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The Berezinskii diagram technique is used to investigate singularities of the localization length 
I,,, and of the static dielectric constant E' in one-dimensional metals with strong disorder in the 
presence of commensurability effects. The character of the singularity of I,,, and E' at the center of 
the band is obtained: I,,,(E) a 1n2&,&'(~) a /&I  -', E-0. It is proved that in the case of sufficiently 
strong scattering the characteristic maxima of&'(&) and of I,, (E) occur at all rational points of the 
band. It is shown that the singularity of I,,, (E) near the center of the band jointly with the Dyson 
singularity of the density of states leads to a power-law decrease of the Mott hopping conductivity 
at low temperatures. 

1. INTRODUCTION 

In view of the current extensive investigations of quasi- 
one-dimensional organic conductors (see the reviewslv2), in- 
terest has noticeably increased in the theory of Mott local- 
ization of electrons in one-dimensional ( I D )  disordered 
systems (see the  review^^-^). A characteristic property of 
many quasi-1D organic conductors, such as TCNQ salts 
with asymmetric cations, is a strong structural disorder.ls3 
This disorder is due to the random orientations of the asym- 
metric cations, which produce a strong random potential - 
V-0.1 eV,7.8 but do not disturb the spatial structure of the 
crystal, since they are located at the sites of the initial lat- 
tice.' It is known that the placement of the impurities in the 
lattice sites calls for taking into account the commensurabi- 
lity of the electron wavelengthA with the crystal period 
This gives rise to a number of new effects in the system, 
particularly to delocalized electron states near the center of 
the band329 as well as to the Dyson singularity of the density 
of states9 The cited papers, however, consider only weak 
disorder, and their results can therefore not be applied di- 
rectly to an analysis of experimental data. 

The present paper deals with the role of the commen- 
surability ofil and a, in 1D crystals with strong disorder. We 
show that the delocalization of the electron states, which 
leads to the onset of significant singularities of the localiza- 
tion length I,,, and of the static dielectric constant E ' ,  is pre- 
served in such systems. It turns out, in particular, that in the 
absence of a phase shift and for forward scattering by impur- 
ities, we have&'(&) a JEJ - ' and I,,, ( E )  a ln2&, where the energy 
E is reckoned from the center of the band. This situation 
occurs in a large number of one-dimensional systems, e.g., in 
the case of purely nondiagonal disorder.3210 These include 
also the well-conducting TCNQ salts with asymmetric ca- 
tions, as shown by Gor'kov and Dorokhov. '' It is interesting 
to note that such systems are also always subject to the Dy- 
son instability of the density of states:p(&) a I&ln3c/ -' (Refs. 
9-1 1). It is curious that in the case of scattering by impurities 
this singularity is preserved even if the electron spectrum has 
a Peierls gap."-l3 

The singularities of the localization length I,,, ( E ) ,  of the 
dielectric constant & I ( & ) ,  and of the density of states&) lead 
to a substantial change of the character of the hopping con- 
duction in the system; in particular, they transform Mott's 

exponential laws into power laws. To calculate I,,, and E' we 
use a generalized variant, which I developed earlier,3*10s15 of 
the Berezinskii diagram technique. Note that this method is 
now used in many 1D problems, particularly for the calcula- 
tion of the density of states, as well as to calculate the hop- 
ping mobility of classical particles.17 Its use in the present 
paper allows us to take into account simultaneously the ef- 
fects of commensurability and the effects of strong scattering 
by impurities. A similar approach, which I developed in a 
preceding paper1' for the calculation of the density of states 
p(&), has made it possible to demonstrate the existence of a 
Dyson singularity even in the case of very strong scattering 
by impurities. 

We note that by assuming that the interaction with the 
impurities is strong enough we imply that their density is 
low, c(il - ', so thatp,l) 1 .3p'0 We assume also that the aver- 
age distance c- ' between impurities is small compared with 
their characteristic dimension b. The condition p,l$l 
makes it necessary to discard all diagrams containing rapid- 
ly oscillating factors such as exp(@,x), x = na, (Refs. 3, 10). 
We must retain here diagrams that contain large contribu- 
tions of the type 

C erp (2isop,nol) > I  
n 

if the electron momentump, turns out to be close to one of 
the rational values1° 

2. DERIVATION OF THE BASIC EQUATIONS 

To calculate I,,, and E' it is necessary to find the asymp- 
totic low-frequency correlators of the density (a = 0) and of 
the current (a = 1). In diagram language these correlators 
XO ( E , w , ~ )  take the form of a polarization loop with density 
and current operatorsj" (x),j" (x') in the input vertices x and 

3,14,15 . To calculate these correlators in the coordinate-en- 
ergy representation we use the Berezinskii diagram tech- 
nique14 generalized in my earlier  paper^^,'^.'^ to include the 
case of strong interaction with the impurities. 

According to this method, allowance for the strong in- 
teraction with the impurities leads to connecting individual 
crosses corresponding to the Born scattering amplitude a 
into clusters corresponding to scattering by an individual 
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impurity. The diagrams must then summed in two stages. 
The first is summation over all crosses that enter in a single 
act of scattering by an impurity, so that the Born amplitude 
a is replaced by the total forward- and backward-scattering 
amplitudes f+ and f-, respectively. It is next necessary to 
sum over these clusters; this summation corresponds to 
allowance for multiple scattering by an individual impurity. 
The integration over the positions of the individual clusters 
is carried out over a scale on the order of the mean free path 
I-c-', and the integration within clusters over a scale 
X-641. 

Since we are interested in the singularities of I,,, and 
near the center of the band ( p ( e ) z p 0 ~ r / 2 a , ) ,  we should 
take into account impurity vertices that contain factors of 
the type e * 4ipx, x = nu,. We note that such factors are en- 
countered, in particular, in impurity vertices that contain 
only single lines, i.e., retarded Green's functions 

Go+ ( E ,  x ,  x l )  =- i  exp ( i p  ( E )  1 x-2'1 ) / u ( e ) ,  

or only double lines, i.e., advanced Green's functions 

Go- ( E ,  x, x') = i  exp ( - i p  ( E )  Ix-xfl ) / v ( E )  . 

Therefore changes in the numbers of pairs of single and dou- 
ble lines in section of each diagram can take place indepen- 
dently and these numbers, m, and m,, are now unequal. 

Subdividing now the polarization loop for the correla- 
tors Xa ( E , w , ~  ), in accord with the Berenzinski'i method, into 
right-hand, left-hand, and central parts and considering 
their changes as the point x is displaced, we obtain the fol- 
lowing equation for the right-hand parts RmLm2 ( x ) :  

x exp { 2 i x [  (PO-pi) s i-  (PO-PZ)  szl) 

and the summation overs, and s, includes only terms with 
even values of the differences, - s,. Here m, and m, denote 
respectively the number of pairs of single and double lines in 
the section x + 0, while s, and s, are their changes due to 
insertion of clusters of impurity lines. The binomial coeffi- 
cients correspond to the number of methods of connecting 
the cluster to the diagram. The second term in (1) corre- 
sponds to exclusion, from the sum over s, and s,, of terms 
with si = ki = 0, and the third to allowance for terms with 
si = - mi (i = 1;2). Equation (1) must be solved with the 
boundary condition Roo = 1. 

It is similarly possible to obtain also equations for the 
central parts Z 22 (x' J) : 

where 

k 

The substitution 
Rmlm1 ( x )  = ( - 1 )  (m1-rn1"2R mtms 

leads to the following equation for the quantities Rmlm2 : 

where the v,, are defined in Eq. (2). 
The correlation functions ? ( ~ , w , k )  are expressed in 

this case in terms of the quantities PZlm2 and Q Z,,,, that are 
defined by the  expression^^^^^'^ 

xeiR(s8-c) m*'ml' Zmrm2 ( x ' ,  x )  p;Vrnlf ( - 1 )  (ml'--')'2 

x e x p  (2 i t  (pi--po) ( m i x - m i ' x l )  

according to the f ~ r m u l a ~ . ~ ~ ' ~  

where I is the mean free path relative to the backscattering. 
The quantity I = (cy)-' is determined by the coefficient 
y = I f -  l 2  of reflection from individual impurities. 

Equations for Q Z,,? can be easily obtained from (3 )  and 
are of the form 

i[ ( 2 m l + 1 )  ( p O - p l ) - - ( 2 m 2 + l )  ( P O - P A  1Qm;mz 

where the w,, are defined in Eq. (4). 
The derived expressions (6) and (10) allow us to investi- 

gate the characteristics of the electron states near the center 
of the band. As indicated in the earlier Refs. 3,9, and 10, the 
most interesting situation arises when the forward-scatter- 
ing amplitude f+ is a real quantity and consequently the 
phase shift p, for forward scattering is zero. The unitarity 
relation for the dimensionless quantities f, are of the usual 
form3.'O: 
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It follows therefore from (1 1) that 

1 l + f +  1 2=1-y, (1 3) 

and from (12) we get the equality 

f- ( l + f + * )  = - f - * ( l + f + ) .  (14) 

The value of po is determined in this case from the relation 

l + f + = ( i - y ) " l e c Q o ,  (15) 

and real values off, correspond to the condition po = 0. 
The expressions for urn, and w,, take in this notation 

the form 
m-R iqo(2m+s) 

Urns= ~ c m ~ ~ ~ ~ ~ - i ( - ~ ) s ( - 7 ) " s " ( l - ~ )  e (16) 
k 

The reflection coefficient y in (16) and (17) varies in the 
range O<y< 1 and determines the character of the interac- 
tion of the electrons with the impurities. Very strong scatter- 
ing corresponds to y-+l, and the Born approximation to 
y g l .  

We note in conclusion that at m, = 0 or m, = 0 Eq. (6) 
describes averaging of an individual Green's function 
G +(E,x,x) or G -(E,x,x), and yields known1' results for the 
density of statesp(e). In particular, at po = 0 the Dyson sin- 
gularity of p ( ~ )  appears near the center of the band at all 
values of y.'' 

We note that the correlation functions (9) corre- 
spond to averaging ofthe product G +G - (Refs. 3,9,15). The 
contribution of products of the type G + G + to the static 
characteristics vanishes by virtue of its even dependence on 
the frequency w (Refs. 9 and 15). 

3. LOCALIZATION OF ELECTRON STATES 

We shall be interested hereafter in the static character- 
istics I,,, and E' of the electron states. We should therefore 
investigate the low-frequency asymptotic forms of the corre- 
lation functions ( E , w , ~ )  as W-0. This calls for solving 
Eqs. (6) and (10) at w(r-'. We k n ~ w ~ . ~ . ' ' . ' ~  that in this limit 
the significant terms in the sums (9) over m, and m, are the 
large m ,, m, - (07)-'% 1. Thus, expanding Eqs. (6) and (10) 
in terms the small m; ', m, ', we can transform from the 
discrete variables m, and m, to the continuous variable 
q = - iwr(m, -+ m,) = - 2iwrM- 1 and the continuous 
one m = 1/2(m1 - m,) - 1. Similarly, summation over m, 
and m, in (9) can be replaced by integration with respect to q 
and summation over m. 

To carry out the expansions with respect to m, ',m; ' 
(1 we shall find it convenient to introduce in the sums (6) 
and (10) over s, and s, the variables S = 1/2(s1 + s,) and 
s = 1/2(s1 - s,). We can now substitute the quantities 
RM + ,, + , in the form of series in powers of S: 

Using the known integral representation for the bi- 
nomial coefficients 

where the integration is over a circle of radiusp < 1 centered 
at ~ero ,~ , ' ' , '~  we obtain for the quantities vmFJ the following 
expression: 

Representing the factor S" in (1 8) in the form 

and using the representation (20) for the quantities umFJ, we 
obtain. After summing oversand integrating with respect to 
z,, an equation for R,  (M ) at large M) 1 : 

where 

- 1 2m ( z -  a 1 ) " --- e2i%(zm+a) 
X[ y S h ( i - z )  1 - z  z-ya a 

. (23) 

Here to = 41 (p - p,), and the integration with respect to z in 
(1 3) is along a circle of radius y < p  < 1 around zero. At large 
MB 1 the quantities V, (M,s,m) assume in principal order in 
M - ' the form 

In terms of the continuous variable q = - 2i- 
WTM = - iul M, the equation for R,  (q) take therefore the 
form 

where 

cpv(s ,  m, 4)=- 
2niy 

z x(-- + ' ,2i~0(2m+s). 
1 - z  z - y  

We can similarly obtain equations for Q ",q,,x), viz., 

1 
( y - i m t , )  Qma=Pma--ixQmd- - Qma 

Y 

v,-' 

where ?t = kl, 
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The integrals with respect to z in (26) and (28) are along a 
circle of radius y <p < 1 around zero. The most convenient 
integration contour is a circle of radius p = y"'. 

The expression for the correlation functions 1" in terms 
of R ,  and Q ",takes as w-0 the form 

where 

Equations (25) and (27) yield the low-frequency asymp- 
totic forms of the density and current correlators. It follows 
from them in particular, when (29) and (30) are taken into 
account, that as w-0 we get 

The density correlator 1' has thus at long times t- co a sta- 
tionary asymptotic form that determines the spatial distri- 
bution p, (x) of the electron density for localized states, 
while the conductivity o(w) defined in accord with the Kubo 
formula in terms of the quantity %?.,(a) vanishes at w = 0. 

The coefficient of the linear term in the low-frequency 
asymptotic form of the complex conductivity a(w) deter- 
mines the static dielectric constant &': 

E' = lim 4na (o) 1 (-io) , 
0-0 

(31) 

while the spatial asymptotic valuep, (x) determines the lo- 
calization length: 

I,;: = lim Ilnp, (x)/x~. (32) 
I=l+- 

Equations (25) and (27) thus enable us to find the values of 
I,,, and E' and to investigate their singularities near the cen- 
ter of the band as ~4. The most interesting results occur in 
the case po = 0 (Ref. lo), which we shall in fact consider 
hereafter. 

4. LOCALIZATION LENGTH 

To calculate the localization length I ,,, we must find the 
asymptotic density correlator Z0(&,t,x) for long times t+co 
and large distances Ixl+ CO. As shown in the preceding sec- 
tion, the limit 

lim .X0(&, t, X )  = p ,  ( x )  
t-cm 

determines the spatial distribution of the electron density. 
The asymptotic form of p, (x) as I X ~ + C O  is determined in 
this case by the branch point of the quantities Q O, (q,x) with 
respect to x (Refs. 3, 9, 15). The position of the branch point 
can be easily obtained from the asymptotic values of Q O, (q,x) 
at q( 1 .3,15 

Indeed, substituting in the homogeneous part of (27) the 
quantities Q O, (q,x) at q( 1 in the form Q (q,x) = a, $ , we 
obtain for the a, the equation 

- - a m  + Z fm,  ( A )  am+,=0, (33) 

where 

The most convenient contour of integration with respect to z 
in (34) is a circle of radiusp = y'I2. Using the known integral 
representation of the hypergeometric function F(a ,  P,S,y),18 
we easily obtain the expression 

fmi (h)  = ez'k(2m+s) it' r2m-2-A+a 

r (2m-h) 
x F(hf1-2 (m+ s ) ,  

I'(1-2s) r(2rn-I-2s-h) 

We shall be interested hereafter in the singularities of 
1 ,,, near the center of the band, and consider therefore the 
case of small (to 1 ( 1. 

We consider first the case of weak disorder y(1. Ex- 
panding Eqs. (33) in powers of the small y and retaining only 
the principal terms, we obtain the following equations for 
the values of a, : 

O=a, [h ( h f  I )  -4m2+imto-ix] +a,,,-, ['/,A (h+l) 
+A(l-2m) f 2m2-3m+l] +am+, ['/,h(h+l) 

+A (1+2m) +2mZ+3m+l]. (36) 

It follows from the structure of (36) that small I t,l ( 1 corre- 
spond to large m - ltol - I )  1. We can therefore transform 
from difference to differential equations. Introducing the 
continuous variablep = - imt,, we obtain for the function 
alp) the equation 

This equation reduces to the Bessel equation,19 and its gen- 
eral solution that decreases at infinity is of the form 

a(p)  = c ~ - ( ' + " K ~ , ( Y ~ ) ,  v= (ix/2)'l2, (38) 

where K is a modified Bessel function and C an arbitrary 
constant. It follows from (38) that at to = 0 the quantities 
Q 0, have a branch point at x, = 0. Thus, at large distances 
(x() l  the electron density p, (x) decreases as a power law 
and the localization length I ,,, -+ co .3.9 

This result can be obtained directly from Eq. (37). In- 
deed, as follows from (37), alp) is a power-law function at 
small p(1. Therefore, rewriting a@) in (37) at p< l  in the 
form Cpq, we obtain for ?;I the simple equation 

qz+2q (h+l) + (A+ I )  Z-'lzix=O, q=- (h+l) * ('/,ix)'". 

(39) 
This method can be used in the case of strong scattering, 
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when y- 1. Indeed, using the fact that small ltol correspond 
to large m- ltoJ-', we can transform from the difference 
equations (33) to continuous ones. To this end we represent 

, a, +, from (33) in the series form 

Substituting next s" in the form 

and summing overs and integrating with respect to z in (33) 
and (34), we obtain an equation for the function a@) in the 
principal order in m - ' ( 1 : 

where 

It follows from (42) that asp-+O the function a@) has a 
power-law asymptotic form Cpq . Substituting a@) in such a 
form in (42), we obtain an equation for the exponent 7: 

Introducing new variables 

and solving the equation for z, we get 

z"=l+iya* [ i y ~ ( 2 + i y a ) ] ' ~ .  (46) 

It follows therefore that at an arbitrary y < 1 the position of 
the branch point to = 0 is determined by the condition 
x = x ,  = 0, so that the localization length I,,, becomes infi- 
nite near the center of the band in the absence of a phase shift 
for forward scattering by the impurities. This singularity 
vanishes only in the case y = 1, which corresponds to infi- 
nitely strong scattering by the impurities. 

5. CHARACTER OF THE SINGULARITY 

To determine the character of the singularity of I,,, as 
E-0, we must analyze Eqs. (33) in greater detail. We consid- 
er first the case of weak disorder, y(1, which is described by 
Eq. (36). 

Introducing the continuous function 

we obtain the following differential equation 

We are interested in the asymptotic form of the depen- 
dence of l,,, on to as t 0 4 ,  and consider therefore the case 
Itol ( 1. In this limit we can solve (48) by perturbation theory 
in the small to. It must be noted, however, that the term t&a/ 
d p  in (48) turns out to be small only at q, - 1, but in the region 
of small p - to it is predominant. At small p -to we must 
therefore solve Eq. (48) with this term taken into account, 
and obtain the effective boundary condition for a(q, ) as p-0. 

We construct first the zeroth approximation for a (p  ) as 
t 0 4 .  To this end we must solve Eq. (48) at to = 0. Simple 
 transformation^'^ yield for it two linearly independent solu- 
tions: 

where C, are unknown constants of the order of unity. It 
follows hence that x, (to) vanishes at to = 0. To determine the 
manner in which x ,  (to)-0 as to-+O, we must solve Eq. (48) 
for small p - to. 

Expanding (38) in powers of p( 1 and making the sub- 
stitution 

we obtain for al(2t,Jp ) a confluent hypergeometric func- 
tion.18*19 Choosing for this equation a solution that is bound- 
ed as p-0, we obtain for a ( p  ) at p - to 

where Y is a confluent hypergeometric f u n ~ t i o n ' ~ , ~ ~  and Cis 
an arbitrary constant of the order of unity. 

Expanding the solution (49) in powers of the small p( 1 
and using the known asymptotic form of Y at to/p< 1 (Ref. 
20), we obtain, by matching these solutions in the region 
t o g p g l  the following expression for the ratio of the con- 
stants C+ and C- in (49) at to(l: 

It follows hence that for a finite limit lim,, (C+/C-) 
to exist it is necessary that the characteristic value v, (to) van- 
ish as t-0 like 

This means that the value of x, , which determines the posi- 
tion of the branch point, vanishes as t,-0 like (lnltol)-2, 
while the localization length I,,, is found to be proportional 
to ln21toI: 

1LOC (to) =pz ln2 1 t o  1, 1 t o  1 < I .  (52) 

A more detailed analysis of this asymptotic form by numeri- 
cal methods shows that the coefficientp in (52) is close to 0.5. 

It can be seen from (52) that the localization length has 
at po = 0 a logarithmic singularity at the center of the band. 
The dependence I,,, (E) cc l n 2 ~  obtained by us is substantially 
stronger than the result I,,,(E) a l m  of Eggarter and Rie- 
dinger,21 which they obtained for one-dimensional systems 
with purely nondiagonal disorder by averaging localized 
wave functions. The reason for this difference is that direct 
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averaging of the wave functions affects the corresponding 
oscillating factors and leads to a faster decrease at long dis- 
tances and to underestimates of I,,, . 3  

The asymptotic expression (52) indicated above can be 
obtained also by a simpler method from the continuous 
equation (37) with allowance for the correction terms of first 
order in the small to. Indeed, expanding the difference equa- 
tion (36) to the next term in powers of m-l, we obtain the 
correction 

This correction, however, plays a dominant role at small 
p - tog 1, where it determines completely the structure of the 
solution ado). It can be easily seen that the power-law asymp- 
totic relation (38) is replaced by an exponential one: 
lna(p) ap/t0. These solutions should be matched in a region 
where both are of the same order of magnitude, i.e., at 
p-tolnto. It follows therefore that in this region of p the 
correction terms (53) yield a shift Sx, (to) - (In to)-2, in agree- 
ment with (52). This reasoning can be used also in the case 
y- 1. Indeed, simple calculations show that the structure of 
the correction terms in powers of m-' is similar in form and 
starts with terms -mP2. The reason is that the difference 
operators (33) and (36) are even with respect to replacement 
of m by - m. Since the location of the matching region de- 
pends little on y, the correction to the zero value x, = 0 will 
be of the order of (In to)-2 and the localization length will 
have the singularity 

l,,, (to) m1n2 1 to I 
as to--4 and at arbitrary values of y < 1. The proportionality 
coefficient0 turns out to depend substantially on the value of 
y. This conclusion is incorrect only at y = 1. It follows from 
(34) that as y-1 all the fms vanish, so that only the diagonal 
terms remain in (33), and the minimum eigenvalue is x, = 1. 
This result is valid only at y = 1. At y <  1 and small 
to 5 (1 - y)1'2 large m -t ; ' become significant and this fac- 
tor compensates for the small quantity of the type 1 - y in 
the matrix elements fms . Therefore the logarithmic singular- 
ity of the localization length is always preserved in a narrow 
vicinity of Itol 5 (1 - y)'I2 near zero. 

The situation considered by us pertained to the case 
p0 = 0. At nonzero values of p0 the singularity of I at the 
band center vanishes and is transformed into a characteristic 
maximum of finite height that tends to infinity as pO-0. We 
note that at finite values y - 1 similar peaks of I,,, (E) appear 
also at all other rational points of the band near the values 

in analogy with their appearance in the density p ( ~ )  of the 
electron states.'' For numerical reasons, however, their 
height is relatively small and reaches only several percent of 
the initial value of 1 ,,, . The corresponding equations are easi- 
ly obtained from (25), (27), and (33) by replacing 2m and 2s in 
(26), (28), and (34) by som and s ~ ,  and can be solved by nu- 
merical methods. 

In the limit of very strong scattering, as y-+l, all the 
singularities vanish, for in this limit the electron becomes 

locked-in between two neighboring impurities and the 
length I,,, is determined only by the average distance 
between them. In the weak-scattering limit, only the singu- 
larities near the center of the band are preserved. 

6. DIELECTRIC CONSTANT 

To investigate the singularities of the static dielectric 
constant E' near the center of the band it is necessary to ana- 
lyze the structure of the continuous equations (25) and (27) in 
the region of small Itol 4 1. As shown in Sec. 4, in this limit 
large values m -t ; ' become significant in Eqs. (25) and (27). 
We can therefore transform from the difference equations 
(25) and (27) to differential ones, and from summation over m 
in (29) to integration. Going to the corresponding limit in 
accord with Sec. 4, we obtain in terms of the continuous 
variables q and p the following equations for the functions 
R ( 9 , ~ )  and e" ( 9 , ~ )  at It014 1: 

where 

The general expression (29) for the correlation func- 
tions ( E , w , ~  ) takes in this limit the form 

From (57) follows the existence of an energy singularity near 
the band center: 

K a ( ~ , m , k ) m l ~ ~ I - ' ,  le.tl<l. (58) 

Such a singularity in the current correlator corresponds to 
the static dielectric constant going to infinity: 

E ' ( E ) w ~ & T ~ - ' ,  1 ~ ~ 1  <I.  (59) 

The absolute-value signs in (58) and (59) are due to the gen- 
eral analytic structure of (57). This structure was investigat- 
ed in the limit of weak scattering y( 1 in Ref. 9. 

In the small-y limit there remain in Eqs. (54) and (55) in 
the lowest order only first- and second-derivative terms that 
coincide with the equations of Ref. 9. In these equations the 
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radial and angle variables q + p and (q - p) / (q  + p) separate, 
and as a result the radial dependences are determined by the 
Bessel equation, and the necessary integrals with respect to 
the angle variables are obtained directly from the boundary 
conditions and from elementary identities of the form 

Q = Q n t m P m m ,  

m,,m*=O m,,m2=0 C ' "  
In the case y - 1 the identities (60) and (61) can be made 

valid by multiplying Eqs. (10) at a = 0 and 1 by P kSm2 or at 
a = 0 by Qk,,, and summing over m ,  and m ,  with 
allowance for (6).  In addition, by virtue of the obvious sym- 
metry of Eqs. (54) and (55) they admit also of separation of 
the radial and' angular variables q + p and (q  -p) (q  + p). 
The equation for the radial function R,,, (q + p)  takes then 
the form 

This equation coincides with the one that determines the 
character of the singularity of the density of statesp(&) near 
the center of the band.'' The solution (62) can be obtained in 
the form of a series in powers oft,. lo To investigate the char- 
acter of the singularity of E' we need only the asymptotic 
form of R,,, ( t , )  as t,+O, viz., 

R m d ( t l ) = A  In t i ,  I t l I ~ l ,  (63) 

where A is a constant that does not depend on the radial 
variable t , .  With allowance for the angular dependences, the 
expressions for the quantities P take now the formy 

4 - P  p 1 ( q ,  p )  = ( - i v , )  [cp (=) ~ : . d ( q + ~ )  

where p( y )  is the angular part of the function R (q,p). We note 
that the constant factor A in the asymptotic relation (63) can 
be included in the angular dependence. We therefore put 
hereafter A = - 1/2 to conform with the notation of Ref. 9. 

We shall be interested hereafter only in static character- 
istics, so that we can put vl--tO and neglect this quantity 
together with to. The boundary conditions for the angular 
function p( y) ,  whose structure is determined from the solu- 
tion of Eqs. (6)  and (10) at m , - 1 and m ,  - 1, is obtained from 
the solutions (6)  and ( l o )  with m ,  = 0 or m ,  = 0:  

Rm,o=Rm, ( t o ) ,  Rom,=Rm, ( t o ) ,  (66) 

where the functions R,  (to) are obtained from the equation 
that determines the distribution of the density p ( ~ )  of the 

electron  state^,^"^ and are connected with this equation by 
the relation 

Going to the continuous limit m,,m,) 1 in (66) and us- 
ing the known asymptotic form for R,  (to) at lt,l<l and 
1 ( m ( t ,  ' (Ref. l o ) ,  

we obtain in the principal logarithmic approximation 

cp ( 1 )  o2/1n ( - i t o ) ,  9 ( I )  2 ( i t  0 1 .  (69) 

The integrals of the function p2( y) with respect to the 
angle varaibles can be obtained from the identity (60) at 
a = 0 and are of the form 

j ay c p 2 ( ~ )  = - 2 i t o p  ( t 0 ) / p 0 .  (70) 
- 2  

A simple analysis of the integrals with respect to the angle 
variablesy shows that in the principal logarithmic approxi- 
mation in to the main contribution to the current correlator 
2 ' (E,w) is made by the first term of (65). We note further that 
it proves also the smallness of the contribution made to the 
correlator by the product G + ( E  + o / 2 ) G  + ( E  - w/2) ,  of the 
electron Green's function, which is an even function ofw and 
therefore contains an extra power of w as w-0 (Ref. 9). We 
can therefore omit henceforth the tilde from the correlators 
Xa ( ~ , w , k  ). 

It can be easily seen that the radial dependences of 
Q ' ( q  + p )  at small / q  +pi ( 1 ,  with allowance for the first 
term of (65), is of the form 

The angular dependences of Q ' ( q  + p )  is described in this 
case by the same function p( y). Substituting the asymptotic 
relations (63) and (71) in the integral of (57), we find, cutting 
off the divergence at the lower limit in the region t ,  - ( - it,), 
the following expression f o r 2  ' (E ,o)  in the principal logarith- 
mic approximation in 1 to 1 4 1 : 

It follows from this equation, in particular, that the contri- 
bution to the static dielectric constant E' from electrons of 
energy E is 

where 

and S is the cross section area per conducting filament. 
To obtain the total dielectric constant E' it is necessary 

to integrate expression (73) for E'(E) with respect to E with an 
additional factor ( - dn/&), where n ( ~ )  is the Fermi distri- 
bution function. We note that in this case two most interest- 
ing situations are possible: the Fermi level is either within 
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the small distance E(T-I from the center of the band or 
exactly at the center. 

In the first case the dielectric constant E' at T = 0 is 
determined directly by Eq. (73), in which E, is determined by 
the values of the velocity v and of the mean free path I on the 
Fermi level, while p ( ~ )  is given by the equation obtained in 
Ref. 10: 

Here B (y) is a numerical coefficient of the order of unity and 
depends on y. A plot obtained for B (y) by numerical methods 
is given in Ref. 10. B (y)+2 at small y( 1, while B (y)+ cc like 
B ( y ) ~  1/41n2(1 - y) as (1-y). With allowance for (75), Eq. 
(73) for the static dielectric constant E' takes the final form 

In the limit y(1 Eq. (76) goes over into the corresponding 
result for weak ~cat ter ing,~ multiplied by the factor 1/8 that 
was omitted in the cited reference. 

In the second case the static dielectric constant E' be- 
comes infinite as T+O. To determine the manner in which 
E'-cc it suffices to integrate (76) with respect to E with a 
weight (an/&). The corresponding logarithmic divergences 
are cut off at E-Tand at &-ri,'(T), where T;'(T) is the 
electron inelastic-scattering probability and determines the 
corresponding damping of the localized electron states and 
the probability of inelastic transitions between them.3,22 In- 
tegrating (76) with respect to E with weight ( - &/&) we 
obtain ultimately at T ~ g l  and TT,,)~, r;'(~-' the 
asymptotic relation 

Since the phonon spectrum in quasi-1D organic conductors 
is usually three-dimensi~nal,'*~ the temperature dependence 
of T, ' (T ), determined by the scattering by acoustic phon- 
ons, takes the power-law form 

zin-' ( T )  -T3, T-tO. (78) 

Therefore as T 4  we have 

E ' ( T )  mT-' In T. 

The dielectric constant of a one-dimensional disordered 
metal with half-filled band, in the absence of forward scat- 
tering, has thus at low temperatures the singularity (79). A 
similar singularity occurs in the frequency dependence of 
&'(a) as w+O. Indeed, as follows from the symmetry of Eqs. 
(54) and (55) to permutation of the variables p and q, in the 
limit tO(vl( 1 the cutoff of the logarithmic divergences (72) 
should occur not at (p + q) - ( - it,) but at (p + q) - ( - ivl) 
(Ref. 9), and corresponds to replacing E by w in Eq. (72). The 
detailed analysis carried out in the preceding paper9 for the 
general Kubo-Greenwood formula for complex conductiv- 
ity can be repeated also in the case considered here, since this 
analysis was based only on the general structure of expres- 
sion (72), which retains the same form for strong scattering. 
The final result for the asymptotic form of ef(w) as w-0 is9 

We note that all the singularities (73), (79), (80) of the 
dielectric constant near the center of the band are due mainly 
to the Dyson singularity (75) of the electron density of states 
P(E). As shown in my preceding paper," in the presence of 
sufficiently strong scattering, when y - 1, large peaks ofp(e) 
occur at all rational points of the electron band, i.e., near the 
values 

pp=po=nko/soao, k o = 1  . . . ; * s o - I  ; so>l. 

As y+l these peaks are transformed into S functions, and at 
all irrational points of the band the density of states vanishes, 
for in this limit of infinitely strong scattering the electron 
becomes locked-in between two nearest impurities and only 
states with rational values of the wavelength A /2 = a,,so/ko 
are preserved in the system. lo Since the dielectric constant is 
determined to a considerable degree by the density of the 
electron states, similar peaks should be observed also in the 
E'(E) dependence. 

To obtain the equations that describe the localization of 
the electron states near an arbitrary rational point of the 
band it suffices, as already shown earlier," to replace 2m and 
2s in (25) and (27) by som and s ~ .  The equations obtained in 
this manner can be solved by numerical methods. Plots of 
&I(&) at po = 0 and y = 0.5, 0.7, and 0.9 for a quarter-filled 
electron band (this corresponds to so = 4) are shown in Fig. 
1. We note that the peaks ~f E' are quite large even at values 
not too close to unity. It is <urious that near the maximum 
there appear relatively deep minima that cause E' to seem 
smaller than E' if pF #po but is in a close vicinity of this 
point. As y-1 these minima sink deeper to zero in accord 
with a law that can be easily obtained directly by solving the 
initial equations (6) and (10) at y = 1. Indeed, retaining in 
these equations only terms of lowest order in the small pa- 
rameter (1 - y)( l ,  we easily obtain the following expression 
for the quantities R and Q ",,> : 

R,,,, =[ 1+2il(m2 ( P Z - P ~ )  - mi (pi-po) I-', (81) 

FIG. 1. Dependence of the static dielectric constant E' on the dimension- 
less electron energy to near 1/4 of the band at p, = 0 and y = 0.5 (dashed 
line), y = 0.7 (dash-dot), and y = 0.9 (solid). 
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Transforming the continuous variable q as w 4 ,  we get 

where t, = tos,,/2. Substituting Eqs. (83) and (84) in (29) and 
taking (30) into account with x = 0 and a = 1, we easily ob- 
tain, after integrating with respect to q and summing over m, 
the following expression for the static dielectric constant: 

It follows from this equation, in particular, that at I t2 1 ( 1 

We see hence that at small t2 the dielectric constant goes to 
zero exponentially because of the vanishing of the density of 
the electron states.'' At y < 1 there is no dip to zero, but the 
value of the dielectric constant at the minimum can be quite 
small, at least as y-+l. Thus, allowance for effects of strong 
scattering by impurities leads to formation of sharp maxima 
and minima of E'(E) near all the rational points of the band. 
We note that all these singularities, except those at the cen- 
ter, vanish in the case of weak scattering, when y(1. 

7. HOPPING CONDUCTIVITY 

As shown in the preceding section, effects of commen- 
surability of the electron wavelength A and the lattice period 
a, in one-dimensional metals with strong disorder lead to 
strong singularities of the localization length I,,, and the 
static dielectric constant E'. These singularities, as well as the 
corresponding singularities of the electron density of 
states,'' lead to substantial changes in the hopping conduc- 
tivity ah,,, in 1D metals and influence noticeably, in parti- 
cular, its temperature dependence. 

Indeed, as shown in earlier  paper^,^.^^ at not too low 
temperatures the hopping conduction is the result of elec- 
tron hops between neighboring localized states, due to in- 
elastic scattering by phonons, and the temperature depen- 
dence of uhopp ( T )  is given by 

1 
 IS^^^^ ( T )  = - Errin-' ( T )  

4n 

In the case of a half-filled band and in the absence of 
forward scattering by the impurities, the temperature depen- 
dence of E'(T) is given by (77) and causes a noticeable change 
ofah,,, ( T  ). If the Fermi level is close to but does not coincide 
with the center of the band, E' is determined by Eq. (76), so 
that ah,,, depends substantially on the distance to the center 
of the band. In a quasi-1D organic metal E can be altered by 
many factors and, in particular, depends strongly on the ex- 
ternal pressure P.2 This leads to substantial maxima of the 
uhopp (P ) dependence as the Fermi level&, passes through the 
center of the band E, = 0. We note that in the case of suffi- 
ciently strong scattering by the impurities the E'(E) depen- 

dence is determined at E # O  by Eq. (85) and corresponds to 
the presence of deep minima that precede a narrow maxi- 
mum at the band center. The plot of uhopp has therefore 
besides the sharp maxima also deep minima at values of E, 

close to the center of the band. 
We point out that on passing through the center of the 

band were observed already at P- 10 kbar by Jerome et al. 
(see the review2), who investigated the pressure dependence 
of the conductivity of the quasi-1D organic conductor TTF- 
TCNQ. It was assumed in these studies that the strong influ- 
ence of the commensurability ofA, and a, on the conductiv- 
ity is an exclusive attribute of the charge-density wave 
(CDW). It follows from our present results that similar ef- 
fects occur also in localization theory, where they are due to 
a specific quantum interference between scattered electron 
waves. 

In the limit of very low temperatures, the hopping con- 
ductivity is determined by hops between localized states that 
are spatially far from one another but have close energy; it is 
described then by the Mott theory.23 In the usual situation, 
whenp(~)  and I,,, have no singularities, this theory predicts 
an exponential decrease of ah,,, ( T )  as T-0: 

In ohoPpm- (TOIT) ' I 2 ,  To-  (pLloc)-'. 

In the presence of the singularities (52) and (57), the corre- 
sponding estimate yields as E+O the following asymptotic 
behavior of To: 

T,cn I E In E 1 .  (88) 

At low temperatures this singularity is cut off at E- T, so 
that the exponential singularity ofuhopp ( T )  as T-0 vanishes. 
We note that this general fact is not connected with the de- 
tails of the derivation of the equations for uhopp (T),23-25 since 
they contain in all cases exponentials of different powers of 
To/T. Therefore different methods of calculating uhopp ( T )  
can lead only to different exponents a in the asymptotic rela- 
tion ah,,, ( T )  a F as T+O. It must be noted that the low- 
temperature behavior of the conductivity in quasi-1D or- 
ganic conductors based on the TCNQ molecule is well 
described by Mott's relations.' We therefore confine our- 
selves here to this case. 

According to Mott's theory, the low-temperature 
asymptotic value ofah,,, ( T )  is determined by the extremum 
of a product of the small wave-function overlap factor 
exp( - 2R /I,,,) and the activation factor exp( - AE(R )/T), 
where R is the mean spatial distance between localized states 
that have an energy difference AE(R ). In the absence of&) 
singularities, the value lfAe is estimated at @R )-' (Ref. 23). 
In the case considered here, where p depends substantially 
on E, this relation gives a self-consistent equation for the 
AE(R ) dependence: 

AE-[p(A&)RI- ' .  (89) 

Substitutingp(A&) in the form (75) in (89) we get 

AE ( R )  -r-' exp {-[2RILB(y) 1""). (90) 

Minimizing now the product 

exp (-2RILl,, ( A E )  -AE/T)  
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with respect to R and taking (90) and (52) into account, we 
readily find, after simple transformations, that as T 4  we 
have 

( s h o p p  (T) ~3 (TT) a, a=B/P. (92) 

We note that in the weak-scattering limit, when y( I, we 
have a z 4 .  Thus, the singularities of the localization length 
and of the density of states near the center of the band cause 
the exponential asymptotic dependence of uhopp ( T )  as T-+O 
to be replaced by a power-law dependence. 

8. CONCLUSION 

We have investigated the influence of effects of com- 
mensurability of the electron wavelength R and of the lattice 
period a, on the characteristics of localized states in a 1D 
metal. We have shown that in the absence offorward scatter- 
ing from impurities, substantial singularities of the localiza- 
tion length and of the static dielectric constant appear near 
the center of the band: 

In the presence of sufficiently strong scattering, charcteristic 
maxima of E'(E) and I,,, (E) occur at all rational points of the 
band. Sharp maxima of&'(&) near these points should lead to 
a substantial increase of E' with decreasing temperature. We 
note however, that just such an E'(T) dependence is observed 
at present, at not too low temperatures, in the quasi-1D or- 
ganic conductors Qn(TCNQ), and A~z(TCNQ), .~~ '  As 
shown in a large number of s t u d i e ~ , ' * ~ , ' ~ , ~  the electrons are 
strongly scattered in these substances, therefore the notice- 
able decrease of E' with increasing T can be explained with 
the aid of the results of the present paper. We note that, as 
shown by Gor'kov and Dorokhov," the condition that there 
be no forward scattering by the impurities is satisfied just in 
such compounds with disordered orientation of the asym- 
metric cations. Satisfaction of this condition, however, is not 
essential for the analysis of the experimental data for 
Qn(TCNQ), and Adz(TCNQ),, since the high peaks of E'(E) 

near 1/4 of the band appear in the case scattering also when 
PO#(). 

We note in conclusion that the real density c, per site, of 
the structure defects in these substances, which is governed 
by the random orientation of the asymmetric cations in two 
opposite directions, is not small and is equal to 1/2. There- 
fore the mean free path I estimated from the value of E' at 
T=: 100 K is found to be ( 3 4 )  a, and p, I-- 3, since p, =IT/ 
4a,. Thus, the condition p, 1) 1 is satisfied with some diffi- 
culty. We note, however, that the expansion in powers of 
@,I)-' contains only even powers,'5 so that the model con- 

sidered can describe a real situation. This pertains also to the 
condition c(1. In Qn(TCNQ), and Adz(TCNQ), we have 
c = 1/2, but it is well k n ~ w n ' ' * ~ *  that the effective density 
c,, that determines the mean free path I = (yc,,)-' is equal 
in this case to c(l  - c) = 1/4, meaning that configurations at 
which two defects land on one site are excluded. Therefore 
the effective defect density is low, and the reflection coeffi- 
cient y is close to unity. 

In conclusion, the author is grateful to S. A. BrazovskiT, 
V. I. Mel'nikov, and E. I. Rashba for a helpful discussion of 
the results. 
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