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A theory of a mixed state of a new class of layered materials, namely layered metals, is developed. 
It is shown that Abrikosov vortex lattices localized along the magnetic field can appear in such 
systems. If the magnetic field is parallel to the layers, the resultant superconducting state takes the 
form of a sequence of parallel superconducting plates. The energy of such states and the magnetic 
moment are determined. 

the principal effect that determines the properties of the sys- 
tems is the "proximity e f f e ~ t . " ~ , ~  In addition, in such super- 
conductors the boundaries between the layers are apparently 
not abrupt. 

The study of the superconductivity of the described sys- 
tems was preceded by a number of investigations of the su- 
perconducting properties of a single inhomogeneous layer in 
an infinite In Ref. 13 were determined 
the critical magnetic fields and the critical temperatures of 
superconductors with an electron-electron interaction 
g = g(r) that varies periodically in space. In this paper we 
determine the structure of the superconducting state and the 
magnetic moment of an inhomogeneous type-I1 supercon- 
ductor with periodic spatial inhomogeneity. 

Superconductors of a new type, layered metals, are be- x$' (ri) $(rJ $+ ( r ~ )  rt=rs=ra=r=O, 

ing intensively investigated at present. These substances, ob- 
(1) 

Here Y is the digamma function, T the temperature, A the 
magnetic-field vector potential, v, the Fermi velocity, I the 
electron mean free path, f i  the Planck constant, c the speed of 
light r,, the transport time between collisions, N the electron 
density, k, the Boltzmann constant, j the current density, 
and $ the order parameter. V(r) plays in these formulas the 
role of the potential energy in the nonlinear Schrodinger 
equation (1) of a "particle" with a dispersion law x(lT2P '). 

Equation (I),  which is linear in $(r), determines the criti- 
cal superconductivity field in the inhomogeneous system. 
From the formal viewpoint this is the Schrodinger equation 
of a "particle" with a dispersion x in a potential V (r): 

tained by molecular epitaxy, are sequences of layers of differ- (Pi-&) Q+ (ri) $(r2) 
ent metals, each layer varying widely in thickness from 5 to 
lo4 A. Besides the already obtained substances of this type, it 4nmT n-o n [n+'i2+ (v.'~./l2nT)P.'] 

i-i 

51. BASIC EQUATIONS Z$+= [X (ET2P2) f V (r) -E] $+ (r) =O. (3) 

r ~ = r ~ = r  

The problem was solved formally under the following 
model assumptions: 1) the Fermi velocities and the Debye 
frequencies of the metallic constituents of the layered metals 
are equal; 2) the electron-electron interaction g(r) is a period- 
ic function of the coordinates; 3) the impurities are uniform- 
ly distributed through the sample. 

is possible to obtain by a similar method substances with a 
period that differs from the layer thickness. where (2) 

Clearly, the physical properties of such substances can 
1 differ strongly from the properties of ordinary layered mate- = [ i , + ,  V(r)  - , 

rials, which are crystals with microscopic layered structuree4 c g (r) 
The difference should be particularly strong in the supercon- 
ducting properties of such systems. Indeed, the electrons 
move freely over the sample in such superconductors, and 

The microscopic equations for a dirty superconductor 
with a coordinate-dependent value ofg(r) in the field interval 
AH/Ho(l (AH = H,, - He ,H, is the field at which the su- 
perconductivity sets in and He is the external magnetic field) 
are of the form 

The eigenvalues and eigenfunctions of (3) depend on the rela- 
tions between the characteristic lengths of the problem, 
namely the length of localization of the particle by the poten- 
tial V(r), the Larmor radius a, = (c/2e~)" ' ,  and the dis- 
tance D between the inhomogeneities. 

52. SINGLE INHOMOGENEITY 

To obtain the structure of the state and the magnetic 
moment of a superconductor with a periodic V(r) it is neces- 
sary to determine the order parameter, the state structure, 
and the magnetic moment af a single inhomogeneity in an 
infinite superconductor. As already indicated in the Intro- 
duction, the critical characteristics for this case were consid- 
ered earlier. It sufficed for this purpose to use Eq. (3) which is 
linear in $. In our case we must solve the nonlinear equation 
(1). 
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Just as in Refs. 14-16, the nonlinear equation (1) has a 
solution that depends on the spatial coordinates in the same 
manner as the solution of the linear equation (3). We consid- 
er a situation wherein the metallic matrix contains a metallic 
superconducting layer with a large electron-electron inter- 
action. In this case the potential V (r)= V (x), where x is the 
coordinate perpendicular to the inhomogeneity. The func- 
tion V (x) has a minimum, V ( 0 ) ~  Vm , and is bounded at infin- 
ity, V(oo)=V,. 

Both the structure of the resultant state and the magnet- 
ic moment depend on the relations between the characteris- 
tic lengths of the problem as well as on the angle between the 
direction of the external magnetic field and the inhomogene- 
ity plane. Let us consider various cases. 

a)  Magneticjieldperpendicular to inhomogeneityplane. 
In the gauge A, = H z  (Fig. 1) the variables in Eq. (3) are 
separable, and the solution of the nonlinear equation (1) can 
be sought (for weak and strong magnetic fields) in the form 

n n 
A 

4=-iav, cp (2-G) =exp [- (z-z.) 2/2aaz] , 

z,=cqn/2eHI r= ( x ,  y, z) = ( x ,  p) , 

Here $o(r) is an eigenfunction of Eq. (3). The function $,(x) 
can be obtained with asymptotic accuracy in two cases: for a 
broad continuous inhomogenity d-41, where L = Vm/V, " 
and d is the characteristic length of variation of the function 
$,(x) along the magnetic field, and for a narrow inhomogene- 
ity if d)L (V, /Vm )'I2. These two cases will be referred to 
hereafter as the "well bottom" and "shallow well." 

For the "well bottom" we can expand the potential in 
(3) in powers of x. As a result we get 

x f ( u )  ''2 

d 2 = 2 L  [ I  , X' ( u )  = - (5) 
du' 

u(H) =2gT2eH/c, EmmgT,,,, Tm=1,14~D exp  (-Vm) . 

The critical magnetic field is then of the form 
A H = - c V ~ ' ~ / ~ % L ~ ~ X ' ' ~  (u,)  , ul=u ( H c p )  (axcdie), 

FIG. 1.  Coordinate system. yz is the inhomogeneity plane. 

Here H,, " is the critical field of the inhomogeneity materi- 
al. 

In the "shallow well" region the corresponding quanti- 
ties are 

$0 ( x ) = e x p ( -  I X I  IdlH) 
d2~'g~'x' (u,)/Z, u ~ = ~ E ~ ~ ~ H ~ ~ ~ / c ~  (7) 

Here H,, " is the critical field of the superconductor far 
from the inhomogenity. 

Substituting the order parameter in the form (4) in Eqs. 
(1) and (2) we obtain in the usual manner 

We have introduced here two functions 
DD DD 

jt ( x )  = ( + + )  - p x )  = + +  - (10) 

of the parameter x = lT2(eH/c), and the superior bar de- 
notes averaging: 

The Gibbs potential for a lattice of superconducting states 
localized along the magnetic field is given by 

Here N, is the density of states on the Fermi surface. 
Using (lo), we obtain from (1 1) the magnetic moment 

and the free energy: 

Here 

The energy of a lattice of superconducting states local- 
ized along the magnetic field, just as a lattice of Abrikosov 
vortices, depends only on the parameter 8. For quadratic 
and triangular lattices P =  1.18 and 1.16, respectively,. Cor- 
responding to the minimum of the free energy is a triangular 
lattice. 

The length of the characteristic change of the order pa- 
rameter along the magnetic field is determined by Eqs. (5) 
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and (7). It depends both on the type of the inhomogeneity 
and on the temperature. At a temperature T * z T0/2 the 
quantity d, has a minimum. In the region of the "well bot- 
tom" dI;f'"z0.9d,(0), and in the "shallow-we1l"region 
d2;f'" z0.8dZH (0). 

In a magnetic field perpendicular to the inhomogeneity 
plane, the inhomogeneous superconducting state is thus 
bounded along the magnetic field by an Abrikosov-structure 
layer of thickness d, (Fig. 2a). 

b ) Magneticjeld at an angle to the inhomogeneityplane. 
If the magnetic field is oriented at an angle 8 to the inhomo- 
geneity plane, the situation is different for strong and weak 
fields. In the region of weak fields (d, (a,) in the angle 
interval 6 > 8, -diH/aH one can neglect in (3) the magnetic- 
field component parallel to the inhomogeneity plane. The 
structure of the lattice of the superconducting states local- 
ized along the magnetic field remains unchanged, and every- 
where in the equations for the weak field it is necessary to 
replace H by H sine. It is clear that the equations for the 
critical fields are changed in this case: 

At an arbitrary angle 8 > 6, the lattice generally speak- 
ing need not be regular, since a preferred direction in the 
inhomogeneity plane appears. For a rectangular lattice (in 
weak fields) 

b=q/2eH sin 0, q=2n/u, ub sin 0=n/eH; 

here a and b are the periods of the rectangular structure. 
From (15) we obtain the quantity P: 

&=aH/ (sin €I)", 

the minimum of which is reached at b 'sine /aH = 277. In 
this case 

a= b=aE(2nlsin 0 )  '", (17) 

i.e., the lattice of the localized superconducting states re- 
mains quadratic in the principal order in d,/a,. For a 
triangular lattice, the solution, found in the class of isosceles 
triangles, also brings about in principal order a unit cell in 
the form of an equilateral triangle. 

Thus, in weak magnetic fields (at temperatures close to 
critical) there exists a wide range of angles between the direc- 
tion of the magnetic field and the inhomogeneity plane, in 
which the localized superconducting states are perpendicu- 
lar to the inhomogeneity plane. 

c )  Magneticjeld at an angle to the inhornogeneityplane. 
Strongfields. In strong magnetic fields (d, >aH) the mag- 
netic field "localizes" the superconducting state along a 
force line. The resultant state is in this case one-dimensional. 
It is convenient to obtain a formal solution of the problem in 
a reference frame with the x axis along the magnetic field 
(Fig. 2b). In this case 

The order parameter must then be found in the form 

0 ( 1  = Y 0 -  'p='p0+11. (19) 
n,"' 

The magnetic moment has as before the form (12) with the 
localization length diH along the magnetic field replaced by 
d,, sine in the "shallow well" region. The values of the 
critical magnetic fields are also modified. To obtain the criti- 
cal fields it is necessary to divide the corresponding equation 
at 6 = ~ / 2  by sine in the region of the "well bottom" and by 
sin2$ in the region of the "shallow well." 

The superconducting state in the region of strong mag- 
netic fields (low temperatures) is thus a periodic lattice of 
superconducting states localized along the magnetic field. 
The unit cell of the periodic structure in the plane of the 
inhomogeneity is deformed along the projection of the mag- 
netic field into a plane. For a quadratic lattice the deforma- 
tion leads to a rectangular unit cell with sides aza, ,  
bza,/sine. The triangular lattice is made up of isosceles 
triangles with vertex angle 

u=2 arctg (s in 0 / f i ) .  

FIG. 2. a) Structure of inhomogeneous superconducting 
state in a magnetic field perpendicular to the inhomogene- 
ity plane. b) Structure of inhomogeneous superconduct- 
ing state at low temperatures in the case when the magnet- 
ic field makes an angle B with the inhomogeneity plane. c) 
Inhomogeneous superconducting state in the case when 

5 the magnetic field is parallel to the inhomogeneity plane. 

/ 
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(We note that just as in bulky homogeneous superconductor 
a triangular structure is realized in this case, but in view of 
the small energy difference between a quadratic and a trian- 
gular lattice the external conditions can lead to a quadratic 
(rectangular) structure.) 

The cited results for strong magnetic fields are valid 
only in the region of not too small angles ~ $ 8 ,  -a,/d,, 
inasmuch as in the angle interval @-al, owing to the condi- 
tion a, -d,, a state localized along the magnetic field 
ceases to be one-dimensional and the results are incorrect. 

d ) Magnetic field parallel to the inhomogeneity plane. 
Strongfields. We consider separately the case when the mag- 
netic field is parallel to the inhomogeneity plane (6 = 0). The 
potential V(x) in Eqs. (1) and (3) does not localize in this case 
the superconducting state along the magnetic field. On the 
other hand in a plane perpendicular to the magnetic field, the 
state is localized both by the magnetic field and by the poten- 
tial. 

In the case of strong magnetic fields [do$a,, where do is 
the characteristic length of localization by the potential 
V(x)], the potential V(x) in Eq. (1) can be taken into account 
by perturbation theory. From Eq. (3), which is linear in the 
order parameter, we obtain the critical field H ;(T) and the 
"eigenfunction" qb0(x) of the ground state. In the "well bot- 
tom" region 

AH, " ( T )  =-c2Vm/8e2EjT2~' ( u , )  HC2"'Lz, 

AH,N=Ho" -HCzm. 
PO! 

In the "shallow well" region 

In both cases the spatial part of the order parameter is given 
by 

go ( x )  =exp ( -x2 /2aE2) ,  aEZ=c/2eElo ( T )  . (22) 

The solution of the nonlinear equation (1) is sought in 
the form 

where $, is due to the nonlinearity of Eq. (1). Substituting 
(23) in Eq. (2) for the current density we obtain an expression 
for the vector potential A :  

p ( x )  fQO2 ( x )  C: dz. A,=H.x - - 
mcT 

Using (23) and (24) we obtain expressions for the amplitude 
of the order parameter Co and for the magnetic field 

-- 
8 ' = ~ ~ '  ( x )  / [I$: ( x )  ] 2-aH-', (26) 

(S is the area of the inhomogeneity plane). The resultant su- 
perconducting state takes the form of a superconducting 
plane placed at the origin (at the center of the inhomogene- 
ity) and having a thickness -aH (Fig. 2c). 

With further decrease of the external magnetic field, 
there are produced in the system vortex chains arranged 
along the inhomogeneity plane, and the superconducting 
plate will be amplitude modulated. After the field H,, " is 
reached, an Abrikosov structure arises in the system. 

e) Magnetic field parallel to the inhomogeneity plane. 
Weakfields. To determine the magnetic moment in weak 
magnetic fields parallel to the inhomogeneity plane (a, )do), 
we must determine the order parameter $,(x,H ) as H-0. In 
this case the nonlinear equation (1) is transformed into a 
nonlinear Schrodinger equation with a potential V(x). The 
solution of this equation must be sought in the form of a 
series in the eigenfunctions of that part of Eq. (1) which is 
linear in $: 

$=CoQo (.I + c.9, ($1,  
n-i 

(27) 

where $,(x) is the eigenfunction of the ground state of Eq. (3). 
In the "well-bottom" region &(x) takes the form (5) as H a .  
In the region of the "shallow-well" parameters $,(x) is deter- 
mined by Eqs. (7) ( H a ) .  

As shown in Ref. 15, the solution of the nonlinear equa- 
tion (1) as H a  in the temperature region 
6 T  = To, - T4T0 - Tl (here Tl is the temperature corre- 
sponding to the "energy of the first excited level") is 

The temperature Ton is determined from the solution of Eq. 
(3) (the ground energy level of this equation). In the "well- 
bottom" region 

In the "shallow-well" region 

To determine the spatial dependence of the magnetic 
field H ( x ) ,  we must substitute (28) in (2) and solve the resul- 
tant equation 

with the boundary condition H(w)  = He. Here A is the 
depth of penetration of the magnetic field into the supercon- 
ductor, and 1-97 = (TO, - T)/TOH. 

The nondimensional form of this equation is 

For type-I1 superconductors doz6~/A ' 4  1 and the mag- 
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netic field can be found by perturbation theory. In this case 

The magnetic moment for the case when the order pa- 
rameter changes over distances that are large compared with 
the inhomogeneity dimension ("shallow well") was deter- 
mined for pure superconductors in Ref. 8. In our case 

Thus, in weak magnetic field the resultant superconducting 
state takes the form of a superconducting plate of thickness 
do = d ,, . In the case of a type-I1 superconductor the magnet- 
ic field penetrates into the superconducting layer, and this 
leads to a decrease of the diamagnetic moment by a factor 
6rdOi ' / A  2. 

53. PERIODIC SPATIAL INHOMOGENEITY 

We consider now the superconducting properties of a 
metal in which V (x) is a periodic function ofthe coordinatex: 

V(x) =V(x+D), (36) 

where D is the period of the superstructure. Depending on 
the relations between the parameters a,, diH, and D, and 
also on the angle 8 between the magnetic field direction and 
the inhomogeneity plane, various situations are possible. 

We consider first the case when 8 > (8,,8,) and diH (D. 
The x-dependent part of the order parameter is then of the 
form 

here +ban is the x-dependent part of the order parameter in 
the n-th layer. The free energy can be represented in this case 
in the form 

The minimum of the energy G (D ) is reached at the maximum 
value of the overlap integral between the neighboring layers. 
Thus, at arbitrarily weak interaction between the layers, the 
superconducting states localized in the layer are spatially 
continuations of one another. The magnetic moment takes in 
this case the form 

where n is the number of layers. 
In the opposite limiting case (diH)D) the situation is 

different in the "well-bottom" and "shallow-well'' regions. 

Near the bottom of the well the potential energy V (x) is given 
by 

V (x) = V,+DZf (xlD) V,,,", (40) 

where f (x/D) is a periodic function with the period of the 
structure. Recognizing that D is much less than the other 
characteristic lengths, we average Eqs. (1)-(3) over small- 
scale changesoff (x/D ) with amplitude - D 2 /L  2. AS aresult 
we obtain in the principal order in D / L  an equation of the 
type (1)-(3) with V(x) replaced by Vm . The critical magnetic 
field determined from (3) has the form usual for a homog- 
neous superconductor (g = gm ) 

The structure of the inhomogeneous state and the magnetic 
moment in such superconductors have the usual Abrikosov 
form with critical parameters T,,, and H  ,", . 

For sufficiently thin layers, when the order parameter 
for an individual inhomogeneity changes over distances that 
are large compared with the layer dimension ("shallow- 
well"), the potential V(x) is given by 

~ e r e j ' ( x / ~  ) is an alternating-sign rapidly oscillating func- 
tion. Substituting the potential (42) in Eqs. (1)-(3) and aver- 
aging these equations over the fast oscillations, we obtain for 
the critical magnetic field ( H  ), and for the magnetic mo- 
ment M the following expressions: 

In (T/(T>,),+x ( i i )  =0, (43) 

The inhomogeneous superconducting field has in this case 
the Abrikosov form at any orientation of the magnetic field 
relative to the inhomogeneity plane. 

At 8 = 0 the structure of the inhomogeneous supercon- 
ducting state depends in a more complicated manner on the 
relations between the parameters. 

In strong magnetic fields at a, (do(D the inhomogen- 
eous superconducting state is a system of parallel supercon- 
ducting plates each with center at the middle of the inhomo- 
geneity plane. The magnetic moment is in this case the sum 
of the magnetic moments of the individual plates. With de- 
creasing distance between the plates, the amplitude of the 
modulations in each of the plates increases, and at D-{ an 
Abrikosov state is produced in the system. 

At D( (aH,do) the potential energy V (x) in Eqs. (1)-(3) 
can be represented in the form (40)-(42). After averaging, 
these equations are transformed into equations with a con- 
stant electron-electron interaction. The superconducting 
state arises in this case at the first critical field ( H  ), defined 
by Eqs. (41)-(43) (for broad and narrow layers) and has the 
same properties as in a homogeneous superconductor near 
the upper critical field. At ~ ( l  we have a, -{(T), 
T = 1 - T / ( T ) , ;  at T- 1 we have a, -{. 
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FIG. 3. Dependence of the diamagnetic susceptibility on the temperature 
of a layered superconductor. 

04. CONCLUSION 

Thus, layered metals have different superconducting 
properties than layered superconductors of the metal-insu- 
lator type. The usual layered superconductors are materials 
that are anisotropic in the normal state, and their supercon- 
ducting properties are connected in most cases with this an- 
isotropy. 

Layered metals, which are isotropic in the normal state, 
can have considerable anisotropy in the superconducting 
state. The anisotropy in such substances is connected not 
only with the distance between layers, but also with the ori- 
entation of the magnetic field relative to the layers. The an- 
isotropy of the superconducting properties of superconduc- 
tors, which is the result of the distance between the layers, 
depends then on the orientation of the magnetic field. Thus, 
in strong magnetic fields parallel to the inhomogeneity plane 
the interlayer distance at which the anisotropy sets in is 
D-{, where { is the coherence length, whereas for fields 
perpendicular to the inhomogeneity plane the anisotropy 
sets in at a distance D-{ 2/a, where a is the thickness of the 
layer (for thin layers). 

The anisotropic properties of layered metals should 
manifest themselves in experiments on the measurement of a 
Josephson current that flows along a magnetic field, and in 
measurements of the critical magnetic field and of the mag- 
netic moment in such superconductors. 

A number of experiments have recently been reported 
on superconductivity in layered metals. In Ref. 17 were mea- 
sured the critical magnetic field, the critical temperatures, 

and the diamagnetic susceptibility of an Nb-Ti system ob- 
tained by layer-by-layer evaporation of one metal on the oth- 
er. 

Figure 3 shows the temperature dependence of the dia- 
magnetic susceptibility for a layered Nb-Ti metal with dis- 
tance D = 34.5 between the layers. In this case D(a, and 
the condition D(diH, at which Eq. (44) is valid, is satisfied. 
The magnetic susceptibility takes then the universal form 

%-I=4n [2k2 ( T )  -11 PA, k ((T)o).=0.96h~lf. 

Here A, is the Londen depth of penetration of the magnetic 
field into the superconductor, and k ( T )  has the well-known 
form.18 The relation defined by Eq. (46) is plotted in Fig. 3 
(solid line). The value k( (T) ,z0 .72  coincides in this case 
with that obtained in Ref. 17. 

The author thanks Ivan K. Shuller for stimulating his 
interest in the problem of layered metals. 
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