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The dynamics of the superfluid 'He4He solution containing two condensates (3He and 4He) is 
investigated. Although the hydrodynamics of the system is of the three-velocity type (two super- 
fluid and one normal velocity), all the thermodynamic and hydrodynamic functions are deter- 
mined by only one linear combination of the velocities. The thermodynamic quantities as func- 
tions of the velocities and the critical velocities are readily calculated for both the homogeneous 
and inhomogeneous phases of the solution by using the analogy between a moving solution and a 
BCS system with pairing and nonzero momentum. In a magnetic field, temperature oscillations 
(the analog of second sound in a superfluid solution) are accompanied by oscillations of the 
magnetic moment. The velocity and damping of such spin temperature waves are determined. 
The orienting effect of the mass flux on the inhomogeneous phases in the solution are discussed. It 
is shown that, owing to drag effects, the energy and size of vorticies in the superfluid are oscillat- 
ing functions of the effective mass of the 'He quasiparticles (of the pressure). At pressures of the 
order of 10 atm, a first-order transition should occur in a vortex line, and should be accompanied 
by an abrupt change in the circulation of the superfluid velocity of 3He at fixed circulation of the 
4He velocity. 

1. INTRODUCTION 

Advances in the production of infralow temperatures 
have stimulated many new attempts to detect the superfluid 
transition of 'He in the 3He-4He solution. Such experiments 
have been unsuccessful so far,'* but the situation does not 
seem hopeless. Existing low-temperature experimental data 
on 3He-4He solutions show that, in contrast to pure 'He, the 
interaction in the s-channel is attractive for 'He quasiparti- 
cles in solutions (see, for example, Ref. 5). This means that 
the temperature T, of the superfluid transition of 'He in 
solution may be estimated from BCS theory and, since there 
are no grounds for expecting a substantial reduction in at- 
traction (the s-scattering amplitude is small in comparison 
with the atomic size), the only fundamental reason for the 
reduction in the superfluid transition temperature is the low 
concentration of 'He. 

There are also several possible additional reasons for 
the absence of 'He superfluidity in the temperature region in 
which BCS  estimate^^'^ show that superfluidity should have 
been observed. They include the possible relatively slow re- 
laxation of temperature or magnetization, insufficiently pre- 
cise data on the s-scattering amplitude, measurements at 
concentrations too high for the BCS theory to provide reli- 
able results, and so on. For example, if the degree of residual 
spin polarization of 'He in solution is of the order of P- T, / 
TF7 i.e., in practice, at P2 10-4-10-3 (TF is the 3He degen- 
eracy temperature in solution) s-pairing cannot, in general, 
take place, and the transition temperature falls by several 
orders of magnitude.'.' The last factor may be very impor- 
tant because the longitudinal relaxation times due to this 
exceedingly weak dipole-dipole interaction or to collisions 
between 'He atoms and the walls are quite long, and strong 
magnetic fields are used to produce low temperatures. This 

means that both the temperature of the 'He quasiparticle 
system and the degree of residual magnetization must be 
monitored in experimental attempts to detect superfluidity. 

Although superfluid 'He in 3He-4He solutions is ade- 
quately described, at least at low 3He concentrations, within 
the framework of BCS theory, the properties of superfluid 
'He are very different from those of ordinary superconduct- 
ing systems. This is so because 'He is uncharged (the 
Meissner effect is absent, second sound can propagate, and 
the magnetic field has a much simpler effect), there is practi- 
cally no impurity in the system, and a second (4He) conden- 
sate is present (drag effects). Some of the differences between 
superfluid 3He-4He solutions and superconducting BCS sys- 
tems are examined below. The essential analogy between 
'He4He solutions and superconductors is nevertheless pre- 
sewed. For example, the effect of the motion of 4He on su- 
perfluid 'He is, to some extent, analogous to the appearance 
of the vector potential in superconductors, with gauge invar- 
iance replaced by the requirement of Galilean invariance. As 
a result, all the thermodynamic functions are determined by 
a single linear combination of the velocities, despite the fact 
that the solution is described by three-velocity hydrodyna- 
m i c ~ . ~  This will, in the next section, help us to determine 
quite readily the critical velocities and the thermodynamics 
of the moving superfluid solution. Morover, since the mag- 
netic field affects only the spin populations of 'He, all the 
calculations are readily generalized to a nonzero external 
magnetic field or a residual magnetization of the system. 

In Sec. 3 we shall investigate the propagation of tem- 
perature waves (second sound in a superfluid Fermi gas) in 
the 'He4He solution. In an external magnetic field, tem- 
perature oscillations are accompanied by magnetization os- 
cillations and constitute coupled spin temperature waves; 
this may facilitate the corresponding experiments. However, 
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the detection of spin temperature waves encounters a basic 
difficulty, namely, the high damping of the oscillations. 

In Sec. 4 we shall analyze vortices in the superfluid solu- 
tion, and show that at least one first-order transition occurs 
in the system for which a change in pressure should be ac- 
companied by an abrupt change in ,He circulation around a 
vortex. The radius and energy of the vortex line are oscillat- 
ing functions of pressure (of the effective quasiparticle mass). 

One of the interesting properties of superfluid 'He in 
the 'He4He solution is the possible appearance, in an exter- 
nal magnetic field, of spatially inhomogeneous states in 
which the system behaves as a peculiar superfluid liquid 
crystal. The orienting effect of a current on inhomogeneous 
systems and the propagation of spin-temperature oscilla- 
tions in such phases are discussed in the last section. 

2. THERMODYNAMICS OF A MOVING SUPERFLUID 
SOLUTION 

The procedure used to derive the equations of the three- 
velocity hydrodynamics of superfluid 'He4He solutions 
and to determine superfluid densities are now well estab- 
li~hed'-'~ (see also the review5). Thus, the superfluid motion 
of ,He with velocity v, leads to the appearance in the 'He 
Hamiltonian of the additional term 

p v ~ ( I - m ~ / M ) ,  (1) 

where p and M are the momentum and effective mass of 'He 
quasiparticles and m, is the mass of the ,He atom (for zero 
pressure, M=2.3m3). The precision of the description based 
on the Hamiltonian (1) corresponds to an approximation lin- 
ear in v,, i.e., to neglect of terms of the order of m,v: com- 
pared withp,~, ( p, = +437?~,)"' is the Fermi momentum of 
the ,He quasipartcles and N, is the number of 'He atoms per 
unit volume of solution). Since it is quite clear that the criti- 
cal velocities are vc - Tc/p,, and the superlfuid transition 
temperature Tc of 'He is exponentially small in the ,He con- 
centration compared with the degeneracy temperature 
TF =pt/2M, the linear approximation ensures good accu- 
racy for velocities up to vc . This means that, when the effect 
of superfluid motion on the properties of the solution is de- 
scribed, the shift of the Green-function poles must be taken 
into account by allowing for contributions such as (I), and 
terms of the form Mu2 are neglected in the denominator. In 
this approximation, the appearance of the superluid velocity 
v, is analogous to the behavior of the vector potential A in 
superconductors, apart from the replacement 
(M - m3)v4 + (e/c)A. We emphasize that, in this case, the 
linear approximation implies not the linearization of the fi- 
nal results with respect to v, but the fact that even quadratic 
(and higher-order) corrections to the Hamiltonian (1), which 
are of the form (p,v/T, )2, can be retained as compared with 
the contribution Mu2/Tc that is linear in the discarded 
terms. In the absence of ,He superfluidity, when the charac- 
teristic scale Tc is lost, the use of the approximate Hamilton- 
ian (1) could actually signify the necessity for linearization of 
the results with respect to v. 

The velocity v, of the superfluid motion of 'He in solu- 
tion can be expressed in terms of the gradient of the phase @, 

of the ,He condensate: v, = (fi/2M3)V@,. The wave-func- 
tion replacement $ + $ exp(i@,/2) in the Gor'kov equa- 
tions is then equivalent in the approximation that is linear in 
v, to the addition of the following term to the Hamiltonian: 

As a result, the Gor'kov equations for a superfluid solution 
moving in the direction of the z axis in an external magnetic 
field assume the form 

A ( r )  T F ,  g=4n 1 a 1 A2/M. 

where 
G~Z+=G* (ts ,  ri, r2), F,Z=F (ts ,  ri, rz) 

are the temperature (Matsubara) Green functions, A is the 
order parameter, g is the coupling constant, a < 0 is the s- 
scattering length, 6, = s T  (h + 1) is the Matsubara frequen- 
cy, the operators are 

and flz0.08 mK/kOe is the magnetic moment of the ,He 
nucleus. According to (1) and (2), 

The very form of the Gor'kov equations (3) shows that 
the properties of a moving solution correspond to the usual 
BCS scheme with pairing and momentum Q. However, Q as 
given by (4) is not a Galilean invariant. This is so because we 
have not taken into account the normal motion. The require- 
ment of Galilean invariance shows that the momentum Q of 
the pairs in the moving solution must have the form (this is 
readily confirmed also microscopically; cf., e.g., Refs. 9 and 
10). 

As a result, although the system contains the three inde- 
pendent velocities v,, v,, v,, the thermo- and hydrodyna- 
mics of a moving solution are determined by the single quan- 
tity Q [Eq. (5 ) ] .  This analogy between a moving superfluid 
solution and a BCS system with pairing and nonzero mo- 
mentum enables us to determine readily the critical veloc- 
ities and the dependence of thermo- and hydrodynamic 
quantities on the velocities. For example, it is quite clear that 
the ground state of the solution is the state with Q = 0. We 
note that the condition Q = 0 imposed on (5) can also be 
readily obtained by minimizing the energy of the moving 
s ~ l u t i o n ~ . ~  for fixed 'He and ,He mass fluxed j, and j,. Of 
course, the reason why the thermodydnamic functions of the 
moving solution are determined exclusively by Q is that the 
normal component of the solution at temperatures T S  Tc is 
entirely due to the unpaired 'He quasiparticles, while the 
contribution of Bose excitations (phonons, rotons) is negligi- 
ble. 

BCS paring with nonzero momentum Q in an external 
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magnetic field has frequently been examined in the literature 
(see, for example, Refs. 5 and 11-16). Thus, the consistency 
equation has the form 

and the transition TQH as a function of the magnetic field H 
and of the quantity Q is given by 

I', O = I n - - 2 l n 2 - C  
TQK 

i r ( [ l + i q + i h ] / 2 )  r ( [ l + i q - i h ] / 2 )  
+ - I n  

2q r ( [ l - i q + i h ] / 2 )  r ( [ I - i q - i h ] / 2 )  

T .  
= i n - - 2 1 n 2 +  C{$ arctg ((.+h.) 

TQH 
\ = i  

1 + - arctg (q,-h,) - 
4 

where C = 0.5772 is the Euler constant, T, is the transition 
temperature for Q = H = 0, 

For slow motion, q< 1 we have 

The dependence of the order parameterd (Q, H, T ) on Q and 
H is very complicated in the general case, but it becomes 
muchsimplerin theregionrQH = (TQH - T)/TQH < 1 near 
the transition: 

where the functions qlr2 (Q,H) are given by 

qv+hv + qv-hv 
F'= :z I +  (q.+h.) I +  (q.- h.) 

- arctg (q,+h,) - arctg (qv-hv) 
1 

When q<l  and 7, = (TH - T)/TH<l, we have 

The maximum admissible value Q, for which Eq. (7) for the 
transition temperature has a solution is determined by 

{ ( q M i -  7i) In (q,+h) + (q,-6) In (q,-h)} /2qM=1-C-2 In 2, 
- 

qAf=QMuo/2nT,, h=PHlnT,. 
( 12) 

At H = 0 the solution (12) has the form 

q,='/,  exp ( I - C ) .  

The hydrodynamics of a moving solution is determined 
by the dependence of the superfluid and normal densities on 
Q. The ,He mass flux is given by 

d d m3 { ( - - -) (G,~++G,.-\\ j ( r l )  = -- fiT 
2 M dr, dr, J ,,=,, 

8 

and, by virtue of (3), can be reduced to 

where, near the transition point, the superfluid density p, 
has the form 

q3= 1~ { arctg (q.+hv) + arctg(qv-h.) 
4 

The ,He mass flux j, is readily expressed in terms of j, by the 
method proposed in Refs. 5 and 9: 

where p, = m4N4 is the density of ,He in solution. Expres- 
sions (14)-(16) determine the required dependence of all the 
superfluid and normal densities on Q. The critical velocity, 
i.e., in this case, the critical value Q,, is determined by the 
condition for maximum superfluid current, and according to 
(1 I), (14), and (15) is given by 

q,2=T/3qo. 

When p, = 0 (or Q = O), the fluxes (14) and (16) become 
identical with the usual formulas for the ' ~ e  and 4 ~ e  mass 
fluxes in the absence of superfluid 3 ~ e  (Ref. 5): 

j3=m3N3v,, jP=(M-m3)N3vn+[p4- (M-m3)  N31vL, 

3. SPIN TEMPERATURE WAVES IN A SUPERFLUID 
SOLUTION 

The spin polarization of the solution gives rise to prop- 
erties of temperature-wave propagation that are analogous 
to second sound in ,He-He I1 with two condensates. Tem- 
perature oscillations are then accompanied by oscillations in 
magnetization and this, in turn, leads to a substantial change 
in the wave propagation velocity and to new possibilities of 
their experimental detection. 

Superfluid motion does not cause transport of magnetic 
moment and, in the case of a polarized solution, the three- 
velocity-hydrodynamics must be supple- 
mented with 

ilf,+div (M,vn)  =0, (17) 

where M, is the longitudinal component of the magnetic 
moment M. Equation (17) has the form of a conservation law 
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and is valid only in the exchange approximation for very 
long longitudinal relaxation times r + w . Inclusion of lon- 
gitudinal relaxation leads to a frequency dependence of the 
propagation velocity of spin temperature waves." The 
expression for the differential of the pressure P (Refs. 5 and 
9) must also be modified by taking into account the magnetic 
component, which has the form (in a constant and uniform 
external magnetic field) 

6P= (M,/x) 6Mz, (18) 

where x = M /H is the susceptibility of the solution. Com- 
parison of (17) and (18) with the analogous expressions for 
the entropy Sand temperature, namely, 

T S  
S+S div v,=o, 6P = - 6S, 

C 

where Cis the heat capacity, shows that the wave propaga- 
tion is determined by coupled spin temperature and entropy 
oscillations, and its velocity differs from the propagation ve- 
locity of temperature waves in unpolarized  solution^^.^ by 
the replacement TS 2/C + TS '/C + M :/x, i.e., 

wherep, = m3N3. 
Since magnetic measurements are, in many respects, 

simpler than thermal measurements, studies of spin tem- 
perature waves are more readily performed by exciting the 
oscillations by varying the longitudinal component of the 
external magnetic field. The exciting force - MzSH must 
then be added to (18). 

However, the wave propagation velocity (19) is very 
small, and the damping of these waves is relatively high, so 
that difficulties arise in the measurements. Thus, near the 
transition point, 

where we have used the condition p H  5 Tc , sinces-pairing is 
not at all possible5 in fields such that p H >  1.3Tc. Apart 
from viscosity and thermal conduction, the attenuation of 
the wave is determined by spin diffusion and longitudinal 
relaxation. The corresponding processes are described by 
adding the terms DAM, and SM, /r to (17). Under resonance 
excitation, the fact that attenutation is small means that 

Do/u2<1, oz>>I. (21) 

If we use the following estimate5 for the diffusion coefficient 

D- (h /M)  x-"~ ( T F / T )  ' 
(xis the 3He concentration in the solution) together with (20), 
we find that the first of the inequalities in (2 1) is equivalent to 

and, when Tc is low enough, only the quasistationary oscilla- 
tions are weakly attenuated. The conditon for both inequal- 
ities in (21) to be satisfied is 

and whether or not this will be satisfied will depend on which 
particular type of longitudinal relaxation takes place. For 
dipole-dipole relaxation, 

a-'- (P4N3'/hTF) (TITF)  

-10-l5 (T,!h) (T,/TF)x'/', 

and the inequality (23), which is equivalent to 

(Tc/TF)'(ps/pn) 

is readily satisfied. Condition (22) shows that resonant exci- 
tation of weakly damped waves is very difficult, whereas 
nonresonant excitation reduces the signal amplitude. 

Attempts to observe the spin temperature waves en- 
counter further difficulties connected with the increase in 
the mean free path of the excitations as the temperature is 
reduced. When T SI 0.1 mK, the mean free path of the excita- 
tions is of the order of some centimeters, and is comparable 
with the characteristic dimensions L of the ~pecimen.~ Re- 
laxation is then determined by collisions with the walls, with 
characteristic times 

where w is the accommodation coefficient for spin (for relax- 
ation of magnetization) or for energy (thermalization pro- 
cesses) in collisions with the wall, and s,- 1 6  cm/s. Condi- 
tion (23) may then not be satisfied, and the condition for 
hydrodynamic oscillations is violated because the wave- 
length turns out to be shorter than the quasiparticle mean 
free path. 

The above difficulties in observing spin temperature 
waves arise not only in the magnetic method of wave genera- 
tion, but also in the usual thermal method. The role of spin 
diffusion and longitudinal relaxation is then played by ther- 
mal conduction and scattering by walls, and the restriction 
(22) on the frequency of the oscillations remains practically 
the same even in the absence of magnetization (M = H = 0). 

4. VORTICES IN A SUPERFLUID SOLUTION 

The dependence of thermodynamic functions of the su- 
perfluid solution on Q [Eq. (5 ) ]  has a considerable effect on 
the energy and structure of the vortices. The energy and size 
of the vortex core will be determined below for T <  Tc . 

The quantization condition for the circulation of veloc- 
ity around a vortex line must be satisfied for each of the 
condensates separately, and automatically ensures nonzero 
Q in the neighborhood of a vortex. The velocity distribution 
around a homogeneous vortex line is 

u3= (n3/2m3) (fZlr), u4= (n41m,) ( h / r ) ,  

and, when v, = 0, we have 

where the integers n, and n, are the numbers of quanta for 
the circulations of v, and v,. For fixed n,, which determines 
the circulation of the superfluid velocity above the 'He tran- 
sition to the superfluid state in solution (the superfluid tran- 
sition in ,He cannot change the circulation of 4He because, 
in solution, p34p4, the minimum energy corresponds to the 
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vortex with circulation n, that minimizes Q in (24). The cir- 
culation n, of ,He for vortices below the transition thus turns 
out to depend on the effective mass M and, hence, on pres- 
sure in the system. Thus, for n, = 1, minimum energy corre- 
sponds to the vortex with n, = - 2 for 8/3 > M/m, > 2, 
n, = - 3 for 10/3 > M /m, > 8/3, n, = - 4 for 4 > M /  
m, > 10/3, and so on. The vortex energy (due to the super- 
fluidity of ,He is then proportional to the square of Q as 
given by (24), and turns out to be a periodic function of M 
withminimaatM/m, = 7/3; 3; 11/3 . . . andmaximaatM / 
m, = 2; 8/3; 10/3 . . . . The circulation n, for (stable) mini- 
mum-energy vortices changes abruptly at the maxima. This 
corresponds to transitions of the first order in pressure for 
the vortices. One such transition necessarily occurs be- 
cause598 M/m, =: 8/3 for P- 10 atm. Whether there is a sec- 
ond transition (M/m, = 10/3) at maximum pressure is not 
as yet clear. 

At the minimum energy points M/m, = 7/3; 3; 1 l /  
3 . . . , the quantity Q given by (24) vanishes at the appropri- 
ate values of n,. This means that the superfluid transition in 
,He at such points has no effect on the ,He and ,He fluxes, so 
that the transition in ,He at these points occurs with Q = 0, 
and turns out to be insensitive to the presence of vortices in 
,He above the transition point (with the exception of a nar- 
row region of atomic linear dimensions near the vortex core). 
It is useful to note here that it is precisely such a point that 
corresponds to the saturated vapor pressure (M /m, = 7/3 to 
within I%)! 

The structure of the A (r) vortex for 'He is determined by 
the same relationships as for superconductors, except for the 
replacement v, --t Q /2m3. However, since Q as given by (24) 
depends in this case on M (pressure), the radius of the vortex 
core must also depend on M (P). The size of the minimum- 
energy vortex is therefore proportional to In, + (2/ 
m,)(M - m,)n, 1, and is an oscillating function of M. At 
points corresponding to minimum Q, i.e., when M /m, = 7/ 
3; 3; 11/3 . . . (n, = I), the radius of the vortex line is of the 
atomic order of magnitude even in the Ginzburg-Landau 
region, and is determined by the structure of the vortex in 
,He. 

5.5HeAHe SUPERFLUID LIQUID CRYSTALS 

For magnetic fields 1.33 > /3H /T, > 1.06, the transition 
temperature T Q H  [Eq. (7)] has a minimum for Q,(H) #O 
[plots of TQfl and Q,(H ) can be found, for example, in Refs. 5 
and 161. This means that, even in equilibrium, pairing occurs 
with nonzero total momentum and the resulting spatially 
inhomogeneous is a kind of superfluid liquid 

The order parameter in this system is 

A (r) =exp (im3) L A ~  exp (iQ,,,r/fi), (25) 

where IQ, I = Q,(H ) near the transition point for all vectors 
Q, in (25). As we depart from the transition point, the high- 
er-order harmonics Q, become significant in the expansion 
for A (r). The specific form of the expansion (25) that corre- 
sponds to minimum free energy is at present unknown. One 
usually investigates the so-called Fulde-Ferrell phase 

A (r) =exp (i(D3) AO exp (iQorlfi), (26) 

the layered structure 

A (r) =exp (i(D3) (Ao/2) cos (Qorlfi> (27) 

and the cubic structure 

A (r) =exp (i(D3) (A0/2) 

We shall be interested in the orienting property of the flux 
and in spin temperature waves in inhomogeneous phases in 
solution. 

The formal solution of Gor'kov equations (3) for the 
inhomogeneous phases (26) has the form 

where p(p,  p') and G * (p, p') are the Fourier components of 
the Green functions P(r ,  rt) and G * (r, r') and 

An' I 

A m *  (P) = - A ~ ' A ~ G ~ + Q ,  - Q , , , ~ P - Q ~ ,  
Am 

' , A  

where the sum in the last expression is evaluated over vectors 
Qi, Qk for which Qi - Qk = Qm - Qn.  

The vector Q in (30) is defined by (5), and the superfluid 
velocity v, is defined as v, = (fi/2m3)V@, for the inhomo- 
geneous phases in (25). This definition of v, is not entirely 
unambiguous for (26) because of possible rotation of the vec- 
tor Q, (see below). The consistency equation for the Green 
functions (29) reduces to the set of coupled equations 

Expressions (29H3 1) have a simple form only for the phase 
(26), when there is only one function $,,, , namely, 

$={l+iA~lzGpGp-Q,,}-' (32) 

and one equation (31). The velocity dependence of all the 
thermodynamic quantities then has the same form as for the 
homogeneous phase, except for the replacement 
Q --t Q + Q,. Expressions (29)-(3 1) become simpler for the 
remaining ~hases only i n  the Ginzburg-Landau region 
where (1 - A  ) - I  = 1 + A .  However, even in this case, the 
consistency equations (3 1) have been solved only for the one- 
dimensional phase (27) (Refs. 5 and 15). Nevertheless, the 
following general expression for the flux for Q<Q, can be 
obtained in the Ginzburg-Landau region [compare this with 
(1411: 
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where the function q Sm' is the same as 9, given by (1 5), except 
for the replacement Q + Q + Q, . The function q3 in (1 5) 
will, however, vanish for Q = Qo(H) which means that there 
is no superfluid flow in the phases in (25) in equilibrium. The 
equation q3(Q0) = 0 is actually identical with the equation5s6 
for Q,(H). Hence, the expression for the flux (33), linearized 
in Q, has the form 

[a plot of the function q2(Q0) is contained in Ref. 71. The 
relative change in the transition temperature (9) is given by 

Since the superfluid flux (34) and the transition tem- 
perature in (35) are very sensitive to a change in the angle 
between the velocity Q and the vectors Q,, the critical 
fluxes and the energy of the structure are also determined by 
the orientation of the flux relative to the set of vectors Q, . In 
the absence of fluxes, the spatial orientation of the structure 
(25) is set7 by the walls of the vessel alone or, when the vol- 
ume is very large, by the dipole-dipole interaction that is 
exceedingly weak in the solution. The appearance of a flux 
may lead to a change in the orientation in the volume. For 
example, for the one-dimensional phases (26) and (27), the 
maximum superfluid flux is reached for Q, parallel to the 
direction of the flux. The critical flux for the phase (26) is 
then 

(36) 
whereas for (27) it is greater by a factor of two. For the more 
complex structures (25), the current orientation depends on 
the ratio of diagonal and off-diagonal elements in the consis- 
tency equations (31). For example, for the cubic phase de- 
fined by (28), the equations in (3 1) reduce to the following set 
in the Ginzburg-Landau region when (35) is taken into ac- 
count: 

where i and j run through the values x, y, z, whereas ai are 
the cosines of the angles between the vector Q and the axes of 
the crystal (28); 2t.z; = 1, and the elements of the matrix Bq 
are proportional to linear combinations of the integrals (with 
respect to the momenta) of the ~roducts of the four Green 
functions in (3 1) and the matrix A in (30). The second-order 
transition then corresponds to the condition B, + 2B2 > 0 
and if, at the same time, I B, I > I B2 1, a maximum critical flux 
differing from (36) by a factor of 6 is obtained when the flux is 
directed along the diagonal of the cube a; = 1/3 and super- 
fluidity is destroyed to a greater degree in the direction cor- 
responding to maximum ai . In the opposite case, superflui- 
dity in the transverse direction is destroyed, and maximum 
superfluid flux corresponds to the direction of the current 
along one of the vectors Qi . 

The above results are rigorous only for a second-order 
transition (or a transition close to second order). In reality, 
even in the mean-field approximation, the superfluid transi- 
tion turns out to be of the first orde?.12.15 for some of the 
phases in (25), and inclusion of fluctuations always leads to 
first-order transition. l9 

The propagation of low-frequency hydrodynamic oscil- 
lations in the phases (25) was determined in Ref. 7, but with- 
out taking spin oscillations into account. Since superfluid 
motion and inhomogeneous deformations do not produce 
the transport of magnetic moment (an additonal hydrody- 
namic variable appears in the inhomogeneous phases, name- 
ly, the displacement vector u corresponding to the noninvar- 
iance of the order parameter A (r) [Eq. (25)] under the 
displacement transformation r + r + u, and for symmetric 
phasesA (r) = A ( - r) there are no particle fluxes proportion- 
al to au, /axk ), the hydrodynamic equations7 must be sup- 
plemented by (17) and (18), as for the homogeneous phase. 
This leads to the replacement TS 2/C + TS '/C + M :/x in 
the dispersion relation and in the propagation velocity of 
temperature waves. Temperature oscillations are then ac- 
compnied by magnetization oscillations, as in the homogen- 
eous phase, whereas the propagation velocity of transverse 
elastic oscillations with div v, = 0 remains unaltered. 

The fact that the results obtained in Ref. 7 for inhomo- 
geneous phases (25) are almost identical to those obtained in 
Ref. 20 for the phase (26) is not surprising. This agreement is 
due to the fact that the flux vector (34) can be factorized in 
the Ginzburg-Landau region and consists of the sum of com- 
ponents along the vectors Q, . Hence, the velocity of the 
spin temperature waves also turns out to be proportional to 

Am2 cos' p., 

where q, is the angle between the direction of propagation 
of the oscillations and the vector Q, . Correspondingly, the 
results for the one-dimensional phases (26) and (27) are for- 
mally similar [the phase (26) is distinguished only by the fact 
that its inhomogeneous deformation is totally equivalent to 
superfluid motion; this and the absence of inversion 
A (r) #A ( - r) lead to the coupling between spin temperature 
and elastic waves]. This similarity should vanish as the tem- 
perature is reduced. 

The dispersion relation given in Ref. 7 is valid, when 
(17) and (1 8) are taken into account, even well away from the 
phase transition, because all we need to derive the hydrody- 
namic equations are the relations (obtained as a consequence 
of Galilean invariance and of the linearity of mass fluxes and 
momentum in velocities and deformations) between the su- 
perfluid densities and the elastic moduli. All the coefficients 
in the dispersion relation are then expressed in terms of the 
single tensorp# whose form is, of course, different from (34). 
Spin and temperature oscillations are then still coupled, as 
before, and the orienting effect of the flux, depends on the 
symmetry properties of the p!.?. 
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