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The transfer of electronic excitation energy between impurity ions via the virtual lattice phonon 
field is investigated for the case where the electron energy that is being transferred is much larger 
than the maximum lattice phonon energy (A >a,!. Using by way of example certain models of the 
crystal lattice we show that the probability of this transfer may decrease as a function of the 
spacing R between the impurity ions either exponentially or by a power law, depending on the 
type of crystal lattice and the mutual arrangement of the impurity ions. A general tendency is 
observed for a slower fall-off with R of the transfer probability for the more complex crystal 
lattices. In particular, for complex lattices with a basis in which the impurity ions occupy noni- 
dentical sites in the lattice, the probability of electron-phonon energy transfer falls off according 
to the same law as the dipole-dipole transfer (l/R 6 ) .  

1. INTRODUCTION 

It is well known that in the quenching and sensitization 
of luminescence and in the process of stimulated laser emis- 
sion the transfer of electronic excitation energy between im- 
purity ions in dielectric laser crystals plays an important 
role. Furthermore, in disordered systems (such as the sub- 
system of impurity ions in crystals), under certain conditions 
a situation arises analogous to the Anderson localization 
phenomenon. It is clear that the investigation of this pheno- 
menon, the principal of which is based on the same interac- 
tion between impurity ions as that which leads to the transfer 
of energy, would open up new possibilities for the spectral 
investigation of the degree of disorder in crystals. A review 
of the contemporary theory of energy transfer in all its 
aspects is given in Ref. 1. 

The mechanism of the transfer of electron excitation 
energy between two paramagnetic ions coupled together by 
the lattice phonon field was first proposed by Sugihara.' 
Subsequently this idea was developed in Refs. 3 and 4, where 
the energy transfer probability was obtained as a function of 
the distance between two impurites for the case where the 
transferred energy is less than the maximum lattice phonon 
energy. However, our interest is in the effect of the energy 
transfer process on the optical properties of laser crystals, 
where the transferred electron energy is much larger than 
the maximum lattice phonon energy. The solution of this 
problem was the subject of a paper by Orbach and T a ~ h i k i , ~  
where they calculated the probability of electron-phonon en- 
ergy transfer that takes place in a simple cubic lattice.') The 
results of Ref. 5 reduce, in essence, to the following: 1) If the 
impurity ions occupy sites of a simple cubic lattice, the ener- 
gy transfer probability falls off exponentially with the dis- 
tance R between ions. 2) If one of the ions is in an interstitial 
location, a power law for electron-phonon energy transfer is 
obtained, cc l/R ", with the exponent n greater than 10 
(n > 10). Since n equals 10 for the dipole-quadrupole energy 
transfer mechanism, it was concluded in Ref. 5 that the elec- 
tron-phonon transfer with a power law probability depen- 
dence on R is ineffective, leaving only the transfer mecha- 

nism that depends exponentially on R, and the latter can be 
important only for small separations between ions. 

The authors of Refs. 6 and 7 have also concluded that 
the electron-phonon transfer of energy is short-range (cur- 
rent treatments of this subject are in fact based on this idea). 

These authors, by more rigorous mathematical meth- 
ods (and not necessarily for a cubic lattice6), confirm the 
main conclusion of Orbach and Tachiki concerning the ex- 
ponential dependence on the distance R of the probability of 
electron-phonon transfer. The case of a power law depen- 
dence of this probability was not considered in Refs. 6 or 7. 
However, the conclusion that the electron-phonon interac- 
tion can lead to an effective energy transfer only for small 
distances between impurity atoms is, in our opinion, not cor- 
rect, because: 1) in complex crystals having a large lattice 
constant d even a transfer for which the probability depends 
exponentially on R can be effective, since the effective trans- 
fer radius in this case is (1-2)d; 2) in the calculation of the 1/ 
R " term in the electron-phonon transfer probability in Ref. 
5, a mistake was apparently made. Rather simple calcula- 
tions in the present paper show that in the case of a simple 
cubic lattice the exponent is n = 10 (and not n > 10 as in Ref. 
5). Moreover, for complex crystal lattices, when the impuri- 
ty ions can occupy in the unit cell several inequivalent sites 
which have the same local symmetry of the nearest neigh- 
bors (for instance, in the YAG cell there are 24 such sites 
with dodecahedra1 local symmetry), the electron-phonon 
transfer between impurity ions can obey the same law as the 
dipole-dipole energy transfer mechanism, i.e., oc 1/R 6 .  

We note also that the electron-phonon transfer of ener- 
gy has been studied by Nagibarov and Nagibar~va;~ how- 
ever, the Debye approximation, which they used for the lat- 
tice vibrations, led to an incorrect dependence of the transfer 
probability on the distance between impurity ions. 

2. PROBABILITY OF ELECTRON-PHONON ENERGY 
TRANSFER 

A detailed calculation of the probability of the transfer 
of energy between two impurity ions coupled by the lattice 
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phonon field has been given in Ref. 9, where it is shown that 
this probability is comprised of two terms: the "short range" 
term, where the transfer takes place as a result of the ex- 
change of electrons between two impurity ions, and the 
"long range" term, where electronic transitions occur in two 
different ions, and the excitation energy is transmitted from 
one ion to the other by the absorption and emission of virtual 
phonons. Since the probability of the short range energy 
transfer contains the overlap integral of the wave functions 
of the two interacting ions, this probability can become ap- 
preciable only for small distances,,) whereas the probability 
for thelong range energy transfer does not contain such inte- 
grals, and such a transfer can in principle be effective at large 
distances. 

If, in formula (13) of Ref. 9, the electron-phonon inter- 
action coefficients B !)(vf, Y) are decomposed along the sym- 
metry coordinates of the molecule formed by the impurity 
ion and its nearest neighbors, then it is easy to show that the 
formula of Orbach and Tachika (formula (5) of Ref. 5)' is 
obtained. If we consider only a dependence on the distance 
R, then this dependence can be written in the following form: 

where C is a quantity independent of R, +iA is the energy 
difference between the excited and ground states of the do- 
nor and acceptor ions, h ( k ,  s) is the energy of phonon of 
wave vector k and polarization index s, and Rk, , (r ig ,  m)j are 
functions that enter into the decomposition of the symmetry 
coordinates Q(r,, m) of the complex (the impurity ion plus 
the nearest neighbors) along the normal coordinates of the 
lattice 

Q (rig, m) ,= ( i / d )  [%/%Mu (k ,  S )  1'" 
k , ~  (2) 

x [ br,, exp (ikrj) -b& exp (-ikrj) IRr,. (G,, m )  , 

where M is the mass of the crystal, d is the lattice constant, 
and b ,,?, and b ,  , are, respectively, the creation and annihil- 
ation operators of lattice phonons. 

It is not hard to show that an explicit expression for the 
functions Rk,,(r,, m) can be obtained by group-theory 
methods (e.g., with the use of projection operators) if first the 
symmetry coordinates Q(Tig, m) (which are formed by the 
mth row of the irreducible representation rig of the point 
group of the symmetry of the complex considered) are de- 
composed along cartesian coordinates of the relative displa- 
cements Aut'  (a = x ,  y, z; and Y is the number of the ions in 
the complex), and then in the decomposition obtained, the 
following substitution is made: 

AU;") =ea (k ,  s)sin(kr,) . (3) 

In (3), ea(k, s) is the a th  component of the unit vector of the 
polarization of the phonons, and r, is the position vector of 
the vth ion of the complex. 

FIG. 1.One-dimensional lattice with two atoms in the unit cell. 0 and 
are atoms of mass m ,  and m,, respectively, (m,>m,). 

3. ENERGY TRANSFER IN A ONE-DIMENSIONAL LATTICE 

Even though a one-dimensional linear lattice in its sim- 
ple form is not found in nature, many of the characteristic 
features of energy transfer can be observed in this simple 
example. To this end let us calculate H Lg for a linear chain 
with a basis. For the basis we choose a molecule consisting of 
two atoms of different kinds, with masses m, and m, (Fig. I), 
spaced a distance a apart (the radius of the first coordination 
sphere). The lattice constant we shall designate as d and as- 
sume that d = 2a. The impurity ions can replace either atom, 
of the first or second kind, and in the process it is assumed 
that the electron spectra of the impurity ions (which in gen- 
eral are located in different crystal fields) are little changed, 
so that the resonance conditions for energy transfer are not 
de~troyed.~) The choice of a two-atom linear chain is further 
justified by the fact that is vibrational spectrum consists of 
acoustical and optical branches and therefore there is the 
possibility of comparing their contributions to the energy 
transfer. 

The dispersion law for a two-atom linear chain has the 
form 

where M = m, + m,, p = 4m,m2/(ml + rn,),, and y is the 
elastic constant. In the special case of a simple linear chain 
(m, = m,) we obtain 

and where m,>m,, we obtain from (4) expressions for the 
dispersion of both branches 

kd 
ro ,,2 ( k )  = 2Q ,,2 sin2 - , 

2 (5) 

where R,, = (y/m1)'l2 and R,,, = (y/m,)'I2. 
For the unique symmetry coordinate of the one-dimen- 

sional lattice complex being considered, if we take into ac- 
count only longitudinal vibrations [ex(k, I )  = 1, e"(k, t,) 
= ez(k, t,) = 01, we can write down the following expres- 

sions (there is only one irreducible representation): 

Q= ( ~ 2 % )  [AU,")-A~')  I. (7) 

Substituting (3) into (7) we obtain for the function 
R k , s ( r i g ~  m, 

Rk, ,=2'" sin (k,a) . (8) 
Then substituting formulas ( 5 ) ,  (6),  and (8) into expression (1) 
we obtain for the effective Hamiltonian for energy transfer 
induced by virtual acoustical and optical phonons 

1265 Sov. Phys. JETP 59 (6), June 1984 F. P. Safaryan and G. G. Demirkhanyan 1265 



(aa) - Cd 'Id sin2 (ka) eqkR 
Her - 2n ( m a c ) z R e  J - A , + ~ ; ~  (kd)  

dk, (9) 
-n/d 

Cd (m, /mz)  Re i" sin2 (ka) eikR 
Heff - 

2n (RQop t )  A,-COF ( k d )  
dk ,  (10) 

where 

Since, in the case we are considering, A >aac, flop, ,  we have 

Al= (A/Qac) ' ,  A2= (mi /m2)  (A/Qopt) '. 

Going over to the complex plane by making the substitution 
of variables z = eikd, the integrals appearing in (9) and (10) 
can easily be represented in the form 

where a = R /d, p = a/d, and p = 1,2. 
Let us consider two particular cases. 
1) We assume that both impurity ions replace atoms of 

the same kind (a = n is an integer). Then the contour of inte- 
gration is a unit circle within which lies one of the poles of 
the integrand (1/2A,). Calculating theintegral (1 1) using the 
residue theorem, we obtain for the acoustic and optical 
branches 

a - ( - 1 )  n+l  (s) n-z'+i 
eff - 2(hQaC)' 2Az 9 

Thus, in this particular case the probability of energy trans- 
fer falls off exponentially with distance, and because in the 
argument (13) of the exponential there appears the factor 
m,/m, ,  which is much less than unity, energy transfer in- 
volving the optical phonons is less effective than transfer via 
the acoustic phonons. From formulas (12) and (13) it follows 
also that the probability of transfer depends on the ratio 

= a/d. 
2) When the impurity ions replace both kinds of atom 

(a = R /d is noninteger), the calculation of the integral is 
complicated by the fact that the point z = 0 is a branch point 
of the integrand. Now the contour of integration is a unit 
circle with a cut along the negative real axis (Fig. 2). From 
the calculation of the integral (1 1) with the use of the residue 

FIG. 2. 

theorem, we obtain, in addition an exponential term like (l2), 
a term 

2 sin nu sin n (a+2P) sin n (a-2P) I=--------  
a a+28 a-2p (14) 

which, for integer values of a (if p =  1 or 1/2), obviously 
vanishes. 

It is easy to see that this same result can be obtained 
directly from formula (1) if one neglects in the integrand the 
quantity w2(k, s) in comparison with A 2.  This latter approxi- 
mation means that expression (14) is independent of the spe- 
cific form of the dispersion law, and therefore it is valid, in 
particular, for a lattice whose basis is a three-atom linear 
molecule having a center of inversion. A three-dimensional 
generalization of this model is carried out in the next section. 

From formula (14) it follows that for a simple lattice 
(P= 1) 

I =  
sin (nRld) 

(Rld)  [ 1- (R /d )  '1 ' 

where I falls off as 1/R as R+ w . In the case of a two-atom 
lattice (P = 1/2) we obtain 

I =  
sin (nR/2a) 

R/2a 

Here, if the impurity ions replace atoms of just one kind 
(R = 2an) then I = 0, and in the opposite case1 falls off as 1/ 
RasR+w.  

From (14) it can be seen also that for values ofp different 
from 1 or 1/2 energy transfer for which the probability falls 
off with distance according to a power law (I a 1/R ') is possi- 
ble even if the impurity ions are located at lattice sites (i.e., if 
R /d = n is an integer). Actually, in this case (14) can easily 
be converted into the form 

I =  ( - ' ) n 4 4 8  sin 2nb. 
n2-P2 

Thus, already in the model of a one-dimensional linear 
lattice it can be seen that the law according to which the 
probability of energy transfer falls off is different for differ- 
ent lattices. The transfer probability falls off faster for a sim- 
ple lattice than for a complex one. 

4. ENERGY TRANSFER IN A THREE-DIMENSIONAL LATTICE 

For a three-dimensional lattice we shall consider only 
the case of energy transfer between ions which occupy noni- 
dentical sites in the unit cells. Here, as in the case of the 
linear lattice, a nonvanishing contribution is obtained from 
the first term of the expansion of the function (1) in the small 
parameter w2(k, s)/A ', with this expansion being given in the 
form 

where the integration is carried out over the first Brillouin 
zone. As a model we shall choose a cubic lattice with a basis 
which consists of a three-atom linearly symmetric molecule 
whose axis points in the Z direction. Clearly, this model is a 
particular case of a lattice with an octahedral basis where 
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there are six ions in the first coordination sphere around the 
impurity ion (two in each of the directions X, Y, and 2). In 
the particular case where the radius a of the first coordinate 
sphere is equal to the lattice constant d, both lattices men- 
tioned above go over into a simple cubic lattice. 

It is clear that a three-atom linear molecule has three 
symmetry coordinates 

~ ( ~ ) = ( 1 / 1 2 )  [AU:' -A&' 1, (16) 

where a = x ,  y, and z. Performing the substitution (3) for the 
function Rk, ,(rig, m) we obtain in this particular case 

~:,=2"*e" (k ,  s )  sin (k ,a)  . (17) 

If we choose the projections of the polarization unit vec- 
tor as in Ref. 5 (Fig. 3), then for these projections it is not 
difficult to obtain the expressions 

ex (k ,  t i )  = 
kzkz 

eY (k ,  t i )  = 
k,kz 

I k I ( k 2 f  kg" )'" ' Ikl (k,2+k>)lh ' 
(kX2+ k,2) '" 

e z  (k, t i )  = - , e x ( k ,  t , )  = 
kv 

lkl (k,Z+kV2) 'I, ' 

kz 
eu (k ,  t , )  = - 

(k,'+ku2) " ' 

k5 
e z (k ,  t,) =0, ea (k ,  1 )  = - 

lkl ' 
u=x ,  y ,  2. 

Substituting the values of the polarization vector projections 
(17) into (18) and summing overs, we obtain 

after which the integral in (15) can be easily represented in 
the form of the product of single integrals: 

where p= a/d, a, = R,/d, a, = R,/d, and a, = R,/d. 
It is easy to see that the calculation of the probability of 

energy transfer in a lattice with an octahedral basis also re- 
duced to the calculation of the integral (20). This follows 
from the fact that sums of the form (19), which are construct- 
ed for different types of oscillations of the octahedral envi- 

FIG. 3. Definition of the projections of the unit vectors of lattice phonon 
polarization. e,, e,, and e,, are, respectively, the unit vectors of the polar- 
ization of the longitudinal and the two transverse lattice phonons. 

ronments, (the functions R ,  , (rig, m) for octahedral envi- 
ronments are given in Ref. 5), have the form 

(where a assumes either all three values x ,  y, and z, or else 
two of them). 

The integral (20) can be written in the form 
sin n ( a i + 2 p )  r =  - 

a2a3 a i+2p  

On the basis of the asymptotic properties, investigated in 
section 3, of the expression in the curly brackets as R+CC it 
is easy to draw the following conclusions: 1) in a simple cubic 
lattice in which the impurity ions occupy nonidentical posi- 
tions (a, #n,, a,#n,, and a,#n,, where n,, n,, and n, are 
integers), the effective Hamiltonian for the transfer of energy 
between the ions decreases with R as 1/R 5 .  This contradicts 
the results obtained in Ref. 5 for the analogous case. Our 
method of calculating the integral (15) differs from that used 
in Ref. 5 only in that, in order to simplify the calculations, we 
changed the order of the operations, and this, of course, 
should not be reflected in the final r e~u l t .~ )  2) For more com- 
plex lattices longer-range terms are obtained for the prob- 
ability of electron-phonon transfer. Thus, for example, if the 
acceptors lie on the face of the unit cube (it is assumed that 
the donor occupies the cubic lattice sites), then it is easy to 
see that He, a 1/R 4, while if the acceptor is located inside 
the unit cell, then He, a 1/R ,. 

5. CONCLUSIONS 

Although we have carried out calculations only for cu- 
bic lattices having comparatively simple bases, there is a 
trend (even for a one-dimensional lattice) to a more gradual 
fall-off of the probability of electron-phonon transfer with 
the distance R between the impurity ions as the crystal lat- 
tice becomes more complex. This suggests that in many crys- 
tals having a unit cell with a complex structure, as is the case 
for many laser crystals, energy transfer may possibly occur 
via the electron-phonon interaction, and not by the dipole- 
dipole mechanism, as is ordinarily thought. The electron- 
phonon mechanism most probably can occur in crystals that 
are activated with transition metals (the iron group, the rare 
earths, etc.), since, as is well known, dipole transitions 
between states of the same parity in these ions are forbidden 
by the LaPorte rule. This suggestion is also indirectly sup- 
ported by the well-known "anomalous" (from the stand- 
point of the dipole-dipole transition) behavior of the so- 
called "concentration" crystals," in which no appreciable 
energy transfer between rare earth impurity ions is observed 
even at the maximum impurity ion concentration in the crys- 
tal. On the other hand, in other crystals, (e.g., YAG) energy 
transfer proceeds so effectively that even at very low impuri- 
ty ion concentrations it causes quenching of luminescence. It 
is obvious that this cannot be dipole-dipole transfer, since 
the dipole-dipole interaction of the ions cannot depend so 
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strongly on the structure of the medium, in as much as the 
indices of refraction of these media differ very little. How- 
ever, if we take the point of view that in the above-mentioned 
crystals the transfer takes place via the electron-phonon 
mechanism, then the difference in behavior of the two kinds 
of systems becomes clear. Actually the ratio f l =  a/d is 
usually close to unity for the concentration crystals (and in 
respect to this ratio they have a more "simple" structure 
than the garnets, for which a/d ,- 1/4), and therefore in these 
crystals electron-phonon transfer is less effective than in the 
garnets. 

We note also that when there is a short-range interac- 
tion between the ions of the impurity subsystem (e.g., ex- 
change), where this interaction falls off with inter-ion dis- 
tance R faster than 1/R 3, then, as Anderson has shown,'' for 
relatively low concentrations C < C,, , where C,, is a critical 
concentration for a given system, any impurity excitation is, 
with overwhelming probability, localized. Subsequently 
Mott showedI3 that for large concentrations, C> C,, there is 
a mobility edge E, in the spectra of extrinsic crystals: excita- 
tions of energy E less than E, are localized and those of 
LT> E, are delocalized. Experimental investigations of An- 
derson localization carried out, for example, for the system 
CaWO, containing samarium ionsI4 and for ruby,I5 have 
demonstrated that the basic propositions of the theory of 
Refs. 12 and 13 are correct. However, in the transition of the 
system from the localized to the delocalized state, a more or 
less smooth transition is observed instead of the expected 
discontinuity. This is explained by the fact that in addition to 
the exchange interaction between impurity ions, a long- 
range dipole-dipole interaction is also possible, and as a re- 
sult of the latter, the falloff in the probability for energy 
transfer observed at the mobility threshold is not so abrupt.' 
However, since dipole-dipole transitions between transition 
metal ions are forbidden, we believe that the resonance elec- 
tron-phonon energy transfer that we have studied here may 
appear in the role of the above-mentioned long-ranged tran- 
sitions. 

The authors thank L. P. Pitaevskii and V. M. Agrano- 
vich for valuable discussions and M. L. Ter-Mikaelyan for 
constant attention to this work. 
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