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The dependences of the quantum corrections to the conductivity and to the density of states on the 
sample size are investigated. It is shown that the known experiments on the voltage dependences 
of the resistance of a thin wire on its length and of tunnel resistance are in good quantitative 
agreement with the developed theory. 

1. INTRODUCTION 

Two length scales are connected with the quantum cor- 
rections to kinetic and thermodynamic effects in disordered 
conductors. The first, L, = (DT,)"~, is the length over 
which dephasing of the electron wave function results from 
inelastic processes or of spin-spin scattering from paramag- 
netic centers. The second, L , ,  = (D /T,E)'/', is the correla- 
tion function of the wave functions of electrons that differ in 
energy by E or T (we assume h = 1 and k = 1). Here D is the 
electron diffusion coefficient, T~ is the dephasing time, and T 
is the temperature. The first length is connected with weak- 
localization effects,ls2 and the second with effects of interac- 
tion between electrons.394 The existence of these macroscop- 
ic scales leads to size-effect phenomena both in localization 
effects and in interaction effects when the sample dimen- 
sions become comparable with these lengths. 

on the Fermi ~u r f ace ,~  were investigated in tunnel junctions 
in which one electrode was a thin film of In,O, -, .5 Vari- 
ation of the applied voltage V revealed a transition from 
din, = 2at (D/eV)'I2>a tod,, = 3 at (D/ev) ' I2<a.  1n the 
three-dimensional case, a square-root dependence of the 
tunnel-junction resistance on the applied voltage V was ob- 
served. This agrees with the theory of Ref. 3, but the effect 
was approximately twice as large. At low voltages and in 
very thin films, a logarithmic dependence of the tunnel-junc- 
tion resistance on the voltage V was observed. This behavior 
does not agree with theory of Ref. 4, according to which the 
dynamic screened Coulomb interaction between electrons 
leads in the two-dimensional case to a doubly logarithmic 
energy dependence of the density of states, namely, 

The effective dimensionality d ,,, of a sample relative to Here Y, is the density ofstates on the Fermi level for particles 
weak-localization effects is determined by the relation 

with given spin, p is the Fermi energy, x, is the reciprocal 
between its geometric dimensions and the length L,. The 

screening length in the two-dimensional case, 
effective dimensionality din, of the sample relative to interac- 
tion effects is determined by the relation between the sample X ~ = X ~ U / ~ ,  31-'= (8ne2vo)  -% , (2) 
dimensions and the length L , ,  . 

Given a sample of length L, width b, and thickness a, 
with L < b <a,  the dimensionality at L, < a is d ,,, = 3. With 
decreasing temperature, the effective dimensionality de- 
creases as L, increases: d ,,, = 2 at b < L, < a  and d ,,, = 1 
at L > L, > b. At L, > L we finally have dl,, = 0. The vari- 
ation of dint is similar. Since usually L, > L, ,  the effective 
dimensionality of the sample relative to weak-localization 
effects is not higher than relative to interaction effects 
(dint >dl,, 1. 

We note that weak localization and electron-electron 
interaction influence differently the kinetic and thermody- 
namic properties. Thus, whereas the former is determined by 
both effects, anomalies in the latter are connected only with 
interaction effects. 

We investigate in this paper size effects in the conduc- 
tivity and in the density of states, inasmuch as experimental 
data are available for only these two q~ant i t i es .~-~  We shall 
not consider all the particular cases, but discuss only those 
that, from our point of view, are most instructive or have 
already been realized in e~per iment .~-~  

2. BASIC RESULTS 

Tunnel-resistance anomalies in a tunnel junction, 
which are connected with a minimum of the density of states 

x-' is the Debye screening length, and T is the momentum- 
relaxation time. An attempt was made5 to explain the experi- 
mental results with account taken of only the screened Cou- 
lomb interaction between the electrons. The factor 
preceding the logarithm, however, turned out to be approxi- 
mately a decade less than observed in experiment. 

We show in the present paper that the experimental re- 
sults can be explained quantitatively by taking into account, 
first, the interaction between the electrons from both elec- 
trodes of the tunnel junction, and second, by recognizing 
that in electron tunneling an important role is played by 
states near the junction interface over distances much 
shorter than L .  = (D/~v) ' / ' ,  i.e., that the anomaly in the 
tunnel resistance is connected with the local density of states 
of the interacting electrons near the sample surface. 

For a two-dimensional sample, when L, ,a, expression 
(1) is valid under the condition of a Coulomb interaction 
between the electrons at large distances. In a tunnel junction, 
however, just as in MIS  structure^,^ the bare interaction is 
not Coulombic. Indeed, in a tunnel junction in which one of 
the electrodes is a thin film and the other is bulk metal, both 
the film and bulky-electrode electrons participate in the 
screening of the interaction potential. If it is assumed that 
the conductivity a of the bulky electrode is much higher than 
that of the film, i.e., that the Maxwellian relaxation time in 
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the bulky electrode rM = ( 4 ~ 0 ) - '  is much less than in the 
thin film, such a situation can be described by introducing 
image forces. Owing to the presence of image forces the in- 
teraction between the electrons in the film is dipolar at dis- 
tances much larger than the insulator thickness A and the 
film thickness a .  As a result, the energy dependence of the 
density of states takes at x; ' <A < L, the form 

The first logarithm in (3)  is a reflection of the long-range 
character of the potential at distances shorter than A. Using 
the data of Ref. 5, viz., D z  10 cm2/sec, R , =p/a = 500 R 
( p is the resistivity), and A = 30 A, we get l n (2x4  ) =:6-7, in 
good agreement with experiment. 

In MIS structures, owing to the purely two-dimensional 
character of the electrons on the surface, as well as in a tun- 
nel junction at a(A, there is an energy region where the 
density of states has the doubly logarithmic form (1). For a 
tunnel junction of two two-dimensional dirty conductors, 
expression (1) is valid for the density of states. 

In a semi-infinite sample the local density of states (i.e., 
the density of states averaged over a small volume with lin- 
ear dimensions much larger than the mean free path 1 but 
much smaller than L, ) is of the form 

of thin Au4,Pd6, wires on their length. It was observed that 
at Tk 1 K the resistance became dependent on the length, 
thus indicating that L, or L, becomes comparable with the 
sample length. The temperature dependence of the resis- 
tance of the longest wires was of the form T -'I2, which 
seems to point to a substantial role of the interaction effect. 

The total correction to the conductivity is a sum of two 
contributions: the correction Sa,,, due to weak localization 
effects,' and the correction Su,,, due to interaction 

In a wire of length L and cross-section areas, the local- 
ization correction is" 

We emphasize that this expression does not agree, owing to a 
numerical coefficient, with the expression obtained in Ref. 
10 at L(L, ; this is due to the effect of the boundary condi- 
tions on the current contacts. 

The expression for Saint at L, < L can be written in the 
form 

&lb X l ~ r  ax 
(10) 

6 v ( 1 = 0 )  = - + - 
2'n2Dh 8nzDz {2 J T , (5) where 5 (x) is the Riemann zeta function. Expression (10) is 

X* valid accurate to terms exponentially small in L /L,. 
At L < TT we have 

3 f dz  , - 
8naDz x 

e cos x, 
xe 

where F /2  is the exact dimensionless amplitude of the inter- 
action at zero frequency difference, z is the distance from the 
sample surface, x,,, = z (~ /DT) ' /~ ,  xE = (2&/D ) ' I 2 ,  

XE = xE( l  + ~ / 2 ) ' / ' .  The term SvJ is a correction to the 
density of states and is necessitated by interaction of a parti- 
cle and a hole with combined spin j.9 

It follows from (4)-(6) that 

6v ( 8 ,  z=O) =26v ( 6 ,  z+w) 

Thus, allowance for the interface leads to a doubling of the 
local density ofstates near it, compared with that in the bulk; 
this was apparently observed in Ref. 5. 

The dependence of the density of states at the Fermi 
level (E = 0) on the distance to the interface at z>l is of the 
form 

where lny ~ 0 . 5 7 7  is the Euler constant and Iis the mean free 
path. 

We discuss now size effects in the conductivity. Masden 
and Giordano6 investigated the dependence of the resistance 

where 
( X + I ) ~  I ( x - I ) z  x ( x )  = -----In - - --- 

6 s  22 6x 

Asx-1 we havex (x )z ( l  -x)/3. 
Expressions (9)-(11) describe qualitatively the experi- 

mentally observed dependence of the resistance on the 
length of the wire.6 Comparison of the theoretical expres- 
sions with experiment 6 does not permit separation of the 
localization and interaction effects. It would be useful here 
to investigate in thin wires the magnetoresistance due to sup- 
pression of the localization contribution at 
H > H,,, = J= (Ref. 1 I), as well as to the suppres- 
sion of the contribution of terms proportional to F in  Soi,, at 
w, > T, where w, is the Zeeman splitting of the electron 
states. 

Masden and Giordano7 investigated also the depen- 
dence of the resistance of Au4,Pd6, and Pt films with dimen- 
sions L>b, the conductivity being measured along the short 
side b. At T=: 1.5 K the additional resistance became depen- 
dent on b at b z 1-2 pm. 

416 Sov. Phys. JETP 59 (2), February 1984 Al'tshuler eta/ 41 6 



For this geometry, the localization contribution to the 
conductivity is 

where ko(x) is a Macdonald function. 
The contribution of interaction effects at b < L ,  is 

andat b > L T  

where 

and K (x) and E ( x )  are complete elliptic integrals of the first 
and second kind, respectively. 

It was stated in Ref. 7 that the conductivity has a loga- 
rithmic temperature dependence, and the factor preceding 
the logarithm decreases with decreasing film width. From 
(12) and (14) it can be seen that the theory does not predict 
this behavior. To draw final conclusions concerning the dis- 
crepancies between theory and experiment, however, experi- 
ments must be performed in a temperature range wider than 
the 1.5-10 K covered in Ref. 7. 

The film thickness in the experiments is very frequently 
such that the situation is not purely two-dimensional. At the 
end of this section we present therefore for the conductivity 
expressions that describe the transition from the two- to the 
three-dimensional case. 

The localization contribution to the conductivity is of 
the form12 

The correction to the temperature dependence of the con- 
ductivity, necessitated by the interaction between the elec- 
trons, takes at a > L, the form 

At a < L,,  a,,, is given by Eq. (13) with b--a. 

3. DERIVATION OF BASIC RELATIONS 

We show in this section how to obtain the main results 
described above. All the corrections to the conductivity and 

to the density of states are connected with the contribution 
of the diffusion modes: the diffusion and the cooperon. 

In the coordinate representation the equation for the 
diffusion is 

(-io-D V z )  Do (r, r') =6 (r-r') . (18) 
In general form, the homogeneous boundary conditions for 
Eq. ( 18) are 

D r') - WDo (', .') =O. 
d rn (19) 

The first term of (19) describes the particle flux to the sample 
surface, and the second describes the surface relaxation of 
the fluctuations at a rate W. In the general case the diffusion 
describes both fluctuations of the density of particles with a 
given energy and fluctuations of the spin density.I3 In the 
first case it determines the corrections Slr' = O and 84,; O to 
the local density of the states and to the conductivity, respec- 
tively. These corrections are connected with particle-hole 
interaction at a total spin j = 0. In the second case it de- 
scribes the corrections SvJ' and ' connected with 
particle-hole interaction with total j = 1. In the general case 
these two types of fluctuation have unequal surface relaxa- 
tion rates that can differ greatly. Thus, for example, deposi- 
tion of paramagnetic or heavy atoms on the surface (as, e.g., 
in the experiments of Bergmanni4) lead to an effective spin 
relaxation. 

We shall consider, however, the simplest situation; 1) 
w = 0 on the free surface and the boundary condition is 

2) on a boundary with the bulky contact we have 

Du(r, rt)=0. (21) 

The last condition means that in the bulky metal of the junc- 
tion all the fluctuations are suppressed. 

The equation for the cooperon C (r, r') is 

(-D Vz+I/~w) C (r, r') 4 (r-r') . (22) 
The boundary conditions are similar to (19), but the surface 
relaxation rate is different. We shall again, however, confine 
ourselves to the following boundary conditions: on the 
boundary with the good contact 

C(r, r') =O (23) 

and on the free boundary 

aC (r, r') /ar,=O. (24) 

Generalization to the case of arbitrary boundary conditions 
is quite trivial, albeit unwieldy. 

1. Density of states 

The correction to the local density of states, necessitat- 
ed by the dynamically screened Coulomb interaction, can be 
represented in the form3 
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Here VL= O (r ,r l)  is the potential of the dynamically screened 
Coulomb interaction. The equation for it in the coordinate 
representation is 

(r ,  r') =Vo ( r ,  r ' )  - J dr, dr2 V o  ( r ,  r , )  IIm ( r l r z )  V;=O ( rZrr )  , 

where the polarization operator is 

=2v0 [ ioDo ( r ,  r l )  $6 (r-r') 1. (27) 

In the case of a tunnel junction, the bare interaction V0(r,r1) 
includes both the direct Coulomb interaction and the image 
forces. 

The correction to the local density of states, connected 
with the interaction of a particle and hole with j = 1 ,  is of the 
form 

where 
F v:-' ( r ,  r') = - 6  (r-r') + - 

2 f F  
dr, n ( r ,  r , )  v:-* (r , ,  r') . 

4+2F 
(29) 

a )  Density of states in two-dimensional case. We consid- 
er the density of states in a two-dimensional case a t j  + 0 .  We 
transform to the Fourier representation in the coordinates in 
the film plane. At L, = ( D  /w)'I2 > a  the solution of Eq. (18) 
with the boundary conditions (20) is 

D m , ,  ( z ,  z') = l / a  (DqZ--io)  (30) 
and 

II,, , ( z ,  z') =2v0 [ i o / a ( D q 2 - i o )  +6 ( z - z ' ) ]  , (31) 
where q is a two-dimensional wave vector in the film plane. 
We note that according to (30) Dm,, (zJ') does not depend on 
the transverse coordinates z and z' ( - a / 2 ( z ,  z f ( a / 2 )  and 
therefore to find Slr'=O, according to (25),  we need know 
only 

When the image forces are taken into account, the bare inter- 
action takes the form 

v0 ( z ,  z') = - 2ne2 [ e x p  ( - q ~ z - z l ~ )  
9 

k cth q A-I 
-exp(-qIz+z'I) 

here k is the dielectric constant of the insulating linear in the 
tunnel junction. In a two-dimensional case the significant 
values are q)a-' and at A 5 a we have 

Vo ( z ,  z') =2xeZ [ z+zf -  I z-zf I ]  . (32) 
Solving (26) with the bare potential (32) we obtain at x,A > 1 

Using (30) and (33) we obtain after integrating with respect to 
q and the correction to the density of states in (3) .  

b ) Surface effect in the density of states. We consider 
now the density of states for a semi-infinite sample. This 
situation arises in experiment when the film that makes up 
the tunnel junction is thick enough, so that a > ( D / ~ v ) ' ' ~ .  
We investigate the dependence of the local density of states 
on the distance to the boundary. 

In the three-dimensional case we can neglect in (26) the 
left-hand side compared with the bare interaction, and as a 
result V;=O ceases to depend on the bare interaction and is 
determined from the equation 

To find the correction to the local density of state we must 
find the quantity 

Sj(r,  r t )  = J dr, d r a m  ( r ,  r I )  VmJ(r,r2)  Dm ( r 2 r 1 ) .  (35) 

Expressions (25) and (28) contain the quantity S, (r ,rl)  with 
coinciding arguments. To find this quantity we must solve 
Eqs. (29) and (34).  We consider for example S j =  O . We repre- 
sent V', (r ,rl)  in the form 

j-0 1 Vm ( r ,  r ' )  = - 2% 6  (r-r') +Y ( r ,  r'). 

Using (27) for 17, (r ,rl)  and (18) for D,  (r , r f )  we obtain for 
Y (r ,rl)  the equation 

D V T ( r ,  r') = ( i o / 2 v o ) 6  (r-r').  (37) 
Substituting (36) in (35) and expressing D, (r , r l )  with the aid 
of (18) we get, after integrating by parts and taking (37) into 
account, 

1 
=- [ D m  (r ,  r') - Dms0 ( r ,  r') I a 

2ivoo 

We have similarly 
1  

sj=l (r ,  r J )  =- - 
2ivoo [Du, ( r ,  r ' )  -Dm(i+a/z) ( r ,  r ' )  I .  (39) 

We note that (38) and (39) are valid under general boundary 
conditions of the form (19). 

For a semi-infinite sample the solution of (18) with 
boundary condition (20) is 

d29 Dm (r ,  r') = 5' (2,,  ~ x P [ ~ ~ ( P - P ' )  1 

where p2 = q2 - iw/D, r  = ( P J ) .  Using expressions (38)- 
(40) we obtain for the local density of states expressions (5 )  
and (6) .  

2. Localized corrections to the conductivity 

Effects of weak localization lead to conductivity correc- 
tions in the form2 

601,, ( r )  =- (2DeZ/n)  C ( r ,  r )  , (41) 
where C(r , r )  is defined in (22).  For a thin wire its solution 
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with boundary conditions (23), (24) is 

L' [ c h ( L - l z - z f l  
C ( r ,  r') = - 

2DS L, 

(42) 
where L  is the length of the wire, z is the coordinate along the 
wire, and S is the cross section area. 

For a narrow film with distance b between the contacts 
along the z axis we have 

d9 c ( r ,  r f )  =I - exp [ iq (z-D') ] 
Lv 

2n 2 0  sh(b /L , )  

where q  is a wave vector parallel to the contacts and 
L , 2 = q 2 + L , 2 .  

For a film of thickness a .  

where y is the coordinate normal to the film surface and q  is a 
two-dimensional wave vector in the plane of the film. 

It can be seen from (41) and (42)-(44) that the correction 
to the conductivity depends on the coordinates. However, 
since (41) is a small correction to the total conductivity, the 
observed quantity is a mean value over the volume 

dr 
6ulOc = j 6ulOc ( r )  . (45) 

Using (41)-(45) we can obtain all the expressions (9), (13), and 
(16) for the localization corrections to the conductivity. 

3. Conductivity of interacting electrons 

Allowance for the interaction between the electrons 
leads, in contrast to the localization corrections, to a nonlo- 
cal connection between the current and the electric field: 

The quantity So$, (r,rl) contains besides the local contribu- 
tion proportional to S (r  - r') a term that attenuates exponen- 
tially as r - rf+ w not over the mean free path 1, but over the 
length L,, and has a power-law falloff at l<lr - rll<L,. 
This correction falls off in this region like Ir - r'i-4 in the 
three-dimensional case, like / r  - r'/- '  in the two-dimen- 
sional case, and like ln( / r  - rll/LT) in the one-dimensional 
case. 

In a uniform electric field, when the corrections to the 
conductivity are small, we have 

a 1 = - 5 dr d r r 6 h t  ( r ,  r')  . v 
Calculations similar to those in Ref. 3, but in the coordinate 
representation, yield 

u 2vo(De)' - d 
6uI,,, ( r ,  r')  =- 

-c., 
ni j d w d o ( e r p ( w / T ) - I  

3 
F{;-' ( r ,  r')  - - F{:-' (r, r f  ) ] , 

2 (48) 

d2Sj Fit = - dzD. dSj dD,  asJ dD, D,+sj ----- - - - - - - 
dri dr,' dr,dr,' dri ark' ark' dr, (49) 

In all the cases considered by us the directions of the electric 
field and of the current coincide. Using the boundary condi- 
tions (20) and (21) we get 

z') dD, ,o(z ,z ' )  
X 

dz  
+ 

dz' 

- 3 dD,(i+*,2, ( z ,  z') 
dz' I .  (50) 

Expression (50) cannot be calculated in closed form, but the 
asymptotic values of Saint are given in all limiting cases by 
expressions (19), ( l l ) ,  (13) and (14), (17). 

In conclusion, we examine the result of taking into ac- 
count for the conductivity cooperon boundary conditions 
analogous to (1 9). 

For a thin wire, the localization correction to the con- 
ductivity is of the form 

where a- ' = Wc/D and Wc is the rate of surface relaxation 
on the contacts. 

In the limiting case a + O  we obtain from (5 1) 

"An expression for the localization correction to the conductivity for arbi- 
trary conditions on the current contacts is given at the end of the article. 
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