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The theoretical possibility of reducing the natural fluctuations in laser generation to lower the 
excitation noise of the working substance is discussed. Conditions can be cited under which the 
light from such a source is a quantum field and, in particular, in which there is considerable 
photon antibunching and the variance of the number of photons is smaller than that given by the 
Poisson distribution. The photorecording process has an interesting physical feature: the photo- 
current noise at low frequencies turns out to be below the shot-noise level and can even be reduced 
to zero without additional light losses when detecting. 

Much attention has been given recently in the literature 
to the ultimate possibilities of optical methods in a number 
of physically important problems. We may cite, for example, 
the problem of detecting gravitational optical 
manifestations of parity violation, and so on. It is well known 
that the principal limitations on the accuracy of many mea- 
surements are associated with the natural noise of coherent 
light. The principal sources of such noise are assumed to be 
the following: 

1) the quantum statistical character of the elementary 
interaction of light with radiating particles (in the end, with 
atoms); 

2) the random character of the processes that lead to 
field losses, which follow from the Callen-Welton fluctu- 
ation-dissipation334; and 

3) the statistical nature of the elementary processes of 
atomic excitation by an active medium. 

However, one can imagine a method of exciting matter 
in which the last of the noise sources listed above is eliminat- 
ed (see Section 1). This leads to interesting physical conse- 
quences which, as far as we are aware, have not been dis- 
cussed for the case of coherent radiation. The purpose of our 
work is to give a theoretical analysis of laser generation in 
the absence of noise due to excitation of matter. 

Using the quantum theory of radiation, we show that 
the light from such a source is a quantum field. The variance 
of the number of photons associated with the noise turns out 
to be smaller than the variance of a Poisson distribution, 
which, under optimal conditions, describes the radiation 
field of a "ordinary" coherent source a well as the field in a 
coherent Glauber state. The form we obtained for the corre- 
lation function of the photocounts indicates antibunching of 
the photons, while the frequency spectrum of the photocur- 
rent as observed by the light intensity fluctuations falls be- 
low the shot noise level at low frequencies. 

It is known that the sensitivity of such methods as inten- 
sity-fluctuation spectrosocopy5 (IFS) and intraresonator 
modulation spectroscopy6 can be improved by reducing the 
noninformative part of the spectral power of the photocur- 
rent. The usual way to extract the IFS signal as well as possi- 
ble from the shot-noise background is to increase the quan- 
tum yield q of the photodetector-in the ideal case, to q = 1. 
An interesting and important feature of the light source con- 

sidered in this work is that for ideal detection (q = 1) of the 
light from it, the photocurrent noise at low frequencies is not 
only below the shot-noise level, but, in principle, can be re- 
duced to zero. This result is intemately associated with the 
antibunching of the photons and has a simple physical expla- 
nation, which is given in Section 4. 

1. ELIMINATION OF THE NOISE DUE TO EXCITATION OF THE 
ACTIVE MEDIUM 

Let us discuss the theoretical possibility of exciting the 
matter in such a manner that the number of atoms excited 
per unit time will not be random, i.e., that the excitation 
noise will be suppressed. The results of this discussion will 
indicate the range of applicability of our theory. 

Let us consider an active medium in which the number 
of atoms that have the working transition remains constant, 
as would be the case, for example, if the medium were a 
doped crystal. This eliminates the randomness in the passage 
of the atoms into and out of the region of interaction with the 
radiation. The level scheme of an active atom is shown in 
Fig. 1. Let us assume that at first all the atoms are in the 
ground state 0. The perturbation v in the excitation channel 
0-+3 (e.g. an exciting light beam) is turned on at the time To. 
The intermediate level 3 decays rapidly at the rate y3 to the 
upper level 2 of the working transition 2-1. If the condition 
y3>u/fi for irreversible excitation is satisfied and the dura- 
tion To of the excitation is long enough to satisfy the condi- 
tion ~ ~ u ~ / f i ~ ~ ~ >  1, then all the atoms will collect on the up- 
per level of the radiative transition 2-1 during the time T,. 
Then there will be no randomness in the initial inversion (to 
the extent that the above requirements are met). 

Let us assume that the lifetime T= of an atom on the 
working levels 2 and 1 is much shorter than the confinement 

FIG. 1. 
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time C -' of the radiation field in the optical resonator, i.e. 
C -'ST,, where Cis the width of the resonator line. For the 
case in which y,)y2, where y, and y, are the relaxation rates 
of the levels 1 and 2, and this is the case of importance for us, 
the rapid decrease of the number of atoms excited to the 
working levels will be assured provided the generation field 
E is not too weak, i.e. provided ra -y,fi2/(d2,E)24C-', 
where d,, is the transition dipole moment. In a saturating 
field, we have ra - y; '. At a time of the order of T, after the 
arival of the exiting pulse, all the atoms will have taken part 
in the radiation at the working transition and will have re- 
turned to the ground state. We impose the condition T, )To 
so that no atom may be excited twice during a single pump- 
ing pulse. 

If the exciting pulses follow one another periodically 
with the time interval o r a  between them, then the same 
number of atoms, i.e. all the atoms in the active region, will 
take part in each cycle. This also means that the components 
of the exitationpoise that are slow on the time scale To will be 
eliminated. The "cost" of suppressing the excitation noise is 
regular modulation of the light with the period T. However, 
the modulation depth will be small if the field is held in a 
high-Q resonator between the exciting pulses. We assume, 
further, that the confinement time C -' of the light between 
the mirrors is long: C -'ST. Thus, the characteristic times 
for the source we are describing stand in the following rela- 
tions to one another: C - I )  T)T, )To. The time trends of the 
principal processes are indicated in Fig. 2. 

In what follows we shall consider only the statistical 
characteristics of the light and shall not be interested in its 
modulation, assuming that the regular modulation can ei- 
ther be eliminated or taken into account by electronic meth- 
ods. That is precisely the situation when the photocurrent 
spectrum is observed with an instrument whose spectral re- 
solution Sw is much smaller than C (as we shall see below, the 
width of the break in the power spectrum of the current is of 
the order of C) .  The time required for such a measurement 
will be longer than the time Sw-', and in view of the fact that 
Sw-')C -')T; it will be much longer than the period T of 
the excitation; the pulsations of the measured spectrum with 
the period Twill therefore be vanishingly small. The fluctu- 
ations of the light intensity at the frequency 2n-T -' will of 
course contribute to the current spectrum, but in a frequency 
range of the order of T -')Gin which we are not interested. 

2. DEVELOPMENT OF THE RADIATION FIELD IN THE 
ABSENCE OF EXCITATION NOISE 

The condition C -')T, means that the atomic subsys- 
tem "trails" behind the field subsystem, and that makes it 

T ra 

FIG. 2. Time dependences of the excitation intensity (I), the number of 
excited atoms (2), and the energy of the field in the resonator (3). 

possible to obtain a closed kinetic equation for the density 
matrix of the generating field oscillator. For simplicity we 
shall consider the generation of a single traveling wave. 

Lamb and S~ully' .~ obtained a kinetic equation for a 
source of coherent light in which the lower working level is 
not the ground state; this equation can be written in the form 

Ej=rep. (1) 

Here p is the density matrix of the generating field, r is the 
average number of atoms excited to the upper working level 
per unit time, and ii is an operator that arises in the solution 
of the problem of the interaction of a field with a single atom. 
This operator was in fact found in Refs. 7 and 8 (the explicit 
form of ii will be given later). We shall temporarily ignore the 
decrement of the field due to the finite Q of the resonator and 
shall show that Eq. (I),  as well as other quantum and semi- 
classical theories that yield similar results, lead to Poisson 
statistics for the excitation of the material and therefore con- 
tain an excitation-noise contribution. As far as can be judged 
from the literature, this circumstance has not been recog- 
nized before, since the original derivation of the Lamb-Scul- 
ly equation (1) is not based explicitly on an average over the 
statistics of the excitation. 

Let us assume that an atom was excited in the system at 
the time to, that it interacted with the field, and that it de- 
cayed to the ground state in the time T, . On the basis of the 
results of Refs. 7 and 8 we find that in this case the density 
matrix of the field will have undergone the transformation 

p ( to+At)=( l+G)p (to), 

where Atsr, .  If n atoms were excited during the time inter- 
val At, we would have 

p (&+At) =(1+Li) n3p ( to ) ,  (2) 
where we have taken into account the fact that each atom 
finds the field in the state prepared by the preceeding atom. 
If the excitation process obeys Poisson statistics, we must 
average Eq. (2) with the weight exp( - rAt )(rAt )" /n!; this 
yields 

p (&+At) =exp ( r a t e )  p  ( to) .  

On differentiating, we obtain Eq. (1). In the case of regular 
excitation, however, we set n = rAt in (2), and this leads to 
the equation 

c = r  ln (14-6) p, (3) 

which will be solved later on. The difference between Eqs. (3)  
and (1) is associated with the higher powers of the operator ii. 
Although this operator is generated by a single atom and is 
accordingly small, Eqs. (3) and (1) still do not reduce to one 
another, but describe different radiation statistics. This is 
associated with the following circumstance: the operator ii 
can be expressed as a series 

zi=a,A+ezA2+. . . , 
in which the small parameteril is associated with the smooth 
dependence of the matrix elementsp,, + , on the subscript 
n. If the rms deviation of the number of photons from the 
mean value E is of the order of then A- l/E"2<1. It 
turns out that if only the term proportional toil is retained in 
the kinetic equation, the resulting equation will represent a 
semiclassical dynamics for the generation in the absence of 
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radiation noise. At least the term of the order ofR must be 
retained in order to describe the noise. In the expansion of 
ln(1 + ii) in powers of ii, therefore, at least the first two terms 
of the series must be retained. 

It would seem that a description of regular excitation 
could be based on the Lamb-Scully equation ( I ) ,  using a diag- 
onal representation in coherent states. For the diagonal 
weight, Eq. (1) leads to the Fokker-Planck equation, in 
which the coefficients of the second derivatives with respect 
to the amplitude and phase variables determine the noise 
characteristics of the radiation. On proceeding to regular 
excitation one must subtract the contributions due to excita- 
tion noise of the medium from the coefficients (in the case of 
a laser with a uniform amplification line, the noise contribu- 
tions to be subtracted are given in an appendix to the Rus- 
sion translation of Ref. 8 by A. P. Kazantsev and G. I. Sur- 
dutovich, and for the case of a nonuniformly broadened line 
they are given in Ref. 9). It turns out, however, that this 
approach becomes meaningless for the most interesting 
range of the physical parameters (corresponding to a quan- 
tum field): the coefficient of the second derivative with re- 
spect to the field amplitude becomes negative. We therefore 
forgo the diagonal representation and solve Eq. (3)  in the 
occupation number representation. 

3. PHOTON STATISTICS AND ANTIBUNCHING 

Now let us consider the radiating system under such 
conditions that the effects of antibunching and of the nar- 
rowing of the distribution of the number of field quanta are 
maximal. We set y, = 0 so that each active atom returns to 
the ground state only from the lower level of the working 
transition and necessarily gives up its excitation of the gener- 
ating field. We shall assume that the generation takes place 
at the center of a homogeneous gain line. In this case the 
action of the operator ii is given (see Ref. 8) by 

2 (mn)  " 
('P!.. = m+n+B (m-n)2  p m - i . n - i - ~ r n n ,  

wherep is the nonlinearity parameter, f is the constant cou- 
pling the field to the atomic transition, 

Here y,, is the transverse relaxation constant, V is the vol- 
ume of the resonator, and w, is the frequency of the field. The 
kinetic equation (3) yields the following equation for the di- 
agonal elements of the density matrix: 

The field-damping contributions contain the factor C, the 
width of the resonator line. In writing Eq. (5) we have used 
the approximation ln(1 + ii)=:ii - ii2/2. For nearly station- 
ary states of the field, the contribution from ii to the damping 
terms is of the same order of magnitude as the contribution 
from - ii2/2; this is associated with the balance of gains and 
losses. On the one hand, therefore, the contribution from the 
term - ii2/2 must be taken into account (it was noted above 
that this term must be taken into account when investigating 

fluctuations) and, on the other hand, we may assume that the 
higher powers of li will give only small corrections. 

We introduce the generating function 
OD 

G ( z , t ) =  E P n n ( t ) z n .  
n=O 

Equation (5) yields an equation for G (z, t ) of the form 

whose general solution is not difficult to obtain: 

G ( z ,  t )  =G(zo ,  0) exp (3/2ji(z-zo) -1 /1E(z2-z02) ) ,  (6) 
where z, = 1 + (z - l)exp( - Ct ) and E = r/C. In what fol- 
lows we shall denote a statistical average either by a bar or by 
angle brackets. 

We shall show that the correlation function g(t ) for the 
photocounts can be expressed in terms of the generating 
function G (z, t )as evaluated for a particular initial condition. 
As is well known, 

g ( t )  =(a+ ( 0 )  a+ ( t ) a  ( t )  a  ( 0 )  >. (7) 

We shall expand the average as the trace of the product of the 
Heisenberg field operators by the density operator. We goup 
the evolution operators of the system in such a manner that 
they describe the time development of a certain matrix, and 
turn to a closed description of the evolution of the field on 
the basis z f  the kinetic equation. We define the evolution 
operatz Q (0, t )  for the density matrix of the field so that 
p(t ) = Q (0, t )p(O), and obtain 

g ( t )  = Sp(a+aQ (0 ,  t )  (ap("'a+) 

wherep(') is the stationary density matrix of the field. At the 
same time, by the definition of the generating function we 
have 

It is evident that Eqs. (8) and (9) are the same provided the 
generating function is defined for the initial conditions 

where G(') (z) is the limit as t- of G (z, t ) as given by Eq. (6) .  
With the aid of these relations we obtain the correlation 
function g(t ): 

g ( t )  =iiZ-i/2fie-". (10) 

As is evident from (lo), the probability for recording a 
photon in the time t following the initial photorecording 
event increases with the time, i.e. photon antibunching takes 
place in times of the order of the confinement time of the 
field in the resonator. The physical reason for antibunching 
in a laser without noisy excitation is the time correlation of 
the elementary atomic excitation processes (the suppression 
of excitation noise doubtless indicates strong correlation in 
the excitation). 

Antibunching of photons in a laser whose lower work- 
ing level is the gound state was predicted theoreticaliy in a 
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recent paper by Lugiato, Casagrande, and ~ i z z u t o . ' ~  The 
suppression of pumping noise that we are considering is im- 
possible in such a physical system; the antibunching there is 
due to other causes. The effect found in Ref. 10 unlike the 
effect in our system, is small and is attributed by the authors 
to collective phenomena in the interaction of the field with 
the active medium. 

In discussing the result (10) it must be borne in mind 
that the initial description based on (3) is smoothed out over 
the characteristic time scale ra , and rapid variations of the 
field cannot be treated. 

It is not difficult to find the moments of the photon- 
number distribution with the aid of the generating function 
(6) .  The mean square fluctuations of the number of photons 
in the case of steady-state generation is = E/2, where 
An = n - E, and turns out to be smaller by a factor of two 
than it would be for a Poisson distribution. It is natural to 
call such a state of the field a quantum state since the diag- 
onal weight of the representation of the density matrix in 
coherent states is a generalized function, and the usual asso- 
ciation of the diagonal weight with the amplitude distribu- 
tion of a classical wave is not possible. We may also consider 
the moment dn3 that describes the asymmetry of the distri- 
bution; for steady-state generation dn3 = - E/2, and this 
differs from the value dn3 = E for the Poisson distribution. 

4. REDUCTION OF THE PHOTORECORDING NOISE 

Let us assume that the light leaves the resonator 
through a semitransparent mirror whose energy transmis- 
sion coefficient is A and is converted into the photocurrent 
i(t ) at the collector with the quantum yield q. The measured 
quantity is the current correlation function (4 [i(O), i(t ) ] + ) 
([ . . . I +  denotes the anticommutator), which can be ex- 
pressed in terms of the Heisenberg field operators. If all the 
light flux of cross section S passes through the mirror into 
the photodetector, it follows from the general description of 
photodetection (see e.g., Refs. 11 and 12) that 
( '1 ,  [ i ( O ) ,  i ( t ) ]  + ) = C p i i 6 ( t ) + C p 2 { g ( t ) B ( t ) +  ( t * - t ) ) ,  (1 1 )  
where B (t ) = 0 when t < 0 and B (t ) = 1 when t>O. The corre- 
lation functiong(t ) found explicitely above occurs in (1 1). By 
analogy with the total field loss rate C, we call the quantity 
Cp = cqAS / V  the resultant field loss rate; it is the ratio of the 
number of photons converted into photoelectrons per unit 
time to the total number of photons in the resonator. We 
obtain the spectral power of the photocurrent noise, 

OD 

( i 2 ) .  = I d t < ' / , [ i ( 0 ) ,  i ( t ) ] + ) e i o t  
- m 

in the form 

from which the zero frequency contribution from the con- 
stant component of the current has been eliminated. 

The first term corresponds to the photorecording shot 
noise. The ratio Cp/C of the resultant losses to the total 
losses is the probability that a photon which escapes from the 
resonator will produce a photoelectron. If the field losses 

due to absorption, diffraction, and the fact that the collector 
is not ideal are eliminated, then Cp /C = 1 and, as is evident 
from (12), the spectral power of the photocurrent noise van- 
ishes at frequencies w(C. This means that the usual limita- 
tion of the sensitivity of the measurements associated with 
the photorecording shot noise is not present in the case of the 
light source described here. 

In an actual case the spectral power of the current noise 
at low frequencies stands in the ratio (C - Cp )/C to the shot 
noise level. Since the quantum yields of the best light collec- 
tors differ from unity by several dozen percent, a consider- 
able reduction of the photodetection noise is possible in prin- 
ciple. 

In order that the reasons for the inhibition of the low- 
frequency components of the current may be more clearly 
understood, we present some simple balance considerations 
that will show, in particular, how the action of such a source 
of fluctuations as the the randomness in the emission of pho- 
toelectrons at a given light intensity is compensated in the 
system. 

As above, we assume that the atoms are excited uni- 
formly (there is no excitation noise) and that the transition 
from the upper working level to the gound state is forbidden 
(y, = 0). Since each atom is finally deexcited with the emis- 
sion of a single photon, on a time scale that is slow compared 
with ra the rate of increase of the number of photons in the 
resonator due to the excitation is r and does not fluctuate. 
The number of photons in the resonator and the number of 
photoelectrons produced per second by the radiation are n(t ) 
and i(t ), respectively. Let us assume that Cp /C = 1, i.e. that 
each photon lost by the field is converted into a photoelec- 
tron. Then the balance of excitations in the system has the 
form 

li=r-Cn-f ( t ) ,  i=Cn+f ( t ) .  (13) 

The equation for the current contains not only the regular 
component, which is proportional to the light intensity, but 
also a random shot component f (t ), whose statistical proper- 
ties, as is well known, are given by the correlation function 
f (0) f (t ) = iS(t ). Since the light is completely recorded, the 
total number of excitations (the sum of the number of pho- 
tons and electrons) does not fluctuate and is determined by 
the regular excitation n + i = r. The random quantity f (t ) 
therefore occurs in the equation for the number of quanta, 
but with the opposite sign. 

Let us introduce the small random deviations 
Sn = n  - i i and6i=i - i ,where i i=r /Candi=r .Taking  
(13) into account, the power spectrum of the current can be 
written in the form 

( 6 i 2 )  "= ( f"  ),+2Re C  ( 6 n f )  ,+ C2 ( 6 n Z )  ,. (14) 
The spectrum (14) can be calculated with the aid of the solu- 
tion of Eqs. (13). Retaining the order in which the contribu- 
tions follow one another for clarity, we obtain 

It is evident from this that the suppression of the low-fre- 
quency components of the photocurrent is associated with 
the anticorrelation of the shot source of the current fluctua- 
tons f (t ) and of the intensity fluctuations Sn(t ). If, for exam- 
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ple, the randomness in the times at which electrons are eject- 
ed should lead to a sudden increase in the current, the 
number of photons in the resonator would simultaneously 
decrease. In this case the regular component of the current 
[the component proportional toSn(t )] would decrease, and at 
low frequencies, where the time shift of these mutually con- 
nected processes is unimportant, there would be complete 
compensation. 

The approximations made in the above treatment are 
justified by the agreement of the result (15) with conclusions 
derived from a rigorous quantum theory. 

5. PHYSICAL CONDITIONS FOR THE REALIZATION OF A 
QUANTUM FIELD 

Let us discuss the requirements on the physical param- 
eters of the active medium for the quantum character of the 
radiation field, the antibunching of the photons, and the sup- 
pression of the photodetection noise to be maintained, even 
if only partly. Up to now we have assumed that the relaxa- 
tion channel of the upper working level is closed (y2 = 0) and 
that there is no frequency mismatch (A = w,, - w, = 0, 
where w,, is the transition frequency and w, is the field fre- 
quency). In the general case, when y,#O, the excited atoms 
may lose their excitations in a nonradiative manner. Since 
the elementary quenching processes are random, the light 
noise will increase in the end. The detuning of the frequency 
of the radiation from the center of the amplification line acts 
similarly. As A increases, the effectiveness of the interaction 
of the atom with the field decreases and the 2-0 decay plays 
a larger part. 

In what follows we shall assume the relaxation con- 
stants y,, y,, and y,, and the frequency mismatch A to be 
arbitrary. We note that as A increases, the lifetime on the 
working levels may increase, and the requirement C 
must be borne in mind. We define the dimensionless intensi- 
ty I and the unsaturated amplification factorA for a uniform 
amplification line as follows: 

where the average number of photons, ii, is to be found from 
the condition A = (1 + Z)G for steady-state generation. A 
calculation similar to the one given above yields the follow- 
ing expression for the variance of the number of photons: 

- 1 
An" Z ( l + E ) ,  E=Z-'---. 

2 Y ~ + Y Z  . . 

The negative contribution to arose as a result of the sup- 
pression of the excitation noise. It is evident from (16) that 
the variance is smaller than that for a Poisson distribution, 
i.e. the radiation field is a quantum field provided 
I > 2(y1 + y,)/y,. For a given excitation rate and fixed relax- 
ation constants, an increase in the detuning A worsens the 
conditions for the manifestation of the quantum character of 
the field, since the dimensionless intensity decreases. 

We find the correlation function of the photocounts in 
the form 

g ( t )  =n"+fiEe-rt, (17) 

wherer = CZ/(1 + I ). As is evident, the quantum character 
of the field also implies antibunching of the photons. 
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The spectral power of the photocurrent noise is 

This result enables us to estimate, under realistic conditions, 
the photocurrent noise at low frequencies, which is due both 
to incomplete recording (C, /C < 1) and to the randomness in 
the transfer of energy from the material to the field when 
YzZO. 

One can also calculate the field-strength spectrum of 
the generating field in the framework of our treatment; it has 
the form D 1 r. 

(az) .=E - +-5- 
where D2+a2 4 r2+d' 

I AZ " [ i  
2(1+Z) y2iz (yt+yz) 1 - 

Frequency pulling has been omitted from Eq. (18), the spec- 
trum being shifted to zero frequency. The suppression of 
excitation noise leads to a certain decrease in the half width 
D of the line; this is responsible for the negative sign of the 
last term in the above expression for D. There is no narrow- 
ing of the generating line at the center of the amplification 
contour. If the frequency mismatch is large (A 2 y,,) and the 
conditions y,)y, and I) 1 characteristic of a quantum field 
are satisfied, then the greatest narrowing (by about a factor 
of two) is reached when y,By2. 

The spectrum (18) also has an enegertically negligible 
contribution arising from the amplitude fluctuations. This 
contributions, which plays a part only in the remote wings, 
enters with a negative weight in the case of a quantum field. 

In concluding, we note that the scheme of regular noise- 
free excitation of matter used in this work was called to our 
attention by E. B. Aleksandrov (in connection with the prob- 
lem of suppressing the photorecording noise of spontaneous 
emission). We also thank E. B. Aleksandrov for discussing 
the results of the work. 
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