solve the 
problem of the properties of a phase transition in a system with point defects in which the sign of 
the perturbation of the field of the order parameter 7 caused by these defects is identical for all 
defects ("polarized" defects). In the case of "strong" defects, which perturb the field of the order 
parameter both above and below the transition temperature Tc , the effect ofthe defects essentially 
reduces to a shift of T, and the appearance of a mean field h, , the conjugate of the order param- 
eter, which smears out the phase transition. In the case of "weak" defects, which distort the field 
of the order parameter only below Tc , the ordering begins at the same temperature, T& as in the 
pure crystal. In this case, however, all the thermodynamic quantities have only exponentially 
weak anomalies at T = T, . Furthermore, in a system with weak defects in random positions the 
susceptibility diverges in proportion to lnh -' (h is the external field which is the conjugate of 7) in 
weak fields everywhere below TcO. For systems with polarized point defects, a detailed study is 
also made of the temperature dependence of the x-ray and neutron scattering intensities and the 
intensity of light scattering by defects. These quantities are shown to exhibit several clearly 
defined and distinctive anomalies near the phase transition. 

1. INTRODUCTION 

The instability of a system at the point of a second-order 
phase transition (Tc ) causes the properties of the system near 
the phase transition to be anomalously sensitive to various 
external agents, including defects in the ~ystem.' .~ The actu- 
al reason for the very strong effect of defects on the proper- 
ties of a medium near phasetransitions is that as T ap- 
proaches Tc the correlation radius of the order parameter 
increases without bound, and there is an accompanying un- 
bounded increase in the size of the region perturbed by an 
individual defect. This increase in the size of the perturbed 
region leads to a strong temperature dependence of the con- 
tribution of the defects to various thermodynamic quanti- 
ties; to an increase in the x-ray, neutron, and light scattering 
intensities near Tc; to an anomaly in the sound absorption; 
and to other effects. Even at comparatively low defect con- 
centrations (n - 10'8-10'9cm-3) these effects may exceed 
fluctuational effects by orders of magnitude.3v4 

The large scale dimension of the spatial distortions of 
the field of the order parameter near Tc means that these 
distortions can be described in the approximation of a con- 
tinuous medium, and the defects in the medium can be taken 
into account in boundary conditions imposed at the bound- 

ary of the defect "core" (that microscopic region near a de- 
fect in which the continuum approximation breaks down). A 
corresponding approach is well known in the case of planar 
defects (e.g., the surface of a semi-infinite   ample"^.^), and 
it was formulated and developed in Refs. 3 and 4 for the cases 
of point defects (impurities, vacancies, and interstitial 
atoms) and line defects (dislocations). The results derived in 
Refs. 3 and 4, however, apply only to those temperatures and 
those defect concentrations n such that the average distance 
between defects is larger than the correlation radius for the 
order parameter in the pure medium (nr; (1). In this case the 
solution of the problem is simplified greatly by the circum- 
stance that the perturbations of the order parameter field 
caused by different defects do not overlap, in practice and 
the contributions of the individual defects can be calculated 
independently. We will refer to this approximation as the 
approximation of "independent" or "noninteracting" de- 
fects. 

In this paper we wish to go beyond the scope of the 
approximation of noninteracting defects and to derive for 
the problem a solution that holds in the entire vicinity of the 
phase transition. At this stage of the theory, as in Refs. 3 and 
4, we restrict the discussion to the simple situation in which a 
phase transition with a temperature TcO in the pure medium 
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is characterized by a single-component order parameter 7, 
and the Landau theory of phase transitions can be used to 
describe this transition. This means that we are eliminating 
from consideration the critical (or fluctuational) region, 
which is extremely small for several substances (e.g., for 
structural phase transitions in solids7) and sometimes is ab- 
sent al t~gether .~ 

A second assumption which we will make is that the 
sign of the perturbations of the field order parameter caused 
by individual defects is the same for all defects ("polarized" 
defects). For polarized defects the distribution r](r) has no 
nodes, so that it is the polarized state of the defects which is 
absolutely stable at T = 0. At T # O  the defects may in gen- 
eral become disordered. If, however, defect states with oppo- 
site signs of the order parameter are separated by a suffi- 
ciently high energy barrier ( A  k, T, ), then even near T, the 
polarized state of the defects may persist as a metastable 
state over extremely long time intervals-significantly long- 
er than typical observation times. These metastable situa- 
tions are our primary concern here (Sec. 6 discusses practical 
ways to produce systems with polarized defects). 

Yet another important condition which will be used be- 
low is that the defect concentration is required to be small in 
comparison with the concentration of host atoms (nd 3( 1, 
whered is the lattice constant). This is a necessary condition, 
in particular, for the applicability of the macroscopic pheno- 
menological approach of Ref. 4. 

Finally, for brevity we will consider only point defects 
for which the distribution of the order parameter near the 
core is spherically symmetric (S-type defects4). Polarized 
point defects of other types and also line defects could be 
analyzed in an analogous way. As for interacting planar de- 
fects, they have already been discussed to some extent in the 
literature with films of superfluid helium9 and thin ferro- 
magnetic plates as examples.I0 They have also been dis- 
cussed in connection with several other questions." 

In Sec. 2 of this paper we formulate the problem and the 
essence of the solution method, which allows us to reduce 
the problem of a phase transition in a system with many 
defects to the problem of a phase transition in individual 
spherical volumes, each centered around only one defect. 
The problem for one such volume is solved analytically and 
numerically in Sec. 3. Section 4 deals with the effect of a 
nonuniformity of the defect distribution (of fluctuations of 
the defect concentration) on the phase transition through the 
introduction of a distribution in radius of the number of 
spherical volumes. In Sec. 5 we calculate the correlation 
functions which determine the intensity of the elastic scat- 
tering of neutrons, x rays, and light by defects in the vicinity 
of the phase transition. In the concluding remarks in Sec. 6 
we discuss certain prospects for the development of this ap- 
proach and methods for experimentally testing it. 

2. FORMULATION OF THE PROBLEM AND THE BASIC IDEA 
OF THE SOLUTION METHOD 

Following Refs. 3 and 4, we write the free energy of a 
volume V of the substance containing N point defects as 

V-L i-1 

( 8 ~ 8 ,  uOi). The first term is the contribution of the host, 
while the second is the sum of the contributions of the defect 
cores (which are spherical microscopic regions of radii R oi 
and volumes v,, = 4/37~R ,i3 around defects, within which 
the approximation of a continuous medium breaks down). 
The energy of the ith core depends on the order parameter 
vOi at the surface of this core and can be approximated by the 
following expression for the cases of interest here: 

The parameters x and gd are measures of the "stiffness" and 
"strength" of the defect, respectively. We will assume below 
that x > 0 and that the values of )vOi - vdi I are not too large. 
Otherwise we would have to add to (2) terms of higher order 
in r]&.  

For the volume part of the free energy density of the 
host we use the Landau expansion 

where A = A0r, r=(T - Td)/Td and h is the field conju- 
gate to 17. The distribution of ~ ( r )  among the defects is then 
described by the equation 

which is derived by varying (1) with respect to ~ ( r ) .  
Expression (2) incorporates as particular cases defects 

of the type of a "random field h " and defects of the type of a 
"random local transition temperature." Expression (2) may 
be thought of as the result of an integration of the following 
expression over the volume of the system: 

N 

j { voi 4 0 ~ o i g 2  (r) 6 (r-r) h i  (r) 6 (r-r) ) d (5) 
t = i  

1 

[for brevity we have omitted from (5) terms which do not 
depend on ~ ( r ) ] .  The quantities T,, and h ,, are, respectively, 
the shift of the phase-transition temperature, 
T,, = T, (1 - T~~ ), and the field h at the position of the de- 
fect. They are related to the parameters xi and vdi by 

It can be seen from (6) that defects of the "random tempera- 
ture" type correspond to the value 7, = 0, while defects of 
the "random field" type correspond to the limit x + 0, 
vd + CO, but xvd = Roho/3D = const. It should be kept in 
mind here that for real defects the parameter x will not be 
zero, since a term XT; in the expression for the energy of the 
defect core is always allowed by the symmetry, so that this 
limit of random field defects will never be realized in its pure 
form. 

A systematic calculation of the free energy 3 of a sub- 
stance with defects (without thermal fluctuations) would re- 
quire solving Eq. (4) under the boundary conditions r ]  = voi 
at the surfaces of the defect cores, substituting the resulting 
solution into (I), and then minimizing (1) with respect to the 
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parameters yoi.  In general, this procedure could hardly be 
implemented without resorting to numerical computer cal- 
culations. If the defects are polarized, however, i.e., if the 
parameter qd has the same sign for all defects, the solution of 
the problem can be simplified substantially by taking the 
following approach. 

We assume for simplicity that not only the sign of qd 
(which we will assume for definiteness to be positive) but also 
the magnitudes of the parameters x, R,, and vd are the same 
for all defects. In addition, we initially assume that the de- 
fects are "strong": r], > r] ,  (r), where r] ,  is the equilibrium 
value of the order parameter if there are no defects in the 
substance. It is then clear that when there are defects in the 
substance the equilibrium distribution of r](r) has maxima at 
the positions of the defects, while between defects there are 
minimum surfaces on which we have (Vr] (r) . n) = 0, where n 
is the normal to the surface. The corresponding surfaces par- 
tition the overall volume of the substance into N small vol- 
umes ("cells"), each containing a single defect. Consequent- 
ly, if the positions of these (extremal) surfaces were known, 
we could solve Eq. (4) separately in each cell, assuming 
(Vr] . n) = 0 at the boundary of the cell, and then sum the 
results over all cells. In practice, the shapes of the various 
cells may be quite varied, and the problem of finding the 
positions of the extremal surfaces is equally as difficult as 
solving Eq. (4) immediately over the entire volume of the 
crystal. If, however, the defect concentration is small 
(nR A ( I), the particular shape of the individual cells will not 
be of great importance, and a spherical shape can be used as 
an approximation. As we will show below (Sec. 3), the func- 
tion r](r) in each cell varies rapidly only in the immediate 
vicinity of the defect core, while at distances from the defect 
on the order of several core radii the value of this function 
can be assumed essentially constant, approximately equal to 
an average value of r] over the cell r ]  (?j = v-'$, r](r) dr). This 
average value is determined primarily by the cell volume v 
and depends only slightly on the shape of the cell (the depen- 
dence is no stronger than R,/R, where R is the average cell 
dimension). For the overwhelming majority of cells with 
radii R)Ro, the assumption of spherical cells can thus be 
assumed justified to an acuracy on the order of the ratio R,,/ 
R. Cells with R -R,, in contrast, are encountered statistical- 
ly rarely; even more importantly, their contribution to the 
physical quantities varies only slightly with the temperature 
in the region with r, >Ro, i.e., near T,. 

Everything we have said here applies equally well to 
"weak" defects, with r], < r ] ,  (r). The only distinction in this 
case is that there are maxima, rather than minima, in the 
distribution of r](r) among the defects. 

Instead of solving Eq. (4) immediately over the entire 
volume of the system, we partition the system into N spheri- 
cal volumes and take up the problem of calculating the dis- 
tribution of r](r) and the free energy 3 separately in each 
volume. The next step, as in the case of noninteracting de- 
fects, is to sum the results over all volumes, i.e., in the sim- 
plest case of uniformly distributed defects to multiply the 
energy of one such volume, of radius R = (3 /4m~) ' /~ ,  by the 
defect concentration n = N /V. The nonuniformity of the de- 

fect distribution (i.e., fluctuations of the defect concentra- 
tion) can be taken into account by introducing the distribu- 
tion in radius of the number of spherical volumes or, more 
conveniently, the distribution in the volumes v = (4/3)?rR 
of the spheres. Specifically, for an uncorrelated, completely 
random, arrangement of defects, the probability of finding 
exactly one defect in a given volume of the system is deter- 
mined by the Poisson formula (see Ref. 12, for example) 

w , = n ~ e - " ~ ,  n=N/V.  

It is then a straightforward matter to derive the following 
expression for the number of spheres with volumes between v 
and v + dv: 

dN=f ( u )  dv=Ne-""d(nu). (7) 

The function f (v) is obviously the distribution of the number 
of spheres with respect to volume for an uncorrelated ran- 
dom arrangement of defects. 

Using the functionf, we can write the average value of 
the order parameter over the entire volume of the system, or 
the average value of any other additive physical quantitiy Z,  
in terms of its average value in a sphere volume v, 

Z=V-'S Z ( r )  dr, 
U 

as follows: 

N "  w 

(2 )  = J vZ ( v )  e-"*d (un )  = J Z ( x )  xe-'dx, 
110 nm 

x=nv. (8) 
We wish to emphasize that a uniform and essentially 

random distribution of defects may not be the only case of 
interest (a Gaussian distribution, for example, may also be of 
interest). We will restrict the discussion below, however, to 
only these two limiting cases, in which the distribution fun- 
cion of the spheres is a 6-function and when it corresponds to 
a Poisson distribution. 

3. THERMODYNAMIC FUNCTIONS OF SYSTEMS WITH 
UNIFORMLY DISTRIBUTED DEFECTS 

In this case, as we have already state, it is sufficient to 
solve Eq. (4) in one spherical volume of radius R with the free 
boundary condition 

at the surface of this volume and with the condition 

q (r=Ro) =qo (9b) 
at the surface of the detect core. We begin with an approxi- 
mate analytic solution of the problem; we will then compare 
the results with the results of a numerical integration of Eq. 
(4). With an eye on further applications, we will not specify 
the radius R of the volume at the onset; only in the final 
expressions will we set R = = (3/4m~)"~. 

We seek an analytic solution of the problem by an iter- 
ation method in the parameter x,/r],, , where 

q,, = (D/BRO2)  "l ( 10) 
is4 a characteristic "atomic" value of r ] ,  which corresponds, 
for example, to a complete ordering of the system if we are 
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talking about order-disorder phase transitions. Alternative- 
ly, it could correspond to a displacement of sublattices by an 
amount on the order of the lattice constant if we were dealing 
with displacement transitions (and so forth). 

To take full advantage of this method, we make use of 
the circumstance that the volume part of the free energy 
$a(??) dVis dominated by the peripheral parts of the volume 
of the sphere, where ~ ( r )  is near its extreme value 7, , which 
is reached at the boundary of the sphere. We thus need to 
know the distribution ~ ( r )  and the function p(7) as accurate- 
ly as possible at values of 7 near 7,. In contrast, the particu- 
lar function p(7) is not very important in finding the distri- 
bution ~ ( r )  near the defect core, since at small values of r the 
behavior of ~ ( r )  is detemined primarily by the gradient term 
in expression (1). 

We accordingly expand the function p(7) near the point 
7 = 7, in powers of 7 - v,, initially retaining only the first 
(linear) term (the "linear approximation"): 

c~ (q)=9) ( r m )  +cpl(qm) (rl-qm). (11) 
We can now replace (1) and (4) by (for a sphere of volume v) 

{ ~ p  (qm) + ~ p '  (qm) (11-q.) +'lzD[ V (q-qm) I2)r2dr 

( d(qd:qm) ) = c p f  (q.) = eonst. (13) D-- r2 
r2 dr 

A solution of Eq. (13) which satisfies boundary conditions (9) 
is 

Substituting (14) in (12) we find 

+2nDRo2x (qo-qd) ' ,  (15) 
where 

G ( p o )  = ( I - p o )  " I+"lspo+ 3 / 5 ~ 0 2 +  '/5p03), (16) 
and we have defined p, to be the small ratio R,/R: 

po=Ro/R<<l. (17) 

Using (l4), we can also easily find the average value of over 
the volume v - v,: 

1 q= - r q ( r )  dr=qo- T' (qm)R3G ( P O )  
v-vo J 3DRo ( I - p o 3 )  * 

(1 8) 
,> - Z" 

In these expressions, the value of 7, is determined from the 
self-consistency condition: 

Using (19), we can write i j  as 

from which we see that the difference i j  - 7, is small by a 
factor on the order of the parameter p, in comparison with 
the total change in the function ~ ( r )  between the core and the 
boundary of the sphere. This result confirms that the func- 
tion ~ ( r )  is approximately equal to 7, over the greater part 
of the volume of the sphere, so that it is legitimate to use the 

sphere model (Sec. 2). 
Since the difference 7 - 7, is small, we can express the 

total free energy (15), of the sphere and the self-consistency 
condition ( 19) directly in terms of i j .  Assuming 

and using (20), we find that it is sufficient for this purpose to 
replace 7, by i j  in expressions (15) and (19). The condition 
for the validity of this substitution is that the following ratio 
be small: 

m" (;i;i) cp"(q)R2 (1-poZ) ( I +  3p0f po2) 
(~--qm)- = 

cp (11) 100 (l+po+po2) 
= i / i O  (RlF,) 2K1, (21) 

where 

re= [Dlcpl' (9) 1 '" 
is the average correlation radius for the order parameter 
over the volume of the sphere. 

A condition analogous to (21) can also be derived by 
calculating the contribution to 9, of the quadratic term 
which we discarded from expansion (1 1) for the function p(7) 
and by comparing this contribution with that of the linear 
term. Proceeding in this manner, we find that the range of 
applicability of the linear approximation is restricted to val- 
ues of R small in comparison with T,. In other words, this 
approximation is valid only at temperatures at which the 
perturbations produced by neighboring defects overlap sig- 
nificantly. 

Now minimizing expression (1 5) with respect to 7, after 
first replacing 7, in it by i j ,  we find 

For brevity here and in the expressions below [through ex- 
pressions (30)], we consider only the terms of lowest order in 
pa. Substituting (23) in (15) and (18) (we again recall that we 
are replacing 7, by i j  in these expressions), we find 

Expressions (24) and (25) could also be written as 

or, if we use the explicit expression for the function p 
[expression (3)], in the form 

where 
4nDRo xRo 70 vo 

Tv= -- = -- 
Aov l+xRo l+xRo v ' 

Equations (27) and (29) are actually conditions on the ex- 
trema of the free energy density of the sphere, F, , as a func- 
tion of i j ,  and they could be derived by equating the deriva- 
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tive JF, /Jij to zero. 
Comparing expressions (28) and (3), we see thus that the 

effect of the defect in the sphere essentially reduces to one of 
shifting the temperature of the phase transition of the sphere 
by an amount AT, (v) = - T, r, and applying a uniform 
"external" field h, on the sphere. Apart from the renormal- 
ization factor K = (1 + xR,)-', these results could easily 
have been foreseen, since they correspond to simply an aver- 
age of the local values of T, and h, over the total volume of 
the sphere. On the other hand, the factor K is related to the 
nonzero stiffness of the defect core, and its appearance could 
not have been predicted on the basis of dimensional consid- 
erations alone. 

If we go through the calculations without ignoring the 
small terms containing the ratio R,/R =po, we find that the 
coefficient b, in (26) and (27) is replaced by 

where the function G ( p,) is given by (16). The renormaliza- 
tion factor K also depends on p,: 

This dependence, however, should not be assigned any great 
importance, since the approximation of spheres which we 
have used here is applicable only at small values ofp,. 

Returning to a system of a large number of uniformly 
distributed defects, setting v = l/n in (30), we find the fol- 
lowing expressions for the shift of the transition temperature 
and for the effective field produced by the defects, h, : 

4nDxRo2nqd- - ho 
hd= nu,. 

I+xRo l+xRo 

The field hd smears the phase transition over a typical tem- 
perature interval 

where 7a = (A,/B )'I2 is the equilibrium of the order param- 
eter in a defect-free crystal, extrapolated to T = 0. In terms 
of the reduced variables 

y=~/qeoT. ' " ,  t= ( T + T ~ )  IT., (34) 

we can write Eq. (29) with h = 0 in the following "universal" 
form (a form which does not depend on the parameters of the 
defects): 

If t < ts = - 3 4-'I3, this equation has three roots: 
y, > O> y, > y,. The (positive) first root corresponds to a 
stable state of the polarized system of defects, in which the 
signs of 7, and i j  are the same. The roots y, corresponds to a 
metastable state, in which the sign of7 at the defects is oppo- 
site the sign of 7 over the bulk of the host, and the root y, 
determines the height of the barrier between these two states. 
The temperature Ts thus determines the position of the spin- 
ode, above which 7, state in which 7 has opposite directions 
at defects and in the host can occur. 

The metastable state which vanishes at t > T, may com- 
plicate the picture of the phase transition in real crystals, 
since a reorientation of the system of defects or a change in 
the sign of i j  in separate parts of the crystal must be accom- 
panied by the release of latent heat. However, we will restrict 
the discussion below to only the absolutely stable states, for 
which the signs of i j  and 7, are the same. 

The dashed line in Fig. la shows the functional depen- 
dence y2(t ) for this case, found through the solution of Eq. 
(35); figures lb  and lc  show (again, the dashed lines) the 
corresponding temperature dependence of the heat capacity, 

divided by the jump in the heat capacity Ac = A  ;/2BT, in 
an ideal crystal, and the inverse susceptibility 

1 a2F" 
x.-'= (Ao-c.X) - I =  -- -3y2 - ( t )  +t, 

A,%. dq2 
divided by its value (A,T. ) in an ideal system with T = 7.. 

This linear approximation holds as long as the condi- 
tion R 5 7, holds [see (2 I)], as we have already mentioned. To 
describe the behavior of the thermodynamic functions of the 
sphere for an arbitrary relation between R and 7, and, in 
particular, to ensure a correct limiting transition to the case 
of noninteracting  defect^,^ we must solve Eq. (4) in the qua- 
dratic approximation. By this we mean that we must take 
into account in expansion (1 1) for the volume part of the free 
energy density p(7) the term of the next (second) order in the 
small difference 7 - 7, : 

We omit the straightforward but quite lengthy calculations 
and proceed immediately to the final result: The coefficient 
b, in expressions (26) and (27) is replaced by the function of 
two variables 

whe reQrRf iC ,u  = Q ( 1  -p,). 
For Q<l the function b (p,,Q) is the same as the func- 

tion b ( p,) calculated in the linear approximation [expression 
(3 I)], while in the case Q) 1 this function tends toward a Q- 
independent value: 

( q = R a C  ). This value is the same (as it must be) as the value 
found in Ref. 4 for an isolated defect in an infinite medium. 
Analysis shows that for arbitrary xR, and for all values of 
the ratio R,/i;, =q the function 8 (Q )=b (p,,Q)/b (p,) is 
monotonic and differs from unity by no more than R,&. 
Since we usually have R,-d, however, where d is the lattice 
constant, we see that the ratio R,/F, is small over essentially 
the entire range of applicability of our approach, which is 
based on the approximation of a continuous medium, so that 
the linear approximation of the function p(7) is sufficient for 
analyzing the behavior of thermodynamic quantities over 
essentially the entire region of the phase transition. 

Let us dwell briefly on the role played by some terms 
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4. THERMODYNAMIC FUNCTIONS OF SYSTEMS WITH 
RANDOMLY ARRANGED DEFECTS 

FIG. 1. Temperature dependence of several properties. a: Square of the 
reduced value of the order parameter, v:(t )=b)*. b: Reduced heat ca- 
pacity (C. = (C)/AC). c: Reduced inverse susceptibility (x; ' = 1/ 
xA,T. ) in systems with polarized point defects. Dashed lines-uniformly 
distributed defects; solid lines-randomly distributed defects [I) s = 00;  2) 
s = 11; dot-dashed lines-results of a numerical integration of Eq. (4) in 
one spherical volume with a defect for the parameter values qd/vat = 4, 
xR0 = 1, pO = 0,l; light lines--common asymptotic behavior of the 
curves at large It 1. 

which we have ignored up to this point: the terms of third 
and fourth order in the expansion of the function p(r]) in 
powers of r] - 7, in (1 1). The contribution of these terms to 
the free energy of the space can be evaluated most simply by 
substituting into them the distribution of p(r) calculated in 
the linear approximation or in the quadratic approximation 

(which is essentially the same as the linear approximation) 
and by comparing the result found after an integration with 
the contribution of the gradient term (all three of these terms 
are essentially zero except in the immediate vicinity of the 
boundary of the defect core). Going through this procedure, 
we find that the contribution of these terms is small under 
the conditions 

or, since 3xRor],/(1 + xRo)zvo  [see (23) and (27)], under 
the condition vO/v,, < 1. 

To find a more precise limitation on the value of the 
parameter r]O/~,r,  we also carried out a direct numerical 
integration of Eq. (4) in a single spherical volume with a 
defect. We then used the "exact" distributions of r](r) to cal- 
culate the temperature dependence of 7 ,  r, and? -'. Com- 
parison of this behavior with that found earlier (Fig. 1) shows 
that the linear approximation yields satisfy results up to v,J 
r],, = 1. The dot-dashed lines in Fig. 1 show the results of 
the numerical calculations for one example in the case v,J 
r],, > 1. We see that even in this case the discrepancies with 
the dashed lines (the linear approximation) are slight, and at 
yO/r],, < 1 the results of the numerical calculations essen- 
tially conincide with the dashed lines over the entire region 
of the phase transition. 

If the defects are arranged in a random fashion over the 
volume of the system, the results derived in the preceding 
section, for a single sphere of volume v, must be averaged 
over the ensemble of spheres with the help of Eq. (8). To 
actually carry out the integration in (8), however, is generally 
not a simple matter since the quantity ?j(v), in terms of which 
all the other thermodynamic quantities will ultimately be 
expressed [see (36) and (37), for example], is found through 
the solution of the cubic equation 

Here x = nu, and we have transformed to the same dimen- 
sionless variables as in (34)-(37). On the other hand, it will be 
more convenient here to measure the temperature t from the 
undisplaced transition point (T = O), and we denote by g the 
corresponding relative shift of T, (expressed in units of the 
interval over which the phase transition is smeared) which 
would have occured if the defects had been distributed uni- 
formly in the system: 

Along with g, we will also use the ratio 

where r ] ,  is a typical value of the force parameter of the 
defects, r] ,  , corresponding to g = 1. 

We will see below that the results are substantially dif- 
ferent in the cases s< 1 (strong defects), s = 0 (weak defects), 
and s( 1 (defects of intermediate strength). We will accord- 
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ingly discuss these three cases separately. 

A. Strong defects (ssl) 

In the limit s -+ w ( g  = 0) this case corresponds to 
"random field" defects. It is easy to show that in this limit 
the effects of the random distribution of defects play only a 
minor role. For example, we will calculate the values of ( r ] ) ,  

(X ), and ( C  ) at t = 0, where the effect of the random distri- 
bution of defects must be at its greatest for the first two of 
these quantities. At t = 0, Eq. (41) withg = 0 has theexplicit 
solution 

y=s-'/' , t=O. (44) 
Substituting this solution into (36) and (37) and then into (S), 
and integrating over x ,  we find 

Comparing these values with the corresponding values for 
uniformly distributed defects [r].  = 1, C. = 2 / 3 , ~ .  = 1/3; 
see (36) and (37)], we see that the discrepancies are slight, 
reaching 30% only in the case of the susceptibility. 

The complete functional depsendences r]. (t ), C. (t ), and 
x ; '(t ) for defects of this type are shown in Figs. la-lc by 
curves 1 (s = W )  and 2 (s = 1). Comparison of these curves 
with the dashed curves (the uniform case) reveals that at s( 1 
the random distribution of defects does not change the re- 
sults on the temperature dependence of the thermodynamic 
quantities in any substantial way from the results for the case 
of a uniform distribution of defects; this assertion holds not 
only for t = 0 but also throughout the region of the phase 
transition. 

B. Weak defects (s = 0). 

At qd = 0 the energy of a defect core is a quadratic 
function of the order parameter, and in this sense the case 
s = 0 is the opposite of the discussed above.') This case is 
also the opposite of the strong-defect case in the sense that 
the random distribution of defects has a fundamental effect 
on the nature of the phase transition. 

The only scale temperature for weak defects is the quan- 
tity rd , which determines the average shift of T, . As units for 
( r ] ) ,  ( C  ), and (X ) it is convenient to use r ] ,  rd '", A C  and 
(AOrd)-', respectively. Figure 2 shows the temperature de- 
pendence of the thermodynamic quantities normalized in 
this fashion (we use a tilde to identify them). Since the values 
of the thermodynamic quantities in the separate spherical 
volumes v now differ only in the shift of T, , which is 

T . = T ~ / ~ u =  t d I x  (46) 

[see (30) and (3 I)], it is also a simple matter to calculate these 
quantities explicitly. For the average value of the order pa- 
rameter, for example, we have 

where a=r, (7-1 and K, is a modified Bessel function.I3 Us- 
ing the known asymptotic behavior of this function, we find 
that in the limit a -t w ((71 + 0) the order parameter van- 
ishes exponentially, 

q-exp (-a) -exp (-rdlal), (48) 

while at a< 1 ((r(,rd ) the dependence +j2(1r1/rd ) approaches 
a linear dependence 

q2=l TI lTd-1, (49) 

which corresponds to the temperature dependence +j;(r) in 
the pure substance, but with a shifted transition tempera- 
ture. The latter result agrees with the result derived in Ref. 4 

FIG. 2. Temperature dependence of the square of the re- 
duced average order parameter ( v ) ' / v ,~T ,  = f jZ  (dashed 
lines) and of the reduced heat capacity C  = ( C ) / A C  (solid 
lines) for systems with weak (s = 0) random defects and for 
systems with defectsof intermediate strengths. 1-s = 0; 2- 
s = 0.2; 3-s = 1 .  
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in the approximation of independent defects. 
It is a very simple matter to calculate the heat capacity: 

0 

C=(O/AC= j xe-'ax= ( l f a )  e-a, c t = d  1 T 1 .  (50) 
a 

Under the condition a ( l  (i.e., far from T d  ), the first correc- 
tion to the heat capacity is proportional to n2 and thus can- 
not be calculated in the approximation of independent de- 
fects. 

It can be seen from (48) and (50) that at the point of the 
phase transition (T = 0) the quantities ( 7 )  and ( C  ) have only 
an infinitely weak singularity. We can thus say that in the 
presence of weak, randomly arranged defects the phase tran- 
sition converts from second order to infinitely high order. 

We turn now to the calculation of the susceptibility. At 
720 we have 

OD 

x2 
~=Aa7d(x)=ct - e-Xdx=a3[eaEi ( a )  f a-'-a-'1, (51) J a+, 

0 

where a = T~ /T, and E,(a) is the integral exponential func- 
tion.I3 It follows from (5 1) that at T = 0 the susceptibility i is 
finite, equal to 2, while at T S T ~  we have 

~ - ' " l - l / a = ~ / ~ d + l  (52) 

in agreement with the approximation of independent de- 
f e c t ~ . ~  

In the region T < 0 the susceptibility is a diverging func- 
tion of the external field h for all 171: 

X ( a )  =% ( a )  + X z  ( a )  In (h,lh) , a=.td/ 171, (53) 

where (see the Appendix) 

X I  ( a )  Ei ( a )  -a-z-a-'] 

xz ( a )  =a3eca; (54b) 

The expression in the square brackets in (54a) becomes 

expression (51) when we replace a in it by -a.  It follows 
that without the term which depends logarithmically on h 
the susceptibilityi (7) is a smooth function which has only an 
exponentially weak singularity at T = 0 (curve 1 in Fig. 3). 
On the other hand, according to (54b) the amplitude of the 
logaritmically diverging part o f x  is approximately zero al- 
most everywhere, except around the point T = - ( 1 / 3 ) ~ ~ ,  
where it has an extremely high and narrow maximum (curve 
2 in Fig. 3). Figure 4 shows the temperature dependence of 
the total susceptibility [see (53)] for various values of h,/h. 

These results can be interpreted as follows. When there 
is a random arrangement of defects, and there are regions 
with a relatively high defect concentration, there will obvi- 
ously also be regions in which there are no defects. The phase 
transition temperature in the corresponding vacant regions 
(with a volume v)n- ') is approximately equal to the critical 
temperature for the pure substance (TCo ), and it is in these 
regions that a nonzero value of 7  first arises. Since the numer 
of large "vacant" regions is exponentially small, however, 
these regions make only an exponentially small contribution 
to the thermodynamic quantities. This circumstance also ex- 
plains why the values of ( 7 )  and ( C  ) for systems with ran- 
domly arranged weak defects have only an exponentially 
weak singlularity at T = 0. 

As for the logarithmic divergence of the susceptibility, 
it stems from the circumstance that for any given tempera- 
ture T <  T, there are always regions v in which the local 
value of the critical temperature, Tc (v)=Tc (n) agrees with T 
and in which the susceptibility has the behavior 
x (u) ~o I Tc (v)  - T I - '. Anintegration ofthis expression over v 
leads to the logarithmically divergent contribution to the 
total susceptibility. In a more rigorous theory (which incor- 
porates critical thermal fluctuations), the susceptibility of a 
bounded volume of the substance must of course remain fin- 
ite, but we are assuming that the anomalous although 
bounded increase in the susceptibility in weak fields is re- 
tained when critical fluctuations are taken into account. 
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FIG.  4.Temperatgre dependence of  the reduced total suscep- 
tibility x = X ,  + xzln(h0/h ) of  a system with weak random 
defects. 1-h /ho = 0.5;2-h /ho = 0.1;3-h /h, = O.01.The 
dashed line is the temperature dependence of  the susceptibil- 
ity in a system with a uniform distribution of  defects with 
h = 0 .  

C. Defects of intermediate strength (s<l) so that in practice the transition from the case of strong de- - .  . 
The primary distinguishing feature of this case is the fects to that of weak defects could in principle be made by 

existence of a temperature r1 < 0 at which the value of the 
varying the defect concentration. 

order parameter at a defect core agrees with the equilbrium 5 m  OF NEUTRON AND SCArrERING BY 
value in the pure substance: qd = q, (7). At T = T,, the defect DEFECTS 
evidently does not perturb the order-parameter field, while 
to the left of this point (at r < T,) the order parameter de- 

The nonuniform distribution of the order parameter in 

creases, and to the right it increases near the defect core. At 
systems with defects is manifest most directly in the scatter- 

r = r1 we thus have, in a sense, a conversion of the defect 
ing of various types of radiation: light, x rays, and neutrons. 

from a strong into a weak one. 
The corresponding total intensities of this scattering, which 

Let us compare the absolute value of the temperature 7, 
is characterized by the scattering wave vector k, can be ex- 

with two other characteristic temperatures: the average shift 
pressed (see Ref. 7, for example), in terms of the spatial Four- 

of the transition temperature, rd , and the width of the inte- 
ier components (with the same vector k) of the static correla- 
tion function 

val over which the phase transition is smeared, 7.. Adopting 
r. as the temperature unit, as in Subsec. 4A, we can write the Gi(r)=([q(r)-(q)I[q(0)-(q)I)  
following simple relationship between the temperatures 
t, = I T , ~ / T .  andg = T,/T. : 

t,5g-z=S413. (55) 

If the strength of the defects is low (s( 1), the temperature t, 
thus lies deep in the interval over which the phase transition 
is smeared by the effective field of the defects, while at s > 1 
this temperature lies farther than the other two temperatures 
from the point r = 0. In the former case we can expect that 
the behavior of the thermodynamic quantities will be essen- 
tially the same as in the case of weak defects (s = 0) through- 
out the region of the phase transition, while in the latter case, 
in contrast, the behavior will be similar to that which we saw 
in Subsec. 4A for random field defects. 

The curves s # 0 in Figs. 1 and 2 confirm these qualita- 
tive conclusions. In the region r < r1 the behavior of the sus- 
ceptibility for defects with small but nonzero values of s is 
described well by (53) and (54), after we replace the external 
field h in them by he, = hd IT~/T,. 

In summary, we can say that the effects of a random 
arrangement of defects dominate the behavior of the thermo- 
dynamic quantities near the phase transition (there is a par- 
ticularly marked change in the susceptibility) only if the de- 
fects are quite weak (s < 1). We wish to exphasize that the 
parameters depends on the defect concentration [see (43)], 

in the case of neutron (or x-ray) scattering and the static 
correlation function 

GZ(r)=([q2(r)-<q2)] [qZ(0)-(q2)])  

in the case of the scattering of light.2) 
Here the angle brackets mean (when thermal fluctu- 

ations are ignored) an averaging over only the various spatial 
configurations of the defects, i.e., over the spheres of various 
radii in our model. 

In this section of the paper we discuss the temperature 
dependence of the zeroth Fourier component of the correla- 
tion functions given above. This zeroth component deter- 
mines the intensity (or cross section) of the small-angle scat- 
tering, in which the change in the wave vector upon the 
scattering is much smaller than the reciprocal of the average 
distance between defects: kn - ' I 3 (  1. For this zeroth Fourier 
component we have 

- 
I ,  (q=O) =11=(q2>-(q>2, (56) 

where the superior bar as usual means an average over the 
volume of the individual spheres. Using the notation 
+b = q(r) - j j ,  we can rewrite (56) and (57) as 

~ , = [ ( q ~ > - t q > ~ ] + < i p > ,  (58) 
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These expressions are convenient in that the terms [in 
(square) brackets] which characterize the effects of the ran- 
dom arrangement of defects are singled out explicitly, as are 
the terms which are governed primarily by the nonunifor- 
mity of the distribution of the parameter 7 in the individual 
spherical volumes. For brevity we will refer to that part of an 
intensity which is determined by the terms in brackets the 
"fluctuation part," and we will assign it an index "fl." We 
call the sum of the other terms in expressions (58) and (59) for 
I, and I, the "nonuniform part" and assign it an index 
"non." 

We recall that is was shown above that ?j for a single 
sphere can be found in general from the solution of cubic 
equation (41). We now give expressions for the quantities p, 
which characterize the nonuniformity of the order param- 
eter distribution in a sphere. In calculating the quantities - 
qP, in contrast with the thermodynamic functions, we can- 

not in general restrict the analysis to the solution of Eq. (4) in 
the linear approximation. Nevertheless, the linear approxi- 
mation does yield good results at R <Fc, while at R)Tc we 
can use the expressions from the approximation of noninter- 
acting  defect^,^ replacing 7, in them by i j .  Proceeding in this 
manner, we find 

t = 0). Since Eq. (41) can be solved explicitly in the case t = 0 
[see (44)], the values of the functions f1 and f2 at t = 0 can 
easily be calculated analytically: 

f 1  (0)  =v3r (v3) -4/9r2(2/3) ~0.0781, 

f2 (o )  =r ('I,) -i/9rZ(i/3) ~0.557. (64) 

The asymptotic expressions for these functions are 

at t < 0, where y is Euler's constant. 
We wish to draw attention to the distinctive dependence 

of this type of scattering on the defect concentration. At 
It / (1, the intensities I ,, and12, are proportional ton2I3 and 
n4I3, respectively, while at It 1 ) 1 they are proportional to n2. 
For any t this type of scattering is thus fundamentally a 
many-particle scattering and cannot in principle be de- 
scribed in the approximation of independent defeck4 

In constrast to the fluctuational parts of the intensities, 
the nonuniform parts of I, and I, depend on two, not one, 
dimensionless parameters. The second dimensonless param- 
eter is the ratio of the correlation radius Fc to the average 
distance between defects or (essentially equivalently) to the 
average sphere radius R = (3/4rn)lf3. Because of the field h, 
at the position of a defect, the ratio Fc/R remains finite even 
at t = 0, and at this point it does not depend on the radius of 
the sphere: 

7, (0)  /R=3-'I' (hatlho) '". 
Here hat is a characteristic "atomic" value of the field, 

h a t -  -B"rlt3 =D"B1"Ro-' (69) 

(qd-q) ] ' for all R/i.. (62) 

Expressions (60)-(62) differ from the more accurate ex- 
pressions of the quadratic approximation (which we will not 
reproduce here because of their length) only at R -Fc . Even 
in this region, however, the corresponding differences are 
slight and have essentially no effect on the results. 

As in Sec. 4, we will analyze the temperature depen- 
dence of the intensities I, and I, separately for the three cases 
s> 1 (strong defects), s = 0 (weak defects), a n d s ~  1 (defects of 
intermediate strength). 

A. Strong defects ( s ~ l )  

In this case the quantity ij is found from the solution of 
Eq. (41) with g = 0 (random field defects). Since with g = 0 
no parameters of the defects appear in Eq. (41), we can write 
the fluctuation parts of the intensities I, and I, in the follow- 
ing universal form: 

It R -  =qe,2~*ft ( t ) ,  12 R =qeo4~rZfz ( t )  , (63) 
where the functions f, and f, depend on t alone. Figure 5 
shows the functions f, and f2 (normalized to their values at 
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which causes a change %, in the order parameter in an ideal 
crystal at t = 0. 

To get an idea of the relative size of the fluctuational 
and nonuniform contributions, we examine the expressions 
for the intensities I, and I, at t = 0, where they can easily be 
found explicitly: 

11 (0)  =qeo27* { f i  (0)  + p1 (0)  (holhot)"3), (70) 
I ,  (0)  =qea4r.' { f z  (0)  +pzi (0)  (ho/h.t)'/3 

+pzz(O)  (ho/hat)2-pz3 (0)  (ho/hat)"3). 
Here 

(71) 

p1 (0)  =4/115r (v3) mo.061, P Z ,  (0)  

p,, (0)  ='I2, 1n (nu,) -'.r ('1,) ~ 0 . 2 0  In (nu,) -', 

and the values of fl(0) and f2(0) are given above. 
Expressions (70) and (7 1) are valid under the condition 

ho/hat < a / v 3 ~  1,4, and at ho/hat > a/v3 the terms in these 
expressions containing (hdh,, )4/3 and (ho/hat )'I3 must be 
multiplied by aR fiC = (a/v3)(ho/ha,)1/3 and (a/v3),(hd 

respectively [see (60)l. We also note that we have 
omitted the contribution of the (r,b4) term in (71), since this 
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contribution does not depend on t and can be assigned to a 
scattering by the defect cores, which is constant near Tc and 
which we are not considering here. 

It can be seen from (70) and (71) that for defects with 
h, <ha, the dominant scattering at t = 0 is the scattering by 
fluctuations of the defect concentration, while at h, > ha, at 
the nonuniform part of the scattering becomes dominant. 
The random arrangement of defects has only a slight effect 
on this component of the scattering (not exceeding 10-30%, 
as in the case of the thermodynamic functions; see Subsec. 
4A). 

With distance from TcO, the nonuniform part of the 
scattering falls off more slowly than the fluctuational part, 
while in the case of the intensity I, it in fact increases at 
T <  T, (because of the increase in q; see the text below and 
Fig. 5b). At a sufficiently large distance from the transition 
point, the scattering by nonuniformities, ~ ( r ) ,  thus becomes 
dominant even for defects with arbitrarily small values of h,. 

The specific behavior of the intensities I ,,,, (t ) and 
I,,,,(t) can easily be found from (60)-(62), by setting 
R = R = ( 3 / 4 ~ n ) ' / ~  in them (i.e., by ignoring the random 
arrangement of defects, which, as we have already men- 
tioned, is not very important for the terms with p) and by 
taking the limit x - 0, 7, -+ W ,  xq, = h,,Rd3D = const 
(we recall that it is this limit to which defects of the random 
field type correspond; see (6)]. As a result we find that the 
temperature dependence of the intensity, I ,,,, (t) ,  is deter- 

FIG. 5. Temperature dependence of the neutron scattering 
intensity (a) and the light scattering intensity (b) in systems 
with "random field" defects. Dashed lines: Fluctuational 
parts of the intensities (normalized to their values at t = 0). 
Solid lines: Total intensities, normalizedin the same way. 1- 
hdhar = 1; 2-hdh,, = 0.3; 3-hdh,, = 0.1, where ha, is a 
characteristic "atomic" value of the field; see (69); dot- 
dashed line--400-fold enlargement of the nonuniform part of 
the intensity I :  for hdh,, = 0.03. Curve 1 in Fig. 5b corre- 
sponds to a 10-fold reduction of the intensity IF = I,/ 
7]& 4 ~ .  2. 

mined entirely by the ratio 7, /R. In particular, at 7, < R  it 
falls off in inverse proportion to?, [see (60)l. For defects with 
hogha, the temperature corresponding to 7, = x i s  t, z (ha, / 
ho)2/3 at t > 0 fort ; - l/2(ha,/h0)2/3 at t < 0. It is approxi- 
mately at these temperatures that the nonuniform part of the 
intensity becomes comparable to the fluctuational part. 

We thus conclude that for a random arrrangement of 
random field defects with hogha, we should see two maxima, 
with centers at t = 0, on the temperature dependence of the 
neutron scattering intensity and the intensity of diffuse x-ray 
scattering. First, there should be a narrow maximum, with a 
width on the order of the interval over which the phase tran- 
sition is smeared, 7.. Second, there should be a broad maxi- 
mum, with a width on the order of r. (ha, /ho),l3. The height 
of the narrow maximum will be -(h,,/h0)4'3 times the 
height of the broad maximum. With increasing h,, the sec- 
ond maximum will contrast and increase in height, and it 
will ultimately merge with the first maximum (Fig. 5a). 

For scattering of light (Fig. 5b) the picture is quite dif- 
ferent. Here the nonuniform part of the intensity, I,,,, (t ), 
increases monotonically with decreasing temperature, be- 
cause q2(t ) and +j(t ), by which ? and ? are now multiplied 
[see (59)], increase more rapidly with distance from TcO than 
the correlation radius FC decreases. For defects with ho(ha,, 
however, this circumstance does not result in the disapper- 
ance of the fluctuational peak, since the nonuniform part of 
the intensity begins to outweigh the fluctuational part only 
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at a temperature t i  = - l/2(h,,/h0)2'3. As ha increases, 
however, the fluctuational peak becomes progressively less 
well defined, and at very large values of ha ( 2 ha,) it becomes 
completely masked by the background of the nonuniform 
part, which is increasing monotonically with the tempera- 
ture. The asymptotic expressions for I :,,, =I,,,, /vd4r, ' at 
large It I are 

(73) 

In contrast with the case of neutron scattering, only the sec- 
ond of these asymptotic expressions agrees (in the leading 
terms) with the expression calculated in the approximation 
of independent defects. 

B. Weak defects (s = 0) 

A natural scale temperature for the weak defects is the 
average shift of the transition temperature, rd (Subsec. 4B). 
We will thus understand t in the present subsection to mean 
the distance from the transition point (r = 0), expressed in 
units of rd . The fluctuational components of the intensities 
I, and I, thus again turn out to be "universal": 

1 d l  ( )  I2 'qro*~dZfz (t) (74) 

where 

fl=e-ua-i [1-'/laZKlz(a/2) 1, a=l/ltl =~d/l.t-l, (75) 

f z=El (a )  + (a-'-a-') e-"-a-'e-"". (76) 
Here we have the asymptotic expressions 

fl=ltl exp (-ltl-'), f,=21t13exp (--It[-') (77) 

for It I(l and 

for It l s l .  
We again call attention to the quadratic dependence of 

the fluctuational components of the intensities on the defect 
concentration far from T d .  Figure 6 shows the complete 
functionsT,(t ) andL(t  ). The intensity I ,, is seen to have a 
maximum at t -- - 1, while the function I,, (t ) is monotonic, 
since it is proportional to the higher power ?j2. 

Again for weak defects, as in the preceding subsection, 
the nonuniform components of the intensities depend 
strongly on the ratio Fc /R. In the region with F, > R the 
nonuniform components are significantly smaller than the 
fluctuational components, while at TC < we have the oppo- 
site situation. The temperature t, at which we have 7, = R 
and at which the nonuniform components become compara- 
ble to the fluctuational components in order of magnitude is 
now determined by the expression 

1 tz 1 = I  T Z ~ / T ~ =  (nuo) - I h  (l+xRo) /3xRo, (79) 
from which we see that in the case of low concentrations in 

which we are interested here we have Irzl > rd. At r4r2 the 
temperature dependence of the nonuniform components is 
the same as that calculated in the approximation of indepen- 
dent defects: 

n o n - t " ,  Iznon-It121nItl-'. 

C. Defects of intermediate strength (s 5 1) 

The most striking feature in this case is the presence of 
sharp dips in the intensities, with I, and I, vanishing at 
points with a temperature r,<O, at which we have 
ve (7,) = v d .  We recall (See Subsec. 4C) that at r = T, the 
defects convert from "strong" to "weak." At the points 7, 

themselves the defects do not perturb the order parameter 
field, so that the intensities also vanish. 

We should emphasize, however, that in real crystals, 
because of the unavoidable spread in the values of vd,  this 
conversion should occur over some temperature interval 
AT,, SO that dips will be seen on the I,(t ) and I,(t )curves (Fig. 
6) only when the width AT, of the corresponding region is 
smaller than the other scale temperatures: the width 7. of 

FIG. 6.  Temperature dependence of the neutron scattering intensity (a) 
and of the light scattering intensity (b) in systems with weak defects and 
with defects of intermediatestrengths. 1-s = 2.5; 2-s = 1 ;  3-s = 0.25; 
+s = 0. For simplicity, only the fluctuational components of the intensi- 
ties I ,  and I, (normalized by 7 ,  '7, and rl,rd2, respectively) are shown, 
since the corresponding nonuniform contributions are small in the region 
of reduced temperatures under consideration here, / r l / rd  <20, and for 
concentrations nR < lop4. 
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the interval over which the phase transition is smeared, the 
shift T, of the transition temperature, and, of course, the 
temperature lrl 1 itself. 

The value of T,, i.e., the position of the dip, depends 
strongly on the parameters [see (55)]. For example, at s < 1 
the temperature r1 lies closer to the point T = 0 than do the 
two other scale temperatures, T, and T., while at s > 1 we 
have the opposite relation:  IT,^ > T, ,T.. In the calculations it 
is also important to take into account the position of the 
temperature (T,) at which we have rzn = 1. For the case at 
hand, with SG 1 and nuo< lo4, the temperature T, lies consid- 
erably further from the point T = 0 than do the other scale 
temperatures. This circumstance means that we need calcu- 
late only the fluctuational components of the intensities over 
essentially the entire temperature range of interest, since the 
contribution of the nonuniform parts of the scattering is 
slight at 171 <  IT,^. 

Figure 6 shows some corresponding curves calculated 
from Eq. (41) and Eqs. (a), (58), and (59). In these figures, T is 
expressed in units of T,, so that the position of the dips are 
determined by the value ofs2: 17, 1/r2 = s2 [see (55)]. It can be 
seen from these figures that to the left of the dips the tem- 
perature dependence of the intensities approaches that cal- 
culated in Subsec. 5B for weak defects (s = 0), as expected, 
while to the right of these points the dependence is approxi- 
mately that found for strong defects. We repeat that the pa- 
rameter and thus the nature of the temperature dependence 
of the intensities could in principle be changed by varying 
the defect concentration. 

In summary, the presence of defects in a system can be 
seen considerably more clearly and in a greater variety of 
ways in the anomalous scattering of light, x rays, and neu- 
trons near phase transitions than in the temperature depen- 
dence of thermodynamic quantitie~.~) 

6. CONCLUDING REMARKS 

The approach described above has been based on sever- 
al assumptions. In particular, we have assumed that the de- 
fect concentration is small in comparison with the concen- 
tration of the host atoms. Consequently, an experimental 
test of the results derived above must use extremely pure 
crystals with an adjustable concentration of an impurity of 
some species or other. Furthermore, the defects must be "po- 
larized" before the experiments. If the impurity atoms can 
occupy two stable positions in the crystal cell, corresponding 
to different signs of 7,, and if these positions are separated 
by a sufficiently high energy barrier A > k, Tc , then this "po- 
larization" could be implemented in principle by immersing 
the crystal at some temperature T >  T, in a field h which is 
the conjugate of the order parameter and then cooling it to a 
temperature below T, . If, on the other hand, there is no such 
field (and this is usually the case for nonferroelectric struc- 
tural phase transitions), then the crystal may be subjected to 
other agents which would disrupt the symmetry of the states 
of the defect with differenct signs of 7,. For example, in 
quartz cystals one could simultaneously apply a stress in one 
crystallographic direction and a temperature gradient in an- 
other near the point of the a +B structural transition. l4 We 

might also note that in some cases even the intrinsic ordering 
effect of the host at low temperatures (TgT,) will be suffi- 
cient to eliminate the metastable state of the defect with the 
sign of 7, opposite the sign of the spontaneous value of 7 in 
the host.4 In such cases the single-domain crystal should 
simply be cooled to the corresponding low temperature and 
then heated again. To the best of our knowledge, no deliber- 
ate experimental effort has been made to produce polarized 
systems of defects in crystals, although smeared phase tran- 
sitions are frequently observed experimentally (see Ref. 15, 
for example). 

We wish to emphasize that the difficulty associated 
with the polarization of defects is not found in systems with 
weak defects (7, = 0), since in this case the defect core has 
only a single stable state, with q0 = 0. The question of meth- 
ods for producing a system of polarized defects thus actually 
reduces to the question of methods for producing single-do- 
main "samples." 

We turn now to some possiblilities for developing this 
approach further. We begin with the question of the effect of 
thermal fluctuations, which we have ignored essentially 
completely in this paper. Thermal fluctuations play a two- 
fold role. On the one hand, they change the nature of the 
critical temperature anomalies in the host. On the one other, 
they have a disorienting effect on the defects. The critical 
fluctuations (in cases in which they are large) can be taken 
into account in part by changing the temperature depen- 
dence of the coefficients in expansion (3)  for the free energy 
density, as is done in the phenomenological !P theory of the 
superfluidity of helium I1 near the A point.9 A systematic 
solution of this problem, however, will require the use of the 
more complicated and subtle methods of the advanced fluc- 
tuational theory of critical phenomena.16 

As for the reorienting effect of fluctuations, we note 
that in the case in which this reorientation is possible 
( d ~ k ,  T,) we can find a simple estimate of the number of 
oppositely oriented defects while remaining within the 
framework of the approach above. For this purpose we need 
to calculate the difference between the free energies for the 
states of the defect with different signs of 7, in a sphere of 
volume u for a given value of 7 = 7, at the boundary of the 
sphere and then compare this difference with the thermal 
energy. Using (26), we find 

or, for a sphere of average radius and for 
T = T, = T, (1 - T, ) [see (34) and (35)], 

A T ,  8nDRoqatz xRo ydy,,a. 
' b  

-= -- 
k, Tc kgT, l+xKo qa;' 

- -&5[ ho 
3 T ,  h a ,  (l+xRo) 

] (nuo) l ls ,  

where Tat =DR,l;lat '/k, is a atomic temperature (on the or- 
der of 10' K). The concentration of oppositely oriented de- 
fects is N- = N exp( - AY/k, T) ,  and we see that, with 
nuo- 10-3,Tat/Tc - lo3 and h,/h,, (1 + xRo)-O,1, for ex- 
ample, the defects are polarized all the way to T - Tc . 

It would of course be interesting to generalize the the- 
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ory to systems with repolarizing defects ( A F ,  < k, T,) and <q>= (hlB) '" (J,+J2+13), 
frozen defects with a random sign of 77,. Just how to make X, 

the corresponding generalizations of the theory is not com- Ji= J[Z-'(X) - z - ~  (x) t . . .]xecX dx, 
pletely clear at this point, but we believe that the idea of 0 

initially solving the problem in separate small volumes, rath- a', 1 1 
er than immediately over the entire volume of the sytem, lZ= J [ I - ~ ~ ( ~ ) + - ~ ~ ( ~ ) -  . . .]xe-xdx, 
should remain useful even in those situations. xi 

8 1 

Another way to generalize the theory is to examine OD 1 3 
models of the defect core difference from that used in the h= J [ I (x) I "+ - 1 a (x) I -'- - I z (x) I -"+ . . .] ~ e - ~ d x ,  

XI 

2 
present paper. For example, it would be interesting to study 

8 

the nature of the phase transition in a system with defects where 
whose core energy is4*'' 

Fd=2nDR,2 (xq02+flqo4), (82) 

where x < 0 and p> 0. Here it beomes possible to describe, 
along with the basic phase transition in the host, the so- 
called local phase transition": At a certain temperature 
T, > T, , the value of the order parameter at the defect cores 
becomes nonzero. The latter problem is intimately related to 
that of so-called spin and structural glasses. 

Some other important theoretical problems are to take 
into account the effects of an anisotropy, of long-range 
forces, and the multicomponent nature of the order param- 
eter. 

Clearly, the questions discussed here deserve further 
study, both theoretical and experimental. 

We wish to thank V. L. Ginzburg and L. N. Bulaevskii 
for a discussion of these results and for several critical com- 
ments. 

We are also indebted to N. I. Lebedev, A. P. Levanyuk, 
and A. S. Sigov for the opportunity to see the results of Ref. 
18 before its publication. 

APPENDIX 

We will calculate the susceptibility of a system with a 
random arrangement of weak defects at T < 0 in two steps. 
We first find the total average volume (v),  of the order pa- 
rameter in the presence of a uniform external field h, and we 
then differentiate (7)  with respect to h. 

In the presence of a field h,  the average value of 77 over 
the volume of a cell is found from the solution of the equation 
[which follows from (29) with h, = 01 

A0I.I (~/~-1)fl+BSiJ=h. 

The change of variables 

q= (h/B)"y, A,] zl (alz-1) =h"B1"z 

puts this equation in the form 

zy+y3=1. 

The solution of the latter equation can be written analytical- 
ly as follows: 

I Z-'-Z-4+ . . . , z>2 

y = l-'/3Zf '/,,z3-. . . , -2<2<2. 
I zl"+'lzl ~ ( - ' - ~ / 8 1  z I -5'2+ . . . , z<-2 

The average (7)  is then determined by the sum of three inte- 
grals: 

x,=a/(1+2e), x2=a1(1-2~) ,  
E = ~ % B ' ~ / A ~ I T I .  

Each of these integrals can easily be reduced to a tabulated 
integral. Differentiating them with respect to h, and retain- 
ing only the terms which do not depend on h and which are 
proportional to ln(h -I), we find the results in (54) for the 
functionsT,(a) andi,(a). The functions?, and?, are deter- 
mined primarily by only the first term in the integrand for J, 
and by only the first two terms in the integrand for J,, while 
all the other terms in J ,  and J, and the integral J,  as a whole 
affect only the value of the constant c ,  in expression (54a). 
We calculated the latter quantity approximately, taking into 
account only the first three terms in each of the integrals. 

Note added in proof (30 August 1984). After this paper 
had been sent to press, we noted that the Fourier transforms 
of the correlation fuctions G,(r) and G,(r) are not the same as 
the second moments of the distributions ~ ( r )  and v2(r) but are 
instead given by the expressions 

v "  v - 
L,= J x2(q-<q))e-xcix, L%= -1 x 2 ( ~ 2 - < q 2 ~ ) e - x  ax, 

n 
0 0 

where (we recall) x = nu and Vis the scattering volume. Cal- 
culations from these expressions lead to a temperature de- 
pendence for L ,n/V and L2n/V similar to that in Figs. 5 and 
6, but there are some differences. Specifically, 

a) the scattering occurs only if there is a random ar- 
rangement of defects (as should be the case-this is the point 
that led us to search for an error); 

b) the asymptotic expressions for the functions L1(r) 
and L,(T) as n z  + 0 are proportional to n in all cases and are 
exactly equal to the expressions calculated in the approxima- 
tion of independent defects [in particular, for weak defects 
the intensity L,(T) does not increase logarithmically but in- 
stead approaches a constant value at Irl>rd]; 

c) there is only a single maximum in the temperature 
dependence L ,(T) for strong defects, similar to the maximum 
in the dependence I ,, (T) (Fig. 5), with a height which de- 
creases with increasing defect concentration; 

d) the maxima on the curves of L ,(T) and L,(T) are more 
sharply defined than those on the curves of Z,(T) and 12(r). 

'I In discussing defects with 7, = 0 we are avoiding the phrase "defects of 
the random temperature type," which is frequently used, since this 
phrase also applies to defects with x < 0, which we are not considering in 
this paper (see Sec. 6).  

2' An execptional case is that of intrinsic ferroelastic crystals, for which the 
anomalous part of the light scattering intensity is expressd in terms of 
the same correlation function as the neutron scattering intensity.' 
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3'Analogous problems for a random arrangement of defects with 7, #O 
were solved by Lebedev et They took a completely different ap- 
proach, based on the solution of linearized equation (4) directly over the 
entire volume of the systems, followed by an averaging over the coordi- 
nates of the individual defects. The linearization was carried out near a 
fixed (constant over the entire volume) value of the order parameter, ?j, 
which was then found from the self-consistency condition ?j = (71). In 
the model of the present paper, this procedure would correspond to the 
expansion of the free energy density in each spherical cell [Eq. (1 I)] 
around some given value 71, , the same for all cells, which would then be 
identified with the overall average value of the order parameter in the 
system (71, = (71)). 
We have indeed verified that with this (coincident) choice of origins for 

the order parameter in each cell our model leads to precisely the same 
results as those derived in Ref. 18. In the case of a random arrangement 
of defects, however, which was the only case discussed in Refs. 18 and 
19, this method for choosing g, leads to large and uncontrollable errors 
for those parts of the system in which the local defect concentration is 
significantly different from the average value. Consequently, although a 
local linearization (in the individual cells) of Eq. (4) is completely justi- 
fied, an immediate localization over the entire volume of the system 
appears to us to be unjustified. Our results thus naturally do not agree 
with those derived by Lebedev et al., although for defects with s> 1 (for 
which the effects of a random distribution are unimportant in several 
cases) the corresponding differences are more quantitative than qualita- 
tive. 
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