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Two-dimensional equilibrium configurations in magnetic hydrodynamics are investigated. Parti- 
cular attention is devoted to bounded configurations, i.e., those in which the transverse magnetic 
field vanishes outside some closed surface. It is shown that the equilibrium configuration must be 
axially symmetric. It is also shown that there will be no equilibrium when the boundary condi- 
tions (magnetic tube pinched by the"wal1s") or the initial conditions (for example, for the configu- 
rations shown in Fig. 3) are such that the system departs from axial symmetry. The resulting 
plasma motion leads to the appearance of a current layer, and there is fast field dissipation that 
ultimately takes the magnetic configuration to an axially symmetric equilibrium state. 

The formation of current layers in a highly conducting 
medium has played a central role in many astrophysical and 
geophysical applications. Processes involving the reconnec- 
tion of magnetic lines of force can also develop under labora- 
tory conditions. When the kinetic energy is high (in com- 
parison with magnetic energy), plasma motion determines 
the behavior of the magnetic field and the formation of cur- 
rent layers presents no difficulties. In particular, in dynamo 
theory, field generation is always connected with a reduction 
in its scale, down to the dimensions for which dissipation 
becomes appreciable. The current layer is thus formed, and 
this is followed either by field generation or rapid field dissi- 
pation (see, for example, Ref. 4). The current-layer problem 
is quite different in the case of slow motions (or, generally, 
zero initial plasma velocity). Whereas the dynamo theory 
deals with weak magnetic fields, the opposite limiting case of 
slow motion is commonly referred to as the strong-field ap- 
pro~imation.~ In the latter case, it is precisely the magnetic 
(and not the kinetic) energy that produces heating of the 
plasma, accelerated particles, emission of radiation, and in- 
tensive plasma motion, which leads to flare processes in the 
solar corona and to phenomena involving the reconnection 
of lines of force in the Earth's magnetosphere. 

In a recent paper, Parker6 has put forward the hypothe- 
sis that the appearance of a current layer is connected not 
with the instability of the magnetic configuration, but with a 
loss of equilibrium under definite boundary conditions. It 
will be shown below that the equilibrium conditions impose 
a restriction on the magnetic field configuration, so that only 
certain definite classes of equilibrium states are possible. 
When a nonequilibrium configuration is established at the 
initial time, and it does not have a topologically equivalent 
class of equilibria, equilibrium can be achieved only by turn- 
ing on dissipation mechanisms that destroy the freezing-in of 
the magnetic field. The substantial departure from equilibri- 
um that arises in the course of the transition leads to a fast 
and considerable dissipation of magnetic field energy. This 
process is related to the reconnection of magnetic lines of 
force, and is similar to the development of disruptive insta- 
bility2*' and the coalescence of current filaments in the toka- 

mak.3 Because of the difference between the field boundary 
conditions in the tokamak and in cosmic electrodynamics, 
the formation of current layers in space requires separate 
analysis. The formulation of the problem given below is de- 
signed exclusively for astrophysical and geophysical appli- 
cations. 

91. EQUILIBRIUM OF TWO-DIMENSIONAL 
CONFIGURATIONS 

The dynamics of a magnetic field is a complicated non- 
linear problem, so that it is natural to begin not with the 
general three-dimensional situation, but with a somewhat 
idealized two-dimensional problem. It is precisely this ap- 
proach that was adopted earlier in the analysis of solutions 
near singular Parker6 has considered a layer of plas- 
ma with an initially uniform field perpendicular to the sur- 
face of the layer (and parallel to the z axis). Slow motion of 
the plasma that disturbs the field occurs on the lower bound- 
ary of the layer with the result that a new magnetic field 
configuration is established. When the characteristic scale I 
of the motion is small in comparison with the layer thickness 
L, the field established in this way may be expected to be a 
slowly-varying function of z. In other words, the lines of 
force are uniformly twisted in the z direction by the motion 
on the lower boundary. The problem thus becomes two-di- 
mensional and the equilibrium condition can be written in 
the form 

4 n V p = [ r o t  H , X  HI, or A A f  4 n d P ( A ) / d A = O ,  (1) 

where P = p  + H :/an- (see Ref. 9), A is the z component of 
the vector potential of the transverse field 
H, = ( H , ,  N,, , 0 )  (the other components of the vector po- 
tential are all zero), and P i s  a function of A only (and so are 
bothp and Hz separately). 

In the formulation of the Parker p r ~ b l e m , ~  it is assumed 
that the motion in the lower part of the layer can be de- 
scribed by isolated cells. The field between the cells is then 
undisturbed, and the solution (1) takes the form of isolated 
"islands." In other words, it can be assumed that A #O only 
in the disturbed regions. The next assumption is that the 
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curve drawn around a cell is always convex because the ten- 
sion in the lines of force must compensate the pressure gradi- 
ent which is a maximum in the interior of the cell. If we now 
use some method to press two such cells against each other, 
and the cells contain magnetic fields with opposite directions 
on the contact boundary, then either the edge of one of the 
cells becomes concave or both edges become straight. In ei- 
ther case, the edge of the cell will no longer be described by a 
convex curve, and it is impossible to have an equilibrium 
state. ' 

There are several aspects of this picture that are not 
clear. Nevertheless, we shall show below that conclusions 
relating to the coalescence of islands are entirely correct and, 
moreover, the results can be considerably strengthened. To 
begin with, we shall show that the two-dimensional equilib- 
rium state of a bounded cell (i.e., a cell with zero transverse 
field on the cell boundary) is axially symmetric. In other 
words, the cell boundary is not simply convex but specifical- 
ly circular. 

Let us confine our attention to an incompressible medi- 
um, which means that 

and consider an axially symmetric initial equilibrium config- 
uration with H, = 0 on the boundary. There is no doubt that 
this configuration exists (see, for example, Refs. 9 and 10). 
Deformation in the xy plane will, of course, modify the con- 
figuration, and our problem is to determine whether incom- 
pressible deformation will lead the initial equilibrium con- 
figuration to a final configuration which is also a state of 
equilibrium but, naturally is not identical with the initial 
state. The answer to this question is in the negative. In fact, 
let us introduce a coordinate frame (s,, s,, z), in which the 
coordinate lines, = const, s, = const runs along the line of 
force of the field H,, i.e., along the A = const curve. It is 
obvious that, for given s,, the quantity A is conserved in 
incompressible motion (this is so by definition and corre- 
sponds to a frozen-in field), and so is P. The transformation 
Jacobian & is also conserved. For the initial configuration, 
x = s, cos s,, y = s, sins,, so that & = s,. Let us suppose 
that deformation has resulted in a new equilibrium state. It 
satisfies (I),  which can be written in the following form in 
terms of our coordinates: 

(dsi lax)  z+ (asl lay)  2=g221g, g=gilg22-gi22, (3) 
where gij  is a component of the metric tensor. We then have 
x = x(x,), and the transformation Jacobian is (x, y ) /  
(x,, yo) = 1. The quantity s, varies from zero to the boundary 
values, = syJ, and s, varies form 0 to 2 ~ .  When s, = slO), we 
have dA /ds, = 0 and, as we have said, the values ofA, P and, 
hence, d ,A /ds: and dP  /dA, are the same as on the boundary 
of the initial configuration. Hence, for s, = syJ, it follows 
from (3) that g,, retains its initial value. 

This means that the length of the bounding curve is 
ZIT 

~ ~ d s ~ = 2 n s : ~ '  , 
0 

i.e., it is the same as the length of the initial circle s, = sy). 
Hence, it follows that the deformation has not modified the 
outer curve and, possibly, has affected only the internal 
curves. The point is that any incompressible deformation of 
the outer curve unavoidably leads to an increase in its length 
because the length of a circle is the minimum length of a 
curve bounding a given area. Thus, the curve s, = s$) is a 
circle. To elucidate the field configuration for s, < sYJ, con- 
sider (3) in terms of the orthogonal coordinates (s,, s;, z): 

A coordinate line can be determined from the equation 

a x l d s , = - - ~ ~ ~ ,  sin 0, a y l ~ ~ l = ~ ~ l l  cos @, ( 5 )  

d s / d ~ , ' = ~ ~ ~  cos @, a y l d ~ ~ ' = ~ ~ ~  sin @; 

1  a l i z  a @  1  al'c a m  (6) --=- -,-=-- 

YEi asi asz /  ' 1gZ2 asz t  asi 

Thc curvature of a line of force k and of an orthogonal line k ' 
can then be expressed in terms of the components of the 
metric tensor, as follows: 

1 8 -  1 d -  
k = -y- l'g,,, k'=- =- l'g 11.  

I g  l'g as,' 

Let us expand all the quantities in (4) and (6) into series in 
powers ofs, - syJ. From the zero-order approximation to (4) 
and (3), it follows that &, &, are independent of s; for 
s, = sYJ. Since, in addition, the outer curve is a circle (i.e., k 
and 6'&/ds, are independent of s;) and a@ /as, = 0 for 
s, = sYJ. In the first approximation to (4), we find from the 
expansion in terms of the parameter s,-syJ, that the first- 
order term in the expansion & is again independent of s;. 
According to the first expression in (6), d&/ds, for 
- $10) , - , , (i.e., the second term of the expansion) is indepen- 

dent of s;. If we now turn again to (4), we conclude that the 
second-order term in the expansion for &is again indepen- 
dent of s;. By continuing this procedure, we see that all the 
coefficients in the expansions for the metric tensor depend 
only ons,. Hence, it follows that the curvature of all the lines 
of force is independent of si  and, consequently, they are all 
circles. 

So far, we have confined our attention to incompress- 
ible motion and have shown that it cannot transform an ax- 
ially symmetric equilibrium configuration into an equilibri- 
um configuration that is not symmetric. In the real situation 
defined by (2), the potential component of the flow is small, 
but not zero. Let us return to (3), which describes the pro- 
posed equilibrium state. As we have said, strictly incom- 
pressible motion leads to a pressure distribution [on the 
right-hand side of (3)] that is in conflict with the field distri- 
bution and the form of the metric tensor. The question is 
whether the potential component of the velocity can redis- 
tribute the pressure so that (3 )  does, in fact, describe an equi- 
librium state. To answer this question, let us write out the 
equation for the energy density of the system per unit length 
along the z axis (see Ref. 10); 

263 Sov. Phys. JETP 59 (2), February 1984 S. I. VaYnshteYn 263 



W= W,t W,, 

W .- - J -ax :i dy ,  wp= J ($fan dx dy, (7) *: 
where y is the adiabatic exponent. Incompressible deforma- 
tion will change only W, . In the new state, the quantity W,, 
assumes the value W;, and the proposed balancing of the 
pressure is accomplished by potential motion of very low 
intensity [in the approximation given by (2)]. The magnetic 
configuration remains unaltered during this process, i.e., W; 
is conserved and W, assumes a value W; < W,. We now 
return to the reverse incompressible transformation to the 
axially symmetric configuration, for which the energy will 
assume the value W = W; + W;. The asymmetric configu- 
ration is assumed to correspond to an equilibrium state and, 
as above, the symmetric configuration will no longer satisfy 
(3). The redistribution of pressure by the potential (radial) 
motion leads to equilibrium, W, is conserved, and W j  as- 
sumes the value W i ,  W i  < W;. We thus find that two val- 
ues of energy correspond to the axially symmetric configura- 
tion for the same distribution of A and the same external 
pressure P(s(P'), namely, W =  W, + W, and 
W' = W, + W i ,  W i  < W,, where both states are obtained 
from each other by radial compression. Since, however, Eq. 
(3) uniquely determines the pressure distribution, the exis- 
tence of two such states is impossible. 

We note that known equilibrium configurations do not 
contradict the above conclusion. Thus, in the one-dimen- 
sional case, Eq. (1) is easily satisfied on a straight line 
H, = 0. However, the lines of force (straight lines) are then 
no longer curves inscribed into one another, and cannot be 
transformed into circles by compressive motion. The two- 
dimensional configuration with pressure P = exp( - A ) has 
long been known." A further configuration for which 
P = aA + b was proposed in Ref. 6. In these two examples, 
the field H, vanishes only at points (and not on curves) and, 
naturally, the families of lines of force are not topologically 
equivalent to concentric circles. It is interesting to note that 
Eq. (1) is linear for P = aA + b: it becomes the two-dimen- 
sional Schrodinger equation. I t  is known that a nontrivial 
solution may exist (if 2a is an eigenvalue of the problem) 
under the following boundary conditions: normal compo- 
nent of the vector VA equal to zero, or A (or the tangential 
component of VA ) is zero. However, the vanishing of the 
resultant vector VA (i.e., H, = 0) is a condition that is too 
stringent. And provided only that the bounding curve is a 
circle, this requirement reduces to the single requirement 
that the normal component must be zero, since the condition 
A = 0 (or A = const) is automatically satisfied on the bound- 
ary for an axially symmetric problem. A nontrivial solution 
exists in the latter case, and A =O is a solution of (1) for an 
arbitrary bounding curve. 

52. EVOLUTION OF THE FIELD IN THE TWO-DIMENSIONAL 
PROBLEM 

Equilibrium will be lost when the symmetric field is 
deformed (however slightly). This does not, however, mean 
that we are dealing with an instability. In fact, if we take the 

FIG. 1. Arrows show the direction of the magnetic flux. Outermost curve 
corresponds to the edge of the cell, where H, = 0. 

system out of the state of equilibrium and let go, we find that 
Alfven-type oscillations take place, i.e., the system is stable. 
If, on the other hand, we compress the tube of force under 
consideration (for example, by magnetic "walls," i.e., a 
strong external transverse magnetic field), we find that equi- 
librium is lost. Parker6 has examined "densely packed" cells 
for which the shape of the H, = 0 curve is not only noncircu- 
lar but cannot, in general, by always convex. According to 
Ref. 6, the subsequent evolution of the field is described as 
follows. There is no equilibrium, so that the plasma is 
brought into motion which, in turn, produces a rise in the 
field gradient in the neighborhood of the line separating op- 
positely directed fields H, in successive cells. This produces 
a current layer, and ohmic damping comes into play. The 
subsequent reconnection of the lines of force ultimately leads 
to the coalescence of the cells (this is referred to as the "co- 
alescence of magnetic islands" in plasma experiments and 
numerical problems related to this q ~ e s t i o n ' ~ . ' ~ ) .  In our dis- 
cussion below, we shall consider the interaction between two 
magnetic tubes with H, = 0 on their outer boundaries. 

In the z = const plane, the lines of force of the field H, 
take the form of two cells (Fig. I), and all the lines of force are 
circles. Let us suppose that the left-hand cell moves toward 
the right-hand cell with initial velocity V. When the two 
collide, the lines of force become deformed (Fig. 2), and equi- 
librium is disturbed. In the absence of dissipation, the colli- 
sion is elastic, the cells separate, and, ultimately, equilibrium 
is reestablished. The picture is qualitatively different when 
finite conductivity is taken into account. When the velocity 
V is high in comparison with the Alfven velocity and the 
velocity of sound, the rise in the field gradient at the point of 
contact between the two cells occurs quite rapidly, and this 
leads to dissipation and the reconnection ofthe lines of force. 
In the discussion given below, we shall always be interested 
in slow initial motion. Dissipation is then relatively ineffec- 
tive, but some of the magnetic flux (if only a very small frac- 
tion) will, nevertheless, be reconnected during the collision 
between the cells, and will embrace both profiles (Fig. 3). 
Finite dissipation cannot give rise to reconnection that will 
return the field to the state of Fig. 2. In fact, let us suppose 
that A > 0 inside the cell and A = 0 everywhere else. Conse- 
quently, initially, A = 0 on x = 0, and A > 0 after reconnec- 
tion. Diffusion is described by the equation 

FIG. 2. Approach and compression of cells. 
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FIG. 3. 

In the neighborhood of the point x = y = 0, we have 
A = a, + a,x2, a,, a, > 0. Substituting this expansion into 
(8), we obtain da,/dt = D 2a2 > 0. Consequently, the quanti- 
ty A can only increase at x = 0 as a result of diffusion, and 
this leads to additional reconnection. 

To elucidate the subsequent evolution of the fields, we 
must establish whether the configuration of Fig. 2 can be an 
equilibrium configuration. If the answer to this question is 
yes, the unique process of field dynamics will be determined 
by the very slow ohmic dissipation of the field. We shall see 
below that this is not an equilibrium configuration but, of 
course, it belongs to a class of smooth functions. The point is 
that field discontinuities are possible in a perfectly conduct- 
ing medium. However, we shall be interested in a highly 
conducting (but not perfectly conducting) medium, in which 
such discontinuities give rise to strong field dissipation. We 
now turn to the outer (reconnected) lines of force in the con- 
figuration of Fig. 3. As noted in Sec. 1, the vanishing of H, 
on a closed curve necessarily implies that the curve itself and 
the lines of force in its neighborhood are all circles. Hence, at 
least in the outer regions of the configuration of Fig. 3, there 
is no equilibrium. Tension in the outer lines of force will 
press inner cells against one another. The question is 
whether the configuration will become an equilibrium con- 
figuration when the external lines of force transform into 
circles in the course of the evolution process in the absence of 
field discontinuities. It is obvious that the answer must be 
no. The point is that, in the outer axially symmetric part of 
the configuration, the quantity H, would rise, monotonical- 
ly from zero on the boundary (x2 + y2)112 = R to some value 
Hy on (x2 + y2)lI2 = R1, R1 = yl ,  where y, corresponds to 
the point of intersection between they axis and the separatrix 
(between the outer and inner lines of force). In particular, on 
they axis itself, the field H, would rise from zero at y = + R 
to H, =Hy at y =  k R , ,  R , < R .  At the same time, the 
symmetry of the configuration with respect to they axis im- 
plies that H, = 0 for > lyl < R,. Consequently, the field H, 
would experience, a discontinuity at y = + R,. 

Thus, the configuration of Fig. 3 (with H, = 0 on the 
boundary) cannot be an equilibrium configuration. A non- 
potential motion due to the absence of equilibrium cannot 
return the system to the equilibrium state. Within the frame- 
work of ideal magnetohydrodynamics, this type of motion 
would lead to the appearance of discontinuities, whereas the 
inclusion of finite conductivity results in a current layer at 
places where the discontinuities might otherwise appear. As 
we have said, the inner cells press against one another in the 
above example, with the result that the magnetic-field gradi- 

ent grows along they axis, and the current layer is produced. 
The configuration should ultimately reach a new equilibri- 
um state with an axial symmetry, and a transition can occur 
only after the reconnection of some of the magnetic flux, i.e., 
after the dissipation is turned on. 

We shall now estimate the parameter of the subsequent 
field evolution. The absence of equilibrium means that the 
electro-magnetic force [curl H X HI contains a nonpotential 
component and is therefore not compensated by pressure. 
For a small deviation from equilibrium, corresponding to a 
displacement c, the nonpotential component is smaller than 
the potential component by a factor I /g. The resulting mo- 
tion of the plasma is described by 

where Y, = HL/(4.rrp)112. The energy of the system 

W,= J (HL2/8n+t/2pv2)  di dy (10) 

is conserved. When t = 0, u = 0, the increase in the kinetic 
energy occurs at the expense of a reduction in the magnetic 
energy. It was shown above that the displacement 6 can pro- 
duce a reduction in magnetic energy for the configuration 
shown in Fig. 3. For this to happen, the displacement ( must 
be chosen so that the lines of force become as closely circular 
as possible. It turns out that 

Since the energy (10) is conserved, it follows that 

V=VA @/I )  (1 1) 

According to (9), this velocity is established in a time 

to= ( l / v a )  ( .II~)'6=l/v.  

The field dynamics is now described by 

where u is the conductivity [cf. (8)], and the right-hand side 
of this equation is negligible. It would appear that the result 
is the establishment of a state with stationary velocity u given 
by (1 1). In actual fact, the convective term v V A  in (13) will 
"mix"A and will lead to an increase in VA,  i.e., an increase in 
H 2 .  This occurs over aperiod amounting to several times I /u, 
given by (12) (see, for example, Refs. 14 and 15). We note 
that, prior to the time to, the velocity is less than u, as given by 
(1 I), and H does not increase but, as we have seen above, 
actually decreases. 

Thus, the stationary state with Y independent o f t  can- 
not be established because the entire process cannot contin- 
ue over a time interval much greater than to, given by (12). 
The only possible evolution of the field reduces to the follow- 
ing. The potential A given by (1 3) is transported in a time I/u 
from the center of each cell to they axis. On they axis itself, 
u, = 0 and A remains very small (without initial reconnec- 
tion, A = 0 at x = 0, and, after reconnection, A = a, 
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(max A ). Hence the gradient VA rises substantially in the 
neighborhood of they axis (whereas the total magnetic ener- 
gy $(VA )'dxdy falls slightly). This enhances the role of dissi- 
pation: a current layer is formed in the neighborhood of 
x = 0 and, consequently, the right-hand side of (13) must be 
taken into account. 

Appreciable field dissipation near x = 0 produces an 
additional reconnection of lines of force. When a large pro- 
portion of the magnetic flux passes into the outer region, the 
nonpotential force is no longer small, and deformation is 
appreciable. This means that we can substitute { = I in ap- 
proximate calculations. Hence, it follows that the last stage 
of the field dissipation process will occur relatively rapidly, 
i.e., in a time 

ti=l/var (14) 

and the velocity will reach the Alfven value. A new equilibri- 
um state is established when all the lines of force have been 
reconnected. The energy of the new state is W, = H: I :/8a 
and is lower by a factor of two as compared with the old 
energy Wo = 2H 21 '/8a. The point is that I = 21 (conser- 
vation of total area) and H,I, = H I  (conservation of flux). 
The excess energy has been dissipated. It is important to 
remember that the power release rises sharply toward the 
end of the evolution process: it is estimated as (v/l )H 21 '/8a 
after the current layer has been formed, and as (v, /I )H 21 2/ 

8a  at the final stage. Thus, we can identify four phases of the 
evolution of the field with the initial configuration shown in 
Fig. 3. Figure 4 illustrates schematically the dynamics of 
kinetic energy, which also reflects the rate of energy release 
or dissipation. The four phases mentioned above are clearly 
seen: (1) formation of flow and of the current layer in time t 
< to, (2) slow (over time to) dissipation, (3) rapid rise in kinetic 
energy and dissipation of magnetic energy (in time t, <to), 
and (4) establishment of new equilibrium and end of motion. 
All four phases can readily be followed in the numerical cal- 
culation of an analogous field configuration given in Ref. 16. 

We note that, in the above example, the ratio { /I, which 
is a measure of the departure from equilibrium, is deter- 
mined by finite dissipation in the two-cell collision, and is 
therefore very small. This means that the preliminary stage 
that occupies the time to is very long. However, the vigorous 
third stage (Fig. 4) will nevertheless occur, and the rate of 
energy release will no longer be dependent on { /I. A more 
interesting situation is that shown in Fig. 3. It occurs by itself 
at the initial time, before the two stages of Figs. 1 and 2 have 
occurred. In Parker's problem6 (see Sec. I), this configura- 
tion can be established by special motion on the outer bound- 

FIG. 4. Energy release as a function of time. 

ary of the layer. The ratio {/I is then specified by the initial 
conditions, and may be of the order of unity. In the last case, 
the preliminary first and second phases do not occur, and 
dissipation occurs relatively rapidly. 

93. EVOLUTION OF FORCE-FREE FIELDS 

The loss of equilibrium and the formation of current 
layers are probably a common phenomenon in nature. In 
this section, we shall investigate force-free and potential 
configurations. Consider a low-pressure plasma with 
0 = p8a/H 2< 1. This situation prevails in a very tenuous me- 
dium (for example, the solar corona), and equilibrium can be 
established only if [curl H X HI = 0 or 

rot H=aH. (15) 

Fields satisfying (15) are referred to as force-free and, when 
a = 0, is irrotational or potential. We shall consider fields in 
a conducting layer, as mentioned in Sec. 1. Suppose that the 
initial field is irrotational with the following boundary con- 
ditions in terms of the cylindrical polar coordinates (r, p, z): 
at z = 0, L, i.e., on the boundary of the layer, 

where the function $ at z = 0 is independent of p and is 
nonzero only for r <I. The solution in the interior of the 
layer, where curl H = 0, is H = V$, where A$ = 0. The 
boundary conditions (16) uniquely determine the field in the 
interior of the layer, and it is easy to see that this field is 
axially symmetric and takes the form of lines of force leaving 
the lower and entering the upper "spot." The entire configu- 
ration expands toward the center of the layer, and H4 = 0 
not only on the boundary, but also in its interior. To be spe- 
cific, we shall suppose that Hz > 0 at z = 0, L, and it is for 
this reason that we say that the lines of force "leave" the 
lower spot. Let us now examine a further pair of spots for 
which Hz < 0 on the boundaries. It is clear that, when these 
two pairs are remote from one another, i.e., when the separa- 
tion between them is much greater than L, the potential 
fields in each of the pairs have practically no interaction with 
one another and take the form described above. If, on the 
other hand, their separation is much less than L, some of the 
lines of force belonging to the first pair will close on the 
lower spot of the second, and vice versa: some of the flux 
associated with the second pair will transfer to the first. 

Let us now suppose that, initially, the two pairs are dis- 
tant from one another but, subsequently, the boundary con- 
ditions lead to their approach (this can readily be achieved by 
simple motion of the plasma at z = 0, L with the frozen-in 
field). When there is no plasma between the z = 0 and z = L 
planes, the approach of the two pairs to a distance L will be 
accompanied by the reconnection of the magnetic flux from 
the first to the second pair, and vice versa since, in this case, 
curl H = 0 throughout the entire process. Highly conduct- 
ing plasma cannot modify the field topology, since this re- 
quires finite dissipation. It would appear at first sight that, if 
the two pairs under consideration approach one another to a 
distance, say, L /2, and the motion is stopped, the fields will 
push against each other and an equilibrium state will be es- 
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tablished with the line of force as before leaving each lower 
spot for its own upper spot. However, this equilibrium will 
not, in fact, be established. The point is that, in this case, it 
will be described by (16), where the condition div H = 0 im- 
plies that Va.H = 0. This means that a remains constant 
along the line of force. However, on z = 0, L 

rot, H=aH,=O, 

from which it follows that a = 0, i.e., under these boundary 
conditions, the equilibrium field can only be irrotational 
and, as already noted, its topology must be different: a sub- 
stantial proportion of the flux belonging to the first pair 
closes on the second, and vice versa. 

The absence of equilibrium signifies the appearance of 
motion, leading to the formation of a current layer, the turn- 
ing on of dissipation, and, finally, the reconnection of the 
lines of force (as in Sec. 2). This process was convincingly 
demonstrated by Syrovatskii (see, for example, Ref. 8). From 
the point of view of applications, there is considerable inter- 
est not so much in the layer iteself as in the half-space z > 0 
with the boundary conditions defined on z = 0. It  is clear 
that each pair of spots has associated with it fields for which 
Hz >O for one and Hz <O for the other. The separation 
between them is L. Two distant pairs (separated by a distance 
much greater than L ) are topologically unrelated; their ap- 
proach must be accompanied by loss of equilibrium and re- 
connection. 

A similar situation obtains for force-free fields. First of 
all, we recall the boundary conditions that are necessary to 
determine unambiguously the force-free field at z = 0. Equa- 
tion (15) does not seem to be closed because a is an arbitrary 
function of position. In point of fact, however, and, as we 
have already said, a is constant along a line of force and is 
determined by its value on the z = 0 boundary. On the 
boundary itself, a is determined from the equation 

aH,=d,H,-d,H,, (17) 

where all the quantities are specified onz = 0. It is clear from 
(17) that, before a can be determined, we must know all three 
components of the field at z = 0. For z > 0, the field is 
uniquely reconstructed by using (15) and (17), for example, 
by expanding all the quantities in series in powers ofz." 

We now return to the consideration of the field in a 
conducting layer between the z = 0 and z = L planes. Sup- 
pose that, now, in contrast to (16), we have on z = 0, L 

H ( r )  0 H,f 0 ,  dH,  (r=l) ldr=O, H,=const. 

All the functions are independent of p, as before. In addi- 
tion, we shall assume that I<L. According to (17), a ( z  = 0) 
vanishes for r = land changes sign for r < I. Its order of mag- 
nitude is a - 1/1 and, since a is conserved along the line of 
force, a- 1/1 in the interior of the layer. On the other hand, 
according to (15), a determines the reciprocal scale of the 
field, i.e., in the interior of the layer, the field varies over a 
characteristic length I. Along the z axis, the field varies over 
the much greater length L,  so that the fields in the interior of 
the layer may be looked upon as quasi-two-dimensional (the 
deviation from the two-dimensional configuration is charac- 
terized by the small parameter I /L ). The configuration can 

be described qualitatively, as follows. The lines of force are 
straight for r > I ', 1 ' 4  because Hz = const, H, = H, = 0, 
whereas, for r < I ', the field has a helical shape. The equilibri- 
um state must obey (1) forp = 0 and the effective pressure is 
H5/8n-. It is shown in Sec. 1 that the equilibrium state must 
be symmetric. In fact, this conclusion is trivial because of the 
symmetry of the boundary conditions. However, the conclu- 
sion that axial symmetry prevails in the interior of the zone 
0 < z  < L remains valid even for nonsymmetric boundary 
conditions. In the latter cse, there are in the neighborhood of 
the boundary z = 0, L two transition regions of thickness 
I " 4 ,  in which a transition occurs between the nonsymme- 
tric fields and the symmetric configuration was I " <z  < L- 
I " . According to (1 5), the latter is described by 

H,=O, --dH,ldr=aH,, ( l l r )  drH,/dr=aH,. 

Eliminating a, we obtain 

(18) 

i.e., we again have (I) ,  where P = H:/8n-,p = 0. 
Thus, force-free fields in low-pressure plasmas can have 

a quasi-two-dimensional character, and the results of Secs. 1 
and 2 extend to this case as well. Toroidal fields are similarly 
established in plasma occupying the half-plane z > 0 for one 
of the pairs of spots and Hz < 0 for the other. As the force- 
free magnetic tubes approach one another and come into 
contact, equilibrium is destroyed and processes involving 
the formation of the current layer and dissipation of the 
magnetic field take place. The process can occur as follows. 
Suppose there are two tubes of force, similarly to the situa- 
tion in the example with irrotational fields. If the separation 
between the tubes (or spot pairs) is greater than L, they inter- 
act weakly with one another. As they come closer, to a dis- 
tance of the order of 1, the characteristic dimensions of the 
resultant field on the z = 0, L boundaries also become of the 
order of I and, as indicated above, the state of equilibrium 
should exhibit the properties of axial symmetry. This means 
that the force-free fields of the two tubes should merge into a 
single axially symmetric configuration for I " < z  < L  - I ". 
However, this steady state can occur only after the reconnec- 
tion of the transverse field H,. 

We now proceed to the question of what happens after 
the breakdown of equilibrium. We begin with the example of 
irrotational fields. Suppose that two tubes appraoch one an- 
other with velocity V. When the separation between them is 
of the order ofL, equilibrium is destroyed, as already point- 
ed out. We recall that the characteristic thickness of a tube at 
the point of contact with the other is of the order of L. We 
shall be interested in the parameter6 /L, which measures the 
deviation from equilibrium. It  is clear that [ varies with time 
as Vt. The absence of equilibrium produces a flow described 
by v = t (vf, /L )(6 /L ) [cf. (9)], and the velocity reaches the 
value v = v, (g /L ) ' I2  in the time to = L /v, and the same time 
is necessary for dissipation to result in a new equilibrium. 
Equating to to the time necessary for 6, to grow, we obtain 
the steady value 
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When the ratio V/vA is small, a stationary state with a cur- 
rent layer is established in the time 

and leads to field dissipation and to a departure from equilib- 
rium. The entire process of dissipation occurs relatively 
slowly for small V/v, and the entire "surplus" energy is 
released in the long time t ,  = L /V. 

Dissipation of the force-free field occurs in a different 
way. Since the tube thickness is small, If--I, the departure 
from equilibrium occurs only when the two tubes approach 
one another to a distance I '. A new state is then established 
with reconnected lines of force of the transverse field (Fig. 3) 
in the time 

The subsequent evolution is practically independent of the 
motion of the spots, i.e., the boundary conditions, since, ac- 
cording to (19), the time t, is also the time for complete re- 
connection. Although this time is shorter by a factor (L / 
I)(vA /v)'I4 than the dissipation time during the approach of 
the irrotational fields, it is still quite long. However, the prin- 
cipal difference, as compared with the irrotational case, is 
that the case of the force-free field (as in the configuration of 
Fig. 3) is characterized by a fast energy-release stage, as in 
Fig. 4. 

In conclusion, the author acknowledges his debt to V. 
A. Mazur for numerous discussions and critical suggestions. 
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