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We study the problem of the existence, in a plasma in a magnetic field, of nonlinear solitary waves 
similar to the solitary Rossby wave vortices in a rotating fluid. We formulate a prescription for a 
theoretical search for plasma vortices and exhibit a broad class of such vortices. We classify them 
as one- and two-potential vortices. The one-potential vortices which are similar to hydrodynamic 
vortices are described by a single scalar function which is the potential of the transverse electric 
field. The two-potential vortices are described by two scalar functions. They are connected with 
non-electrostatic (electromagnetic) branches of plasma oscillations. We discuss the problem of 
the spatial structure of the one-potential vortices and the features of the two-dimensional differ- 
ential equation describing such vortices. We show that in the case of dipole vortices this equation 
reduces to a one-dimensional one for the radial part of the potential. 

1. INTRODUCTION 

Some time ago Larichev and Reznikl considering the 
problem of Rossby waves in a rotating fluid studied the non- 
linear equation 

B,A,x=Rdxldq. (1.1) 

Herex is a function characterizing waves in the two-dimen- 
sional space ( x , ~  = y - ut ) and is usually called the flux 
function, u is the phase velocity of the wave along y, 4 (u) is a 
constant, A, -a '/ax2 + d2/dV2, and the operator Do is giv- 
en by the relation 

B , = d l d q + [ V x ,  V ] , .  (1.2) 

The index z indicates thez-component of the vector product. 
The authors of Ref. 1 showed that Eq. (1.1) has a solitary 
wave type solution called by them a two-dimensional soli- 
tary Rossby wave. Because of the vortex nature of the mo- 
tion of the fluid in such a wave the solution of Ref. 1 can be 
called a solitary Rossby wave vortex. 

Hasegawa and Mima2 studying the so-called oblique 
(d /dz# 0) drift waves (or simply-drift waves) in a nonuni- 
form plasma in a magnetic field found that such waves are 
also described by an equation such as (1.1). Hasegawa et aL3 
turned attention to the analogous problem of nonlinear drift 
and Rossby waves. Using these observations in Ref. 3 and 
the approach of Ref. 1 Meiss and Horton4 showed the possi- 
bility of the existence of solitary oblique drift wave vortices 
analogous to the solitary Rossby wave vortices of Ref. 1. The 
authors of Ref. 4 assumed in that case that the field of the 
wave depended on the variables x, 7 = y - ut + az, where a 
is a constant so that in their case A = A (u,a). Pavlenko and 
Petviashvilis using an approach close to the one of Ref. 1 

A characteristic property of an equation such as (1.1) is 
that through integration it can be reduced to a linear equa- 
tion with an integration constant (for details see section 3). In 
this connection we shall call the vortices described by equa- 
tions such as (1. l )  quasilinear (QL) vortices. The necessity to 
introduce some special term for the kind of vortices which 
we discuss is connected with the fact that such vortices do 
not exhaust all possible kinds of solitary waves with vortex 
characteristics of the particle motion. Examples of solitary 
vortices described by nonlinear equations which are in an 
essential way different from (1.1) are, in particular, found in 
Refs. 7 and 8. 

In the present paper we want to draw attention to the 
fact that the class of plasma perturbations leading to the QL 
vortex problem is a very broad one and that in that sense the 
question of QL vortices is a fundamental one for the non- 
linear theory of both nonuniform and uniform plasmas in a 
magnetic field. Moreover, we show that QL vortices may be 
met with in problems described not only by equations such 
as (1.1) but also by nonlinear equations (or sets of nonlinear 
equations) of a more complicated structure. 

Characteristic for Eq. (1.1) (and also for all equations of 
this nature studied by us) is the presence of a term of the type 
&,ALX. This fact is one of the main pointers for developing 
actual plasma problems which reduce to the QL vortex prob- 
lem. It is therefore useful to trace the "pedigree" of this term. 
To do this we turn to the equation for the two-dimensional 
motion (in the x,y-plane) of one of the plasma components 
(electrons or ions) assuming this component to be "cold" 
(with zero temperature) and collisionless: 

MdVldt=e (El- [ V  xBo] c / )  . (1.3) 
studied nonlinear channelled (a = 0) waves in a nonuniform Here d /dt = d/at + V-V, V is the velocity, E the electric 
plasma in crossed magnetic and gravitational fields (normal- field of the wave, B,llz the static magnetic field; e,M the 
ly a gravitational field is introduced in the problem of waves charge and mass of the particles, c the velocity of light. As- 
in a plasma to model the effects of magnetic field curvature6). suming that the motion is a low-frequency and long-wave- 
The authors of Ref. 5 showed that such waves can also have length one, d /dt(eBJMc = w, (a, is the cyclotron fre- 
the form of solitary vortices of the Rossby wave vortices quency) we get from (1.3) an approximate equation for the 
kind. velocity: 
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V'VE-!-v*. (1.4) 

Here V, = cEXe, /B, is the drift velocity of the particles in 
crossed electric and magnetic fields, e, is the unit vector in 
the z-direction, V, is the inertial particle velocity across the 
magnetic field given by the relation 

1 d 
v,= - [e , ,  (% + V ~ V )  vE] . 

0 s  

Assuming the electric field to be a potential (electrostatic) 
one, E = - Vp and substituting (1.4), (1.5) into the contin- 
uity equation for the corresponding plasma component, 

dn/dt+ n div V=O; (1.6) 

(n is the plasma density) we note that the quantity divV oc- 
curring in that equation is equal to 

div V = -  -- 

It is clear that in the case of waves depending on x and 
7 = y - ut the right-hand side of (1.7) apart from a change in 
notation is nothing but the quantity ~ 4 , ~  in Eq. (1.1). In- 
deed, the kind of plasma waves which are of interest to us 
must at least have the following properties: 

1) they must be low-frequency and long-wavelength 
waves at least as far as one of the plasma components (ions or 
electrons) are concerned; 

2) in general, for such waves the transverse inertia of the 
corresponding plasma component must be important; 

3) the electric field of the waves at right angles to the 
equilibrium magnetic field must be, at least approximately, 
potential. 

The totality of these properties also is the above-noted 
pointer. 

Yet another important pointer for a theoretical search 
for vortices is the fact that in the external region of the vortex 
AI,y = x2,y where x is a real constant.' For this region of the 
vortex it thus follows from an equation such as (1.1) that 

A(u,  a )  =x2.  (1.8) 

This kind of relation is formally the same as the dispersion 
relation of the linear approximation for waves with frequen- 
cy w and wave vector k part from the substitution 

x"-k12, u + o / k ,  a+k,/ky. (1.9) 

In this connection one may call a relation such as (1.8) a 
modified dispersion equation (MDE). It is clear from (1.9) 
that only such waves in the plasma are of interest for our 
problem for which 

A(u,  a)>O,. (1.10) 

This inequality is the second of the above-mentioned point- 
ers. 

We illustrate the use of these two pointers by the exam- 
ple of purely electron waves. It is well known9 that in a uni- 
form plasma with a sufficiently high density (w;, >a;,) in a 
magnetic field there is a branch of electrostatic low-frequen- 
cy waves propagating almost at right angles to the magnetic 
field and being described by the dispersion equation 
w2 = w;,k 2/k :, where a,, = - eBo/mc is the electron cy- 
clotron frequency, w;, = 4n-e2ndm the square of the elec- 

tron plasma frequency, no the equilibrium plasma density; 
- e,m the electron charge and mass. Such waves have the 
above-mentioned properties 1) to 3), but for them A 
= - a2w~,/u2 < 0. QL vortices are therefore not realized 

on this branch. When there is a gradient present of the equi- 
librium plasma density, dno/dx#O, instead of the above- 
mentioned dispersion equation we have the following one:' 

0 2 f  ok ,x ,oB. /kL2=ose2k~/k12)  (1.11) 

where x, = d In n0/dx. In that case 

A= (aoB, /u)  "ux,/a20, ,-I)  . (1.12) 

It is clear that when a is sufficiently small (or x, sufficiently 
large) and u has the appropriate sign the condition A > 0 can 
be realized which is necessary for the existence of a QL vor- 
tex. Using (1.6) and the fact that when the above mentioned 
condition w;, > m i e  holds the waves are quasineutral, ii = 0 
(ii is the perturbation of the electron density) we find that 
such a vortex is described by an equation of the form 

x,V=+ div V=O. (1.13) 

Substituting here V, = V,, (see (1.4)) and divV of the form 
(1.7) with the change M-m, e-+ - e and assuming the wave 
to depend on x and 7 = y - ut + az  we bring (1.13) to the 
form 

BA,cp=Adcp/dq, (1.14) 

where A is given by Eq. (1.12) while the operator b is given 
by the relation 

The formal identity of Eqs. (l.14), (1.15) with Eqs. (1.1), (1.2) 
indicates the constructive nature of the above indicated 
pointers. 

In the light of what has been said the situation about the 
channelled vortex considered in Ref. 5 looks as follows. 
Channelled perturbations possess the properties 1) to 3). The 
dispersion equation of such perturbations has the form6 

02=-r2k,Z/k,2, (1.16) 

where r = - gx, is the square of the growth rate of the 
channelled instability, and gllx is the gravity force. From 
(1.16) and the correspondence rule (1.9) it follows that 

so that for r > 0 condition (1.10) is satisfied. 
The examples considered also indicate the important 

role of the nonuniformity of the plasma in the QL vortex 
problem. This role consists in that non-uniformity modifies 
"nonvortex" types of waves (in the context discussed here) 
into "vortex" waves or it leads to new types of waves which 
have "vortex" properties. The physical cause for this are the 
so-called gradient or drift effects-the same which lead to 
gradient or drift in~tabilities.~ 

It does, however, not follow from this that QL vortices 
are possible only in a nonuniform plasma. We consider, for 
instance, ion-sound waves with finite k, pi ( p i  is the ion 
Larmor radius). Qualitatively the dispersion equation of 
such waves can be written in the form 

o2=kZZc.2 (1-k12pi2), (1.18) 
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where c: = T, /M is the square of the ion sound velocity, Te 
the electron temperature, M the ion mass, (k, pi )'( 1. In that 
case 

A= (u2/aZc,2-1) /p?, (1.19) 

so that A > 0 when u > ac, . From this it is clear that there is 
the possibility of ion sound QL vortices with finite k, p, . The 
analysis by Meiss and Horton4 also confirms this. 

The general considerations given here reveal, in our 
opinion, a wide field of activity for a theoretical analysis of 
QL vortices in nonuniform and uniform plasmas and they 
must stimulate the corresponding experimental studies. 

The first thing which is necessary for such an analysis is 
a summary of information about the basic types of QL vorti- 
ces. Such a summary of information with an exposition of 
the derivation of the equations which describe the corre- 
sponding types of vortices is given in section 2. Vortices de- 
scribed by the equations of section 2 can be split into two 
classes: one- and two-potential ones. One-potential vortices 
(which can be either electrostatic or electromagnetic) like the 
Rossby wave vortices1 are characterized by a single scalar 
function which satisfies an equation like (1.14) with some 
expression for A.  The general properties of the vortices de- 
scribed by these equations are discussed in section 3. The 
two-potential vortices are electromagnetic in an essential 
way. They are characterized by two scalar functions (two 
potentials) describing the electromagnetic field of the vortex. 
Some examples of two-potential vortices are discussed in 
section 4. 

The results of this paper are discussed in section 5. 

2. STARTING EQUATIONS FOR THE BASIC TYPES OF QUASI- 
LINEAR VORTICES 
2.1 Low-frequency long-wavelenth vortices in a plasma with 
r, = o  

We assume that the equilibrium state of the plasma is 
characterized by a density no, which is nonuniform along x 
(Vn,Jlx), a uniform electron temperature (VT, = O), and a 
vanishing ion temperature (Ti = 0). We assume the equilib- 
rium magnetic field B, to be uniform and directed along 
z(B,IIz). Moreover, we assume that there gravity acts on the 
plasma, gllx. 

Assuming the plasma pressure to be small compared to 
the pressure of the equilibrium magnetic field, 8moTe/B i 
< 1, we characterize the electric field of the perturbations by 
the quantities p and $ given by the relations 

where the index 1 indicates the vector components at right 
angles to the. field B,. We assume the perturbations to de- 
pend on x and 7 = y - ut + az (cf. section 1). We then find 
from the Maxwell equation a B, /at = - c curl, E (B, is the 
magnetic field of the perturbations) 

B,=ac[V (cp-$)xe,] lu. (2.2) 

Assuming the perturbations to be quasineutral we use 
the equation for the closing of the current j, div j = 0, which 
we write in the form 

div jL+di,/dz=O. (2.3) 

Using the Maxwell equation curl, B, = 4rjz /C and Eq. (2.2) 
we find 

The equations given here are supplemented by the equa- 
tions of two-fluid magnetohydrodynamics, namely the equa- 
tions of motion for the ions and electrons (cf. (1.3)): 

MdVj/dt=e (E+ [Vi x B]/c) +Mg, (2.5) 

0=-T,Vn-e(E+ [V,xB] /c) (2.6) 
and the electron equation of continuity (cf. (1.6)) 

dn/dt+ div nV.=O. (2.7) 

Here B = B, + B, is the total magnetic field, n = no + ii the 
total density, and ii the density perturbation; Vi and V, the 
electron and ion velocities, d /dt = d /at + Vi V; e and M the 
ion charge and mass. Using (2.5), (2.6) we evaluate j, . Substi- 
tuting the result into (2.3) and using (2.4) we get 

Here c i  = B i / b n &  is the square of the Alfv&n velocity, 
the operator h is given by Eq. (1.15), and 

a c a =--- 
t -  

aq uBO 
[V(cp-$), PI,. (2.9) 

Similarly, it follows from the equation for the longitudi- 
nal motion of the electrons, the electron equation of contin- 
uity, and the equation for the longitudinal motion of the 
ions, respectively, that 

v.. a (2.10) 

fi e dcp aZcZ a D-=---+- DiA, (cp-9) + - D,V,i, (2.1 1) 
no T, u dq 4nenou2 u 

ea 
D ~n--$)  =o. ( Mu 

(2.12) 

Here V., = - cT,x, /eB, is the electron drift velocity. 
We note a few particular cases of the set of Eqs. (2.8), 

(2.10) to (2.12), corresponding to QL vortices. 
Ion-sound and oblique drift wave vortices for g = 0. 

When g = 0, a +O, (c,c,, )--+ oo it follows from the set of Eqs. 
(2.8), (2.10) to (2.12) that 

$=q, fi/n,=ecplT,, VZi=eaqlMu, (2.13) 

so that this set of equations reduces to a single equation for p. 
This equation has the form (1.14) with A equal to 

A= p/poZ, (2.14) 

~=~-V. . /U-U~C.~/U~,  p02=TeIM~B12. (2.15) 

Vortices with A of the form (2.14) were studied in Ref. 4.  
Channelled vortices. When a = 0 the set of Eqs. (2.8), 

(2.10) to (2.12) describes vortices with 
$=Vzi=O, fillno=-cx,cp/uBo. (2.16) 

In this case we are led to an equation for q, of the form (1.14) 
where now A is given by Eq. (1.17). Vortices with A of the 
form ( 1.17) were studied in Ref. 5. 
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Balloon vortices. As &+O and for arbitrary a the ex- nelled ones. The latter were first studied in Ref. 5. In that 
pressions for $, V,,, and fi/n, are given by Eqs. (2.16), while case the incorrect expression [D - (V. , /u)d /a~]Al~  was 
the equation for p has the form (1.14) with A equal to used in Ref. 5 instead of the expression (1 - V.,/u)DA,p 

h=r2/ ( u ~ - ~ ~ c A ~ ) .  ( 2  7 )  (see (2.23)). 

The corresponding vortices are called balloon vortices.1° As 2.3. Electron vortices 
a-0 they go over into channelled vortices; see above. 

Oblique non-electrostatic vortices forg = 0 (coupled Alf- 
utn and drift vortices). In contrast to the ion-sound and 
oblique drift wave vortices we assume (ac, /u)' to be finite. 
As cf/c; is small, we can then assume the ratio a2c;/u2 to be 
negligibly small. In the case g = 0 it then follows from Eqs. 
(2.8), (2.10) to (2.12) that 

R e V.. 
VZi=O, -=-(PA+-9). no T, u 

while the functions p and $satisfy the following set of inter- 
connected equations: 

aZcA2 , 
BALq = ?DiAL (9-9) 9 (2.19) 

wherep, = 1 - V., /u (cf. (2.15)). The analysis of Eqs. (2.19), 
(2.20) is given in subsection 4.1 

2.2. Low-frequency, long-wavelength vortices with # O  

We consider how in the approach of subsection 2.1 ion- 
drift effects which are caused by the finite ion temperature 
Ti # O  can be taken into account. We restrict ourselves to the 
case ac, /u ( 1, i.e., we assume that VZi = 0. 

When ion-drift effects are taken into account we must 
instead of (2.5) use the ion equation of motion in the form 

wherep, is the ion pressure, IT is the tensor of the skew ion 
viscosity. Using the explicit form6 of IT we get 

Mc 
div j,=- -rot, 

Bo 

MC a% B, 
-g--+- V j , .  

~ ~ a q  B~ 

Here V, = e, X Vp,/Mnw,, is the average velocity of the 
ion Larmor current. We note that one can also obtain (2.22) 
by using Eqs. (7.44) from Ref. 6. 

When we use the approximation pi-+O, when $ = 0, 
and fi is given by Eq. (2.16) it follows from (2.22) that 

where V., = cTil.x, /eB, is the ion drift velocity (velocity of 
the equilibrium ion Larmor current). From (2.3), (2.4), and 
(2.23) there follows a dispersion equation of the form (1.14) 
with A equal to [cf. (1.17), (2.17)] 

A=F2/ (u~-uV.~-,CL~CA~). (2.24) 

The situation considered corresponds to drift-balloon vorti- 
ces. In the case a = 0 such vortices change to drift-chan- 

In section 1 we obtained Eq. (1.14) which describes elec- 
trostatic electron vortices. We now generalize (1.14) to the 
case when electromagnetic effects are important. 

As in the derivation of Eq. (1.14) we assume that 
mie >mi,. Then ii = 0 so that we supplement the term with 
that part of the Lorentz force which is caused by the wave 
magnetic field B (cf. (2.5)). Moreover, in contrast to subsec- 
tion 2.1, we take into account not only B, but also B,, i.e., 
the component of the wave magnetic field along the direc- 
tion of the equilibrium magnetic field B,. Taking B, into 
account is necessary when evaluating the expression curl, E, 
as the contribution from the potential part of E, (see (2.1)) 
vanishes in that expression. In contrast to subsection 2.1 we 
then obtain 

C 1 8Bz 
div VE= - rotr El=- - - 

B~ B~ at  

We find the field B, by using the Maxwell equation 
curl, B = 4rjX /c which in the case considered means 

d8,/8y=-4nenoVEJc. (2.26) 

It follows from (2.26) that 

B,=4nen,q/Bo. (2.27) 

From here on we proceed as in subsection 2.1. We then 
get the set of equations for p and $ (cf. (2.19), (2.20)): 

b [ A ,  (9-I#) + % $1 =O. 
Here c:, =B :/4rmn is the square of the Alfvtn velocity, 
evaluated using the electron mass. 

We consider the limit as we go to the electrostatic case 
in (2.28) and (2.29). In that case (2.29) is replaced by the 
equation 

( ~ - 9 ) = -  (ope/c) '9. (2.30) 

We substitute (2.30) into (2.28), use the fact that 
c:,wi,/c2 = and after that take c 2 - + ~ .  We then are led 
to (1.14) with A of the form (1.12). 

The set of Eqs. (2.28) and (2.29) reduces to (1.14) also 
when a = 0. In that case 

A = w ~ ~ ~ / c ~ + x , o ~ ~ ~ u .  (2.3 1) 

This case corresponds to transverse electromagnetic elec- 
tron vortices. As w,, / c 4  Eq. (2.3 1) goes over into Eq. 
(1.12) with a = 0. 

2.4. Short-wavelength drift vortices 

It was shown in Refs. 11, 12 that there exist short-wave- 
length drift oscillations. We now consider the problem of QL 
vortices of such waves. 
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We write the electric field in the form (2.1). We neglect 
the longitudinal magnetic field B, = 0 which is valid under 
the condition stipulated in subsection 2.1 that the plasma 
density be small compared to the magnetic field pressure. As 
before we assume the perturbations to be quasineutral and 
denote the density perturbation of each kind of particles 
(electrons and ions) by i i. Assuming the perturbations as far 
as the ions are concerned to have a short wavelength we take 
ii to be of the Boltzmann form: 

R=-en,cp/Ti. (2.32) 

Substituting this ii into the electron equation of continuity 
we get (cf. (1.13)) 

The remaining starting equations are the same as those used 
in the theory of electron vortices (see subsection 2.3). As a 
result we are led to a set of two equations for p and $, one of 
which is Eq. (2.29) and the second one of which has the form 
(cf. (2.28)) 

Here p:i = Ti/mwi, is the square of the Larmor radius for 
the electrons with the ion temperature. Equations (2.29), 
(2.34) describe short-wavelength drift vortices. It is clear 
that the transition from the equations for electron vortices to 
the equations for short-wavelength drift vortices is accom- 
plished through the substitution 

When a = 0 the set (2.29), (2.34) reduces to a single 
equation for p. This equation has the form (1.14) with 

A= (1-V.i/u) / p e i 2 .  (2.36) 

When a # O  we get in the electrostatic approximation 
(A, ,(ope /c)') and using (2.30) from (2.34) again an equation 
for p of the form (1.14), but now (cf. (2.14)) 

where c:e = Ti /m is the square of the electron sound speed. 
Such kind of vortices are called electrostatic vortices of 
oblique drift oscillations. 

3. ONE-POTENTIAL VORTICES 
3.1. Integrability of Eq. (1.14) 

Introducing the notation 

F=A,cp-Acp, (3.1) 

we note that Eq. (1.14) can be written in the form1 

[ V F ,  V(cp--uB,x/c)],=O. (3.2) 
Hence 

F-C (9-uB,xlc), (3.3) 

where Cis a constant. It is thus clear that the nonlinear Eq. 
(1.14) can through integration be reduced to a linear one. We 
shall call this property of Eq. (1.14) integrability. This justi- 
fies the term "quasilinear vortex" introduced in section 1. 

3.2 Exterior and interior regions of the vortex 

We use for the further analysis apart from the Cartesian 
coordinates x, r ]  polar coordinates r = (x2 + r]2)1'2, 0 = arc- 
tan(r]/x). We introduce the concept of the exterior and inte- 
rior regions of the vortex, assuming that these regions are 
separated from one another by some closed curve r = r(O ). 
The prescription to find the function r(O ) will be given below. 
We assume that the constant in Eq. (3.3) has different values 
C", Ci in the exterior and interior regions and that C = 0. 
Equation (3.3) then means 

whereC -C . Weassume that forr = r(0)  thepotentialp, its 
derivative with respect to the normal n to the boundary 
between the two regions, nVp, and A lp  are continuous, i.e., 
that 

{ T ,  ~ V T ,  A ~ T )  l ie=O- (3.5) 
From the condition that p and A,p are continuous and Eq. 
(3.4) it follows that the function r($ )must satisfy the equation 

cp [ r  (8) , 81 = (uBo/c) r (0) cos 0. (3.6) 

3.3 Dipole vortex 

The dipole vortex, i.e., a vortex such that 

cp (r ,  0) =@ cos 0, (3.7) 
where @ = @ (r) is a function of the radius r, is an important 
case of vortex. In that case condition (3.6) is satisfied for 
r(O ) = a, where a is a constant, called the vortex radius. Ac- 
cording to (3.6) this constant is determined by the equation 

@ ( a )  =uBoa/c. (3.8) 

One can treat Eq. (3.8) also as the condition on the potential 
(current function) of the vortex at the boundary between the 
exterior and interior regions r = a, where a is a free param- 
eter. Such a treatment is the traditional one in the theory of 
dipole vortices.4v5 

For the case of a dipole vortex Eq. (3.4) implies 

wherep and y are connected with A and C through the rela- 
tions 

A=p2/aZ, C=- ( p Z + y Z )  /aZ. (3.10) 

It follows from (3.9) that 

Ki (rpla) / K I  ( B ) ,  r>a 
(D ( r )  = (D ( a )  

r B V l ( r y / a )  (3.11) I + -  ---- I (  7) a yZ J I ( Y )  , r<a 

Here Jl and K ,  are a Bessel and a modified Bessel function of 
the second kind (Macdonald function). When @ (r) is of the 
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form (3.11) the first and third conditions (3.5) are satisfied for 
any y (i.e., any C ) .  To satisfy the second condition (3.5) it is 
necessary that the following relation holds between y andP:' 

This relation is sometimes called the dispersion equation of 
the dipole vortex. 

Equation (3.12) has an infinite set of roots y, = y, ( P ) ,  
n = 1,2, ... . From the point of view of the theory of vortex 
stability the most important one is the one with the smallest 
value y,, n = A figure giving the function y,  = y , (Q )  is 
given in Ref. 4. 

We note also that the constant x introduced in section 1 
is connected with 0 and a through the relation x2 = P 2a2. 

3.4. Structure of the equation for the radial part of the dipole 
vortex potential 

A notable property of the dipole vortex is that in that 
case Eq. (1.14) reduces to a one-dimensional one. We verify 
this by substituting (3.7) into (1.14). In terms of 

the one-dimensional equation obtained can be written in the 
form 

where the prime indicates derivation with respect to 6. It is 
clear that the point 6 = go where X (go) = 1 is a singular point 
ofEq. (3.14). Turning to (3.13) we note that the singular point 
is nothing but the boundary between the exterior and interi- 
or regions of the vortex, i.e., the point a. 

We can also write Eq. (3.14) in the form 

When 6 #go one can integrate Eq. (3.15) trivially which is in 
accordance with the integrability property of the two-di- 
mensional equation discussed in subsection 3.1. It is clear 
from (3.15) that the mathematical reason for the discontin- 
uous nature of the solution (3.1 1) is the presence of the 
above-mentioned singular point. It is also clear that to con- 
struct a smooth (analytic) solution it is necessary to supple- 
ment Eq. (3.15) with terms with higher derivatives ofX with 
coefficients which do not vanish at 6 = go. 

4. TWO-POTENTIAL QUASI-LINEAR VORTICES 
4.1. Coupled Alfvbn and electron drift vortices 

We consider some of the consequences of Eqs. (2.19), 
(2.20). Similarly to (3.1) we introduce the notation 

We can then write Eqs. (2.19), (2.20) in the form 

[VFIx V (cp-uB0x/c)] ,=O, (4.3 

[ VF2 x V [ ( v - $ )  -uBOz/c]]  ,=O. (4.4) 
It is clear that Eqs. (4.3), (4.4) are integrable in the sense 

indicated in subsection 3.1. Similarly to (3.3) we get from 
them the following set of equations: 

A ~ r p - p ~ $ ! p ~ ~ = C ~  (cp-uBox/c), (4.5) 

where C,  and C, are constants. 
Spatially localized solutions of Eqs. (4.5), (4.6) are possi- 

ble both in the case C,, C,#O, and in the cases when only one 
of the constants is nonvanishing, i.e., C,#O, C2 = 0 or 
C, = 0, C2 # 0. When C,, C2 #O we are dealing with two 
singularities: one of them is characterized by Eq. (3.6) and 
the other one by an equation of the form 

cp [ r  ( 0 )  , 01 -I) [ r  (0) , 01 =uBor ( 0 )  cos 0/c. (4.7) 
In the other two cases there is just one singularity character- 
ized by Eq. (3.6) or (4.7). 

As in the case of one-potential vortices we can introduce 
the concept of a two-potential dipole vortex. In the case of 
such a vortex the function q, is given by Eq. (3.7) while $has 
the form 

$=Y cos 0, (4.8) 

where Y = Y (r) is a function of the radius. 
One can reduce Eqs. (4.5), (4.6) to a single fourth order 

equation for q, but we do not write down the result as it is 
obvious. 

4.2 Electromagnetic electron vortices 

We now turn to Eqs (2.28), (2.29) for electromagnetic 
electron vortices. We write 

We can then write (2.29) in the form (3.2) and find that F 
satisfies an equation of the form of (3.3), i.e., 

Substituting A, (q, - $) from (4.10) into (2.28) we get 

Using the fact that C?p/C??7=bp we write (4.11) in the form 
(3.2) with a different value of F. By analogy with (4.10) we 
then find 

where C ,  is a constant similar to C. 
Thus, similarly to subsection 4.1 instead of two non- 

linear third order differential equations we have obtained 
two linear second order equations with some integration 
constants Cand C,. As in the case of Eqs. (4.5), (4.6), the set 
(4.1 I), (4.12) can be reduced to a single fourth order equation 
for q,. It is also clear that one can by using (4.1 I ) ,  (4.12) con- 
struct two one-dimensional equations for a dipole vortex (cf. 
subsections 3.3, 3.4). 

We also note that in contrast to the situation for Alfvtn 
vortices considered in subsection 4.1 when solutions with 
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two singularities are possible, in the case of electromagnetic 
electron vortices there is only one singular point. Such a 
point may be double in the sense that two nonvanishing inte- 
gration constants, C,, C # O  may correspond to it. 

4.3 Electromagnetic short-wavelength drift vortices 

According to subsection 2.4 the equations describing 
electron vortices basically remain valid also in the case of 
electromagnetic short-wavelength drift vortices except that 
one must in them perform the substitution (2.35). We can 
thus conclude without any additional analysis that the start- 
ing equations (Eqs. (2.29), (2.34)) of the theory of short-wave- 
length drift vortices are integrable in the sense indicated in- 
subsection 3.1 and reduce to a set of two linear equations, 
one of which has the form (4.10) while the second one implies 

The general properties of short-wavelength drift vorti- 
ces are similar to the general properties of the electron vorti- 
ces noted at the end of subsection 4.2. 

5. DISCUSSION OF THE RESULTS 

The low-frequency long-wavelength perturbations con- 
sidered by us in subsections 2.1, 2.2, and 4.1 are the same as 
those animatedly discussed at the beginning of the sixties as 
the origin of anomalous plasma losses across a confining 
magnetic field (see, e.g., Refs. 14, 13). The initial non-linear 
theory of these waves was based upon ideas from turbulence 
theory.I4 Later in the framework of concepts of non-linear 
waves described by Korteweg-de Vries type equations the 
existence was proved of solitary drift waves in a plasma with 
VT,  20.' Moreover, it was shown that there exist Alfvtn 
solitons7 with a spatial structure similar to that of Langmuir 
solitons. The anlaysis given in the present paper indicates the 
existence in a plasma confined by a magnetic field of a broad 
class of QL vortex type solitary waves and thereby leads to 
the idea of a more important role for solitary waves in the 
dynamics of such a plasma. 

Short-wavelength drift oscillations considered in sub- 
section 2.4 (see also subsection 4.3) had earlier been dis- 
cussed in connection with the problem of the confinement of 
a plama by hot ions in adiabatic traps" and also in connec- 
tion with the problem of high-frequency plasma heating,'* 
the study of the dynamics of the plasma in the Earth's mag- 
netopause region,16 and in a number of other problems. Re- 
cently the possibility of the existence of solitons of such oscil- 
lations was proved which are analogous to the above noted 
low-frequency long-wavelength drift solitons.17 Our analy- 
sis (see subsections 2.4 and 4.3) broadens the existing idea 
about possible kinds of short-wavelength drift solitons and 
thereby establishes prerequisites for the development of a 
more complete theory of non-linear processes in which 
short-wavelength drift oscillations participate. 

Electron vortices (see section 1 and subsections 2.3,4.2, 
and also Ref. 18) are, in particular, of interest because they, 

as compared to the electron-ion ones, can be studied experi- 
mentally in simpler laboratory set-ups than the electron-ion 
ones. Such studies are important for a proof of the reality of 
vortices in a plasma. 

An appreciable number of the kinds of vortices consid- 
ered by us in section 2 belong to the number of one-potential 
ones (see section 3). The electric potential of such vortices is 
apart from a factor the same as the current function charac- 
terizing Rossby wave vortices in a rotating fluid.' We paid 
considerable attention to one-potential dipole vortices. Such 
vortices can be considered to be the combination of a pair of 
vortices rotating in opposite directions. It follows from (3.8) 
that the characteristic magnitude of the speed of such a rota- 
tion is of the order of the vortex speed: V z u .  This corre- 
sponds to the case of strong nonlinearity. The same estimate 
is valid also for all other species of vortices discussed by us. It 
is therefore clear that the term "quasilinear vortex" used by 
us must not be understood as weakly nonlinear (we explained 
the meaning of this term in sections 1,3). 

Together with electrostatic vortices we considered also 
electromagnetic ones, i.e., vortices in which the perturbation 
of the magnetic field is important. Some of the electromag- 
netic vortices are described by the equations of the one-po- 
tential approximation (among them we have the balloon vor- 
tex of subsection 2.1 and also the electromagnetic transverse 
vortex of subsection 2.3). Of principal interest are also the 
two-potential vortices. Such vortices may be connected ei- 
ther with low-frequency long-wavelength plasma oscillation 
branches (subsection 4.1) or with short-wavelength drift 
(subsection 4.3) and electron (subsection 4.2) branches. Such 
kinds of vortices have apparently no analog in a normal liq- 
uid. 
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