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In the framework of the standard model of electroweak interactions, a system with broken sym- 
metry of the electromagnetic and weak interactions is considered. It is a Boltzmann plasma with 
neutrino background. It is shown that in such a medium and in the presence of polarization effects 
of Z y  mixing of the excitations of the neutral fields a long-range weak force mechanism exists 
which differs from the well-known case of high-temperature restoration of symmetry. Dispersion 
relations are obtained for excitations of the Yang-Mills fields in the system, and for Weinberg 
angle 8, + 30" the excitations of the massive neutral field SZ, which have a spectrum identical to 
electromagnetic oscillations, also have a massless (long-range) nature. The screening of test parti- 
cles in the medium is calculated, allowance being made for the screening of a hypothetically 
massive neutrino coupled effectively by the long-range forces to the electrons within the Debye 
sphere. The polarization losses of neutrino energy expended on the excitation of the longitudinal 
oscillations of the neutral Z and A fields are calculated. At relatively high plasma densities 
(a, > E,) these losses exceed the collisional losses in direct ve collisions, which means that there is 
an enhancement of the weak interaction of the neutrinos with the medium through resonant 
excitation in it of collective degrees of freedom. 

1. The standard model of electroweak interactions,' for 
which more and more new experimental confirmations are 
currently being found, is becoming as perfect a theory as 
quantum electrodynamics. It is sufficient to mention here 
the calculation of the radiative corrections in the model (see, 
for example, Ref. 2). 

If the Lagrangian of Abelian electrodynamics can be 
taken as the basis of the theory of an ordinary plasma, the 
same can be done using the unified theory of electromagnetic 
and weak interactions1 for an extended system of many par- 
ticles including a neutrino component as subsystem. 

The thermodynamics of a many-particle system in the- 
ories with spontaneously broken symmetry, in particular in 
the standard model,' has already been considered on a num- 
ber of  occasion^^.^ in connection with the study of various 
phase transitions (with the inclusion of hadrons; see Ref. 5). 
However, these studies were concerned only with the ther- 
modynamically equilibrium state of a system in the range of 
temperatures and densities characteristic, for example, of 
the early stage of the Universe (big bang). Excitations of a 
medium due to fluctuations of the Yang-Mills fields were not 
considered. At the same time, fluctuations, which always 
exist in a medium, can grow in a system in the presence of 
large-scale inhomogeneities (particle streams, external 
fields), and it is therefore important to study the dispersion 
characteristics, in particular the spectra of boson excitations 
of the background equilibrium medium. 

This problem has been solved in statistical QCD for a 
quark-gluon plasma with massless Yang-Mills fields6 So far 
as we know, there has as yet been no corresponding general- 
ization to the case of many particles in theories with spon- 
taneously broken symmetry. 

The aim of the present paper is to find the dispersion 

characteristics, the screening, and the energy losses of test 
particles in an ordinary (Boltzmann) plasma with a back- 
ground of neutrinos that are not in thermodynamic equilib- 
rium with the matter. In the special case of a relic back- 
ground, inequality of the temperatures (T, # T,) does not 
mean there are instabilities in the electron-neutrino system, 
as in, for example, an ordinary collisionless plasma with une- 
qual electron and ion temperatures (Ti # Ti ). Real instabili- 
ties arise when the medium ceases to be homogeneous or 
isotropic. Although the system as a whole is not in the state 
with minimum energy (as in the examples analyzed in Refs. 3 
and 4), it does remain in equilibrium in the subsystems of the 
charged and neutral particles, which do not interact through 
direct collisions. If fluctuation currents of stable leptons 
arise in such a medium, they can be sources of fluctuations of 
the Yang-Mills fields, the spectrum of which is determined 
by the required dispersion relations. 

By studying in this paper a Boltzmann plasma with neu- 
trino background we simplify the problem by reducing the 
number of plasma components (the positron density is low, 
n,t -to), and our aim is to exhibit in a simple example a new 
(collective) mechanism of neutrino-matter interaction. As 
neutrino component we can also consider nonequilibrium 
neutrino fluxes and even an isolated neutrino in the plasma. 

The paper is arranged as follows. In Sec. 2, we consider 
the restrictions associated with the choice of the many-parti- 
cle system, and we discuss the part played by the nonlinear 
self-interaction of the Yang-Mills fields, which influences 
the solutions of the tree approximation under equilibrium 
conditions (in the absence of fluctuations). 

In Sec. 3, we formulate the basic equations that describe 
the dynamics of the Boltzmann plasma with a background of 
relic neutrinos. In Sec. 4, we obtain dispersion relations for 
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excitations of the vector fields for arbitrary values of the 
Weinberg angle 8, both in the absence (8, = 30") and pres- 
ence of Z y  mixing (8, # 30"). 

In Sec. 5, we calculate the screening of test particles- 
with electric charge Q and neutrinos-and in Sec. 6 we cal- 
culate the polarization losses of the neutrinos in the Boltz- 
mann plasma. The interpretation of these results in Sec. 7 
shows that there is a collective mechanism of long-range 
weak interaction in the medium with manifest breaking of 
the symmetry of the electromagnetic and weak interactions. 
As a result, it is possible to use the self-consistent field ap- 
proximation in deriving collisionless kinetic equations for 
the electron-neutrino plasma. 

In the final Sec. 8 we discuss the possibility of using the 
obtained results to calculate the neutrino emission of a col- 
lapsing star. 

2. The exact Lagrange equations for the vector fields 
A,,  Z, ,  W S  in the model' have the form" 

e ( 1 - r 5 )  
( U S M z 2 ) Z ,  =- 

sin 2 0 ~  ;iljv*yw 7 $v 

e - Jlrnonll" qey, ( 2  cos 2 0 , - 1 - y ~ )  $e --, 
tg ow 

(2) 2 sin 2 0 ,  
e 

( O + M W Z )  Ww+ = - ( l - y r )  Frw- 9, + ~ c l " ~ " ' ~ " ,  (3) 12 sin Ow 2 
e 

( U + M w t )  W,- = - %YM - ( I - 1 . )  $ + ( I ,"o"~~")  +. (4) 
112 sin Ow 2 

Here, e is the electric charge (e2 = 4~/137) ,  and M, and M, 
are the masses of the Z and Wbosons; the Hermitian neutral 
current J?"" and charged current I ~ " " ,  which are nonlin- 
ear in the field amplitudes and arise from the self-interaction 
of the Yang-Mills fields, are determined by 

x[Z,(AW+) + A,(ZW+) - 2 (AZ)  W,,']. (6) 
Quantizing the Fermi and Bose fields in Eqs. (1)-(6) and 

using subsequent averaging by means of the nonequilibrium 

statistical operator b(t ), we can go over to a many-particle 
description of the nonequilibrium system of leptons and vec- 
tor fields. In the general case, the nonequilibrium system of 
leptons will be described by kinetic equations for distribu- 
tion functions determined in the standard manner. For ex- 
ample, in the simple case of a classical electron plasma (with 
a background of fixed ions) and a neutrino component the 
transition to the many-particle description has the usual 
form: 

Here, for massless neutrinos we use the Wigner distribution 
function with noncommuting variables p and r in the argu- 
ment, and summation over the spin variables is understood if 
we are not interested in spin waves in the neutrino gas. 

For bosons, the transition to the many-particle descrip- 
tion appears much more complicated, in the first place be- 
cause of the additional nonlinearity due to the contribution 
of the self-interaction of the Yang-Mills fields ( 5 ) ,  (6), which 
is absent in the case of an ordinary Abelian plasma. How- 
ever, in the linear response theory developed below, when 
nonequilibrium fluxes (electron or neutrino streams) are as- 
sumed to be absent, the problem simplifies appreciably. 

Linearization with respect to the perturbations SA,, 
SZ,, S W F  of the vector fields, which is possible in the ab- 
sence of particle streams, does not free us from the need to 
take into account the contribution of the massive bosons to 
the polarization of the medium even in the finding of the 
linear response. We make one further simplifying step. 

We consider as an example an equilibrium unbounded 
isotropic and homogeneous medium consisting of a Boltz- 
mann plasma of electrons with fixed ions ensuring electrical 
neutrality, 

no-=n,, (7) 

and relic neutrinos with density n," and, in general, a differ- 
ent temperature: Te + T, . The simplification in the calcula- 
tions of the dispersion characteristics of such a medium is 
associated with the restriction to the range of densities and 
temperatures typical of a real plasma: 

n,'"/M,<<T<<M,, (8) 

It is well known that a Rayleigh-Jeans distribution of 
plasmons corresponds to low frequencies of boson excita- 
tions: w(T. On the other hand, in a weakly inhomogeneous 
medium the wave vector k is bounded above either by the 
electron mass me (Boltzmann plasma, Te (me ) or the tem- 
perature T (ultrarelativistic hot plasma2': me (T(M,). In 
accordance with the inequalities (8), these requirements are 
adequate for the consideration of small momentum trans- 
fers: 

qZ<Mw2 ( q 2 = a 2 - k 2 ) .  (8') 

The use of the inequalities (8) and (8') makes it possible: 
a) restriction to a classical description of the Yang-Mills 

fields without recourse to the quantization procedure for 
them; 
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b) ignoring the restoration of symmetry3 or Bose con- 
densation of the charged bosons4; 

c) ignoring the contribution of the real W bosons to the 
dispersion characteristics of the medium. These particles de- 
cay too rapidly, even if they are produced by energetic elec- 
trons and neutrinos from the tails of the Fermi distributions 
with temperature T(Mw. 

As a result, in the considered linear response theory the 
contribution of the nonlinear self-interaction of the Yang- 
Mills fields (5), (6) is important only in the finding of the 
classical solutions of the tree approximation in the absence 
of fluctuations (under equilibrium conditions). As in the 
original case,4 the only nontrivial scalar components of the 
neutral fields CtsZ (tree solution) can be taken into account 
exactly. They do not occur in the condition (7) of electrical 
neutrality because of the absence of a contribution of real 
W* bosons ( n r  = 0). In the equation for the scalar compo- 
nent of the Z field we take into account the compensation of 
the term C f M  by the density of the weak charge jf, which 
under the considered conditions (cf. Ref. 4) has the form 

2  e  
joz  = -- - ( 2  cos 20,-1) 

sin 2 8 T V  4 
n o - ]  

The remarks made above about the part played by the 
self-interaction of the Yang-Mills field makes it clear why in 
what follows we write down only the linear parts of the vec- 
tors of the electric (SE f )  and quasielectric (SE Tw) fields in 
the wave equations. The latter [see (1 1) and (12) below] are a 
direct consequence of the basic microscopic equations of 
motion (1)-(4) and the procedure of macroscopic averaging 
described above. The right-hand sides of the averaged equa- 
tions are determined by the induced lepton currents, which 
depend on the deviations Sf '-'(p,r,t ) and Sf "(p,r,t ) of the 
distribution functions from the equilibrium Maxwellian dis- 
tribution for the electrons, 

no- 
f o -  ( P I  = 

p2 
(2nrneTe)'h ( - 2 ; ; ~ ; i ; ; )  

and the equilibrium Fermi distribution for the neutrinos, 

3. The wave equation for the excitations of the electro- 
magnetic field has the usual form (in the Fourier representa- 
tion) 

[ k i k j + q 2 S i i ] S E i A ( o ,  k )  =-iew juiSf(- '  ( p ,  k,  o ) d 3 p .  (1 1) 

The limits of applicability of plasma electrodynamics 
are extended by the new equation 

- - i o e  ( 2  cos 2ew-1)  
2 sin 20 ,  j u d f -  ( P ,  k ,  a )  d3p 

i o e  -- 
sin 2ew j C ~ S P ( P ,  r) d3p, 

which describes the excitations of the neutral SZ field.3' 
It remains to close the system of self-consistent equa- 

tions (of the type of Vlasov equations) by writing down colli- 

sionless kinetic equations linearized with respect to the de- 
viations from the distributions (10) and (10'). 

The equation 

- ( 2  cos 20,-1) [ v 6 B Z ]  d fo -  
( 8 ~ ' + - ) )  -- -0  (13) 

2 sin 20 ,  c dP 

for the electrons differs from the ordinary Boltzmann equa- 
tion by the addition of the Lorentz force due to the presence 
of excitations of the S Z  field. 

On the basis of direct comparison of the Lagrangian of 
the standard model1 and the Lagrangian of Abelian electro- 
dynamics one can readily understand the origin of the last 
terms in Eq. (13) and in the kinetic equation for the Wigner 
distribution function S f v  (p,r,t ) of the neutrinos: 

We have made a rigorous derivation of more general 
(quantum) collisionless equations, and this will be given in a 
separate paper. On the right-hand sides of the wave equa- 
tions we can include external electromagnetic, jt , and weak, 
jf, neutral currents, which makes it possible to analyze per- 
turbations developing in the medium in the presence of 
streams of both charged particles and neutrinos. 

4. Eliminating by means of (13) and (14) the quantities 
Sf I - , " )  on the right-hand sides of Eqs. (1 1) and (12), we ob- 
tain a simple system of homogeneous linear algebraic equa- 
tions for the intensities S EAsZ of the neutral fields. Equating 
to zero the determinant of this system, we find dispersion 
relations for the longitudinal and transverse perturbations of 
the Yang-Mills fields. The permittivity tensors of the iso- 
tropic medium that occur in the dispersion relations, 

*.' k f k j  + &*.' ( 8 i i  
E j j  = E l  - 

k2 k2 

are determined from (1 3) and (14) and are equal to the expres- 
sions (cf. Ref. 7) 

[v, ( o - k v )  S,+k,viv,l dl:-' 
o - k v  p * d 3 ~ 3  (16) 

where the equilibrium distributions f b- ," are determined in 
(10) and (10'). 

We must distinguish two cases. If the Weinberg angle 
8, is equal to 30" and there is no Zy mixing [see Eqs. (1 1)- 
(14) above], then we have the usual equations for longitudi- 
nal and transverse oscillations in an Abelian plasma, 

which exist independently of the excitations of the Z field 
and are determined by the equations 

Er'-MZZ/q2=0 and etrV- (Mz2+k2) lo2=0 .  

At the same time, as in the case of 6 W* oscillations (see 
footnote 3), oscillations of the Z field are not excited at the 
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long wavelengths corresponding to the restriction (8'). 
The situation is different for Weinberg angle 8, + 30". 

We find directly from (1 1)-(14) that the longitudinal excita- 
tions of the SZ field are determined by the equation 

I M,Z (2 cos ~ B ~ - I ) ~  - I(&; - ?) & I A  + (&IA-I) }= 0, 
& t A  4 sin2 20w 

and the transverse excitations are described by 

+ (2 cos 20w-1)2 
(etrA-i)} = 0. 

4 sin2 2Bw (17'4 

For the SA field we obtain similar relations: 

2 sin 2eW {(  & -?) elA (2 cos 20w-1) (I-&IA) 

2 sin 2ew Mz2+k2 
(2 cos 20w-1) (1-el,*) 

which differ from (17) only by the first factors, which do not 
have poles4' for 8, f 30". 

In the considered range of temperatures and densities 
(8) the modification of the well-known dispersion relations of 
an Abelian plasma by taking into account the weak interac- 
tion in (17) and (18) is slight. For example, the dispersion 
relation for the longitudinal S Z  and SA excitations obtained 
from (17a) and (1 8a), 

contains a correction (in the form of the third term) which is 
small compared with the ordinary contribution of spatial 
dispersion. 

Besides the oscillation branch (19) there exists formally 
a further solution of Eqs. (17a) and (18a): 

(2 cos 20w-1)2 
oz"kZ+Mz2+ 

4 sinz 20, o p e 2 ,  

which it is natural to associate with longitudinal S Z  oscilla- 
tions not excited in the range (8') of small momentum trans- 
fers. 

A more important change in the results of Abelian plas- 
ma electrodynamics is the appearance in the presence of Z y  
mixing (8, f 30") of a new channel of energy dissipation of 
longitudinal oscillations of the neutral fields, including the 
electromagnetic field A .  This is the collisionless damping of 
SZ and SA excitations on the relic neutrinos. 

The total decay rate of the oscillations (19) can be ob- 
tained from Eqs. (17a) and (18a) by means of Eqs. (15) and 

( 16) and is 

where the imaginary parts of the Abelian and neutrino per- 
mittivities are, respectively, 

and 
n2e20TvZ0 (k2-az) 

Im E~~ = 
6k3 

O(k2-o"=l for k>w, O(k2-a2)=0 for k < ~ .  

Because of the nonexponential dependence of the 
imaginary part Im E: on the neutrino temperature T,, and 
wavelength k - I ,  this dissipation mechanism is (for suffi- 
ciently large wavelengths) more important than the well- 
known mechanism of Landau damping on the electrons [see 
the first term in Eq. (20)l. 

5. We consider the screening of a test charged particle 
and an electrically neutral particle in the medium. To calcu- 
late the fields of test particles, we must write down the ana- 
logs of the Poisson equations for the scalar neutral compo- 
nents SA, and SZ, determined by the electric (6 j;) and weak 
(6 jf) charges of a given test particle. 

The system of the corresponding equations has the form 

=- GioA ( a ,  k) 
q2 

I (21) 

(2  cos 2BW-1) 
2 sin 20w 

( I - E ~ ~ )  GAo ( o ,  k) 

+ +( 2cos 20w-1 ) 
2 sin 2 8 ~  

If the particle has electric charge Q, the sources of the 
fields on the right-hand sides of Eqs. (21) and (22) are, respec- 
tively, S j; = Q and 

GjoZ=Q (2  cos 20,-I) 12 sin 28,-, 

where the last relation for the weak charge 6 jf follows from 
Eq. (9) and takes into account the exact compensation of the 
background external charge jf by the equilibrium terms of 
the tree approximation C f M  :. 

From Eqs. (21) and (22) we readily find in this case ex- 
pressions for the static fields 

GA, ( r )  = (2n) -' J d'keXkr 6Ao (0, k) , 

62, (r) = (2n) -' J ~l'ke'~' 6 2 ,  (0, k) , 

which determine the screening of the electric charge Q in the 
considered medium. The potential of the electrostatic field is 
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Qe-'IrD [ 1  - ( 2 cos 2OW-1 ) ' 
6Ao ( r )  = - 

r  2  sin 20w 
( ~ z r D )  -'] 

and for an ordinary plasma, which has large Debye radius 
r D ) M g l ,  differs little from the well-known value in the 
Abelian electrodynamics of continuous media: (Q/  
r)exp( - r/r, ). For Weinberg angle 8, = 30" there is no dif- 
ference at all. In this sense, the electrodynamics of an ordi- 
nary plasma is an exact special case of the standard model1 in 
the absence of Z y  mixing [see Eqs. (1 1)-(14) above]. 

In addition, the electric charge Q in the presence of Z y  
mixing (8, # 30") produces a neutral field Z of small ampli- 
tude of the form5' 

Q ( 2  cos 20w-1) e-"'~ ePMzr 
6 2 ,  ( r )  = 

4 sin 20,  [ ( & I D )  ' I  r  1 .  ,241 

In both Eq. (23) and Eq. (24) the last terms are exponen- 
tially small at the large distances r-rD &M, ' correspond- 
ing to the basic approximation (87, and must be omitted. On 
transition to large momentum transfers, corresponding to 
short distances r - M i  I, it is necessary to take into account 
the contribution of the charged W* bosons to the polariza- 
tion of the medium. This significantly changes the form of 
these terms, and their magnitude in a dense gas (r, -M, ') 
will be of the same order as the main contributions in Eqs. 
(23) and (24). 

If we ignore the relatively weak interaction of the right- 
handed neutrinos with matter, we can assert that the equa- 
tions used here are also valid if the neutrinos have a small 
Dirac mass Sm, #O. This makes it possible to calculate the 
screening of a test neutrino at rest in the considered medium 
on the basis of the same equations (2 1) and (22) as in the case 
of an electrically charged particle. At the same time, ignor- 
ing the mean square electromagnetic radius of the neutrinos, 
which is -g2M, (see the explanations in Sec. 7), we can use 
in Eqs. (2 1) and (22) the values of the Fourier components of 
the external charges: S j { = 0, 6 j f = e/sin 28,. 

Under these conditions, the solutions of the system (21), 
(22) have the following form. The quasielectrostatic Z field 
has the form 

e ( 2  cos 20,-1) e-'/rD e - ~ z ~  
-I- - 

6 Z 0 ( r ) =  ( 2  sin 2OW) (Mzr, )  ' r  2  sin 28,  r  9 (25) 

and the electrostatic A field, which exists in the absence of 
radiative corrections only by virtue of the Z y  mixing, is 

e ( 2  cos 20w-1) e r r  e-MZr 
- - I .  (26) 

(2 sin 2 0 w ) 2 ( M z r D ) z  IT-;- r 

As in the case of the electric charge, the contribution of the 
last terms in Eqs. (23) and (24) can be ignored under the 
conditions (8). 

Note that the potential (26) produced by the test neu- 
trino is an attractive potential for electrons [ - eSA,(r) < 01, 
and accordingly the field (24) creates an equal potential for 
attraction of neutrinos by an electron (Q = - e), 

(elsin 28,) 6 2 ,  ( r )  ( 0  

under the only condition that there is Z y  mixing (8, # 30"), 

the experimentally confirmeds inequality sin28, < 0.25 
holding for the Weinberg angle (see footnote 4). 

6. We determine the polarization energy losses of the 
neutrinos used in exciting the longitudinal A oscillations de- 
scribed by the dispersion relation (18a). For this, we calcu- 
late the energy flux of the electromagnetic field emitted by a 
neutrino (8, # 30") through the cylindrical surface of radius 
p = b, around its " t r a j e ~ t o r ~ . " ~ '  We take the neutrino veloc- 
ity along the z axis: c = (O,O,c). Then the energy losses per 
unit length are 

Here, the components of the longitudinal and transverse 
fields SE;4(r,t ) can be determined from Eqs. (1 1) and (12), 
into which we substitute as sources the currents produced by 
the test neutrino: 

2xec6 (w-kc)  
joA=O, joz(w,  k) = 

sin2Bw 

Then, solving the system of equations, we find the electro- 
magnetic field induced by the moving neutrino in the pres- 
ence of Z y  mixing: 

6EiA (r, t )  

- 2ie ( 2  cos 20w-1) {j d3k e r p [ i ( k r - a t )  ] ( G e l A )  k6 
( 2  sin 2OW) (227~)' 

x [ k 2  [ ( E l v - - ? )  & , A  +( 2cos 2  sin 28,-1 20w ) 2 ( E ~ A - ~ ) ] ]  - I  

.(.,.A- (y) + ( 2c0s2ew-1  2  sin 28,  ) z  , & , , ~ - i ) ] ] - ' )  , 

Here, the permittivities ~f;,Y(m,k) are determined in accor- 
dance with Eqs. (15) and (16). Direct calculations by means 
of (28) of the losses (21) lead to the result 

d W V A  ( 2  cos 20,-1) 'e2w,,2 -- -- 2c 
dl 16 sin' 2 8 ~  

3 (29) 

where y=0.577 is Euler's constant, w,, 
= [(4ae:n,)/m,] 'I2 is the Langmuir frequency, and e: 
= (1371-'. , , 

Note that the neutrino losses on the excitation of the 
longitudinal S Z  oscillations described by the dispersion rela- 
tion (17a) are of the same order as (29). For comparison, we 
give expressions for the polarization losses of a test electron 
in the same medium7: 

and for the collisional losses of neutrinos in direct ve colli- 
sions, 
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obtained by averaging over the electron distribution in the 
plasma. 

As one would expect for the conditions of an ordinary 
plasma used in the present problem (a,, <Mw), the polariza- 
tion losses of the charged particles exceed by many orders of 
magnitude the polarization losses of the neutrinos [cf. (29) 
and (30)l. On the other hand, the collisionless polarization 
losses of the neutrinos in a dense plasma, up, SE, ,  may be 
appreciably greater than the collisional losses [cf. (29) and 
(3111. 

7. We now examine the mechanism of long-range weak 
forces and the possibility of the self-consistent field approxi- 
mation in the considered medium with manifest symmetry 
breaking of the electromagnetic and weak interactions. In 
theories in which the Yang-Mills fields are massless, for ex- 
ample, in statistical QCD6 or in the standard model' but 
with symmetry restoration at high  temperature^,^ the self- 
consistent field approximation is ensured by two factors: the 
presence of the long-range interaction manifested in the 
same dependence of the forces on the distance in the form 
r - I ,  and the smallness of the coupling constant. These two 
factors together make it possible to introduce an ideality pa- 
rameter of the medium, which is equal to the ratio of the 
small interaction energy to the mean kinetic energy, or the 
plasma parameter 

(n ,rD3)  --'<I. (32) 

For example, in the case ofstatistical QCD, substituting 
in the inequality (32) the quark-gluon plasma density no - T 
and the Debye radius r, -(gT)-', we see that the plasma 
description is valid only far from the confinement radius, 
where asymptotic freedom guarantees the coupling constant 
is small: g( 1. 

In the standard model,' a small coupling constant is 
also guaranteed, but the long range of the weak forces with 
manifest symmetry breaking, in particular the long-range 
interaction of the neutrinos with the electrons of the medi- 
um, appears a paradox. 

Nevertheless, the examples of the calculations in this 
paper show that in the presence ofZy mixing (6, # 30") such 
a long-range interaction exists. It is explained by the fact that 
the rare collision of a neutrino with a plasma electron real- 
ized through exchange of a massive Z 0  boson sets in motion 
not only the recoil electron but also, through the self-consis- 
tent long-range electromagnetic field, a large number of 
neighboring electrons at distance r 2 r, ) M ,  '. However, 
not every perturbation in the density of the weak charge and 
current (electron component) produced in a rare ve collision 
of this kind can be the source of a fluctuation of the electro- 
magnetic field. The requirement of parity conservation in 
electromagnetic interactions tells us that only the vector 
part of such a perturbation 6 j ,Z in the density of the weak 
current (which does not contain y, matrices) can be the 
source of a long-range 6A field. This part of the current is 
proportional to the factor (2 cos 28, - I), which occurs in 
all the examples with neutrinos considered above and does 
not vanish when 6, # 30". 

The long-range interaction is weakened in the range of 
small momentum transfers (8') by the presence in the matrix 

element of ye scattering of the Fermi weak interaction con- 
stant G, = e 2 / 4 d ~  & sin2 6,, which occurs in the final re- 
sults in the form of the small dimensionless parameter 
(MzrD)-2<l.  

In conclusion, we discuss also the possibility of long- 
range interaction for a neutrino due to its having a mean 
square electromagnetic radius (1 -2 , )  --,g2M b2. It  is easy to 
show2 that in the limit of small momentum transfers 
q2<ML the photon Green's function l/q2 (with which 
hopes of such a long-range interaction are associated) can- 
cels exactly against the limiting value of the renormalized 
vertex operator 

As a result, as was to be expected, this contribution will 
be a correction of orderg2( 1 to the heavy Z O boson exchange 
that we have taken into account and leads to the perturba- 
tion in the density of the vector weak current. 

8. The expression (29) obtained for the polarization 
losses is general for different media with different plasma 
frequencies w,, . In particular, it holds for the degenerate 
ultrarelativistic gas formed in black-hole collapse. 

In the regime of free fall of matter to the center of a 
collapsing star, neutronization of the matter releases neu- 
trinos with energy Ev - 30-40 MeV, which appreciably ex- 
ceeds the neutronization thresholds in the corresponding 
nuclear  reaction^.^ To estimate the collisional losses of hard 
neutrinos (E, >p,) in the degenerate gas, we cannot use the 
expression (3 1) but must use the different result of averaging 
over the distributions of the electron before scattering 
(f ( p) -6 (p, - p)) and the scattered electron 
(f (p ' )  = 1 - 19 (p, -pl)), which is 

where a,, = (4~-e: pi/3)'12. 
From comparison of Eqs. (29) and (3 3) it can be seen that 

the collisional losses will be decisive for the hard neutrinos, 
and these must be taken into account in determining the 
neutrino opacity of a collapsing star with matter falling free- 
ly to the center. 

However, in the early stage of collapse the density in- 
creases more slowly than in the free-fall regime in the peri- 
pheral part of the star or in the central core, where the pres- 
sure gradient decelerates the compression. Then the rate of 
neutronization may be greater than the rate of establishment 
of the equilibrium state of the degenerate gas with momen- 
tump,) 1. As a result, all the neutronization reactions begin 
from the threshold, and the energy Ev = E, - Q carried 
away by the neutrinos is small compared with the threshold 
Q. In this collapse regime, the polarization losses (29) appre- 
ciably exceed the collisional losses, which are estimated for a 
degenerate gas in accordance with an expression of the type 
(3 1): 

d w,:" -- E - e2apez Ev 
d l  

(=) , E v g p ~ .  (31.1 
160n3 sin' Ow 

Note that in (3 1') we take into account only the incoher- 
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ent scattering by electrons of soft neutrinos with wavelength 
A, greatly exceeding the mean distance p ,  ' between the 
charged particles. The incoherent losses of the electron neu- 
trinos on the fixed ions (charge 2, mass number A ) are even 
less than the losses (31') due to the additional factor 
( 3 2  - A )2m, /MA , lo  where MA = AM, is the ion mass. 

In coherent elastic scattering, the neutrino energy is 
conserved7' (the energy transfer is zero, AE, = 0). There- 
fore, coherent scattering of neutrinos on the degenerate elec- 
trons is entirely absent because of the occupation of all elec- 
tron states with momentump<p,. A change in the neutrino 
energy would lead to orthogonality of the final states in each 
successive multiple scattering, i.e., to the absence of an inter- 
ference of the amplitudes and to simple summation of the 
cross sections (proportional to no, the particle density). This 
has already been taken into account in the calculation of the 
incoherent energy losses ( 3  1'). 

Coherent scattering of the neutrinos on the nondegen- 
erate ions is possible. However, this does not change the neu- 
trino energy (AE,, = 0), i.e., this contribution does not com- 
pete with the losses (29) and (3 1'). Thus, soft neutrinos with 
energy E,, gw,, <p,  lose virtually all the energy in the col- 
lapse process on the excitation of longitudinal plasma oscil- 
lations. 

We thank D. Yu. Bardin for helpful discussions of ques- 
tions associated with allowance for the radiative corrections 
in the standard model,' and Ya. A. Smorodinskiy for fruitful 
discussion of the results of the paper. 

"We use a system of units in which fi = c = 1, and the Feynman metric 
A,B" = A $ ,  - A B, ,u = 0,1,2,3; the standard representation of the 
Dirac y matrices is used, and y, = y,t = iyoy,yzy3. 

"The generalization of the results of the present paper to the case of a hot 
plasma presents no difficulty, since in the range of temperatures 
me (TgM, all the simplifications of the present problem are valid. 
Only the conditions of equilibrium are changed. In particular, in an equi- 
librium medium of electrons, positrons, and neutrinos (T, = T, = T, 
n; = n,' = 2 4 )  not only the scalar components of the neutral Yang- 
Mills fields vanish (tree approximation) but also the weak charge of the 
system [C = j,Z = 0; cf. Eq. (9)]. 

3'We do not give the macroscopic wave equations for the SE :fields ob- 
tained from (3) and (4). In a homogeneous and isotropic medium the 
S W* excitations, described by the dispersion relation EY - M $/q2  = 0 
for longitudinal oscillations and E: - ( M  + k ')/w2 = 0 for transverse 
oscillations, are absent in the range (8') of small momentum transfers. 

4'The external parameter of the standard model,' the Weinberg angle Ow, 
can be calculated in a grand unification theory of higher symmetr), and 
the value obtained by the renormalization-group generalization of SU15r - .. 

theory, namely, (sinz Ow),, -0.2 (instead of sin2 Ow = 3/8 without re- 
normalization), agrees well with the experimental results: 
(sin2 8,),,, = 0.224 + 0.020. 

5'In a hot lepton gas (m, (TgM,) Eq. (24) is augmented by the contribu- 
tion of the pseudovector weak current, which does not vanish for any 
value of the Weinberg angle 8,. 

6'To use classical concepts it is, generally speaking, necessary to assume a 
nonvanishing neutrino mass Sm, #O. The replacement of the velocity u 
by c in the present calculations is not fundamental in the derivation ofthe 
estimates of the energy losses. 

"In coherent scattering, only the direction of the neutrino momentum 
changes, and this is determined by the refractive index 

where E, = p, (m, = O), and f, (0) is the amplitude of (forward) scatter- 
ing by an ions of species a.1° 
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