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We have developed a method for calculating the band structure and the band population for 
electrons with energy 1-5 MeV in axial channeling in crystals. We have calculated the band 
structure for the (1 11) channel in silicon and diamond crystals. We have investigated the band 
population as a function of the angle of incidence of the electrons on the crystal. Within the 
critical channeling angle, in addition to sub-barrier bands, higher, superbarrier bands are also 
efficiently populated. We show that it is possible to obtain a population inversion of the bands. We 
have studied Kumakhov radiation in the x-ray region. The radiation in transitions between low- 
lying sub-barrier states is the most intense. A comparison with experimental data indicates satis- 
factory agreement of the results. 

1. INTRODUCTION 

During the last twenty years the channeling of charged 
particles in crystals has been studied both experimentally 
and theoretically (see for example the review by Gemmell). 
The basic physical ideas of channeling were set forth in the 
fundamental paper by Lindhard.' Up to 1975 the greater 
part of the studies in this area were devoted mainly to chan- 
neling of heavy particles (protons, a particles, and so forth). 

Beginning in 1976 the channeling of relativistic elec- 
trons and positrons has also been studied. This is due in con- 
siderable measure to the work of K ~ m a k h o v , ~  who predicted 
the effect of intense spontaneous radiation. In his articles the 
basis of the classical and quantum theory of this effect was 
developed, and also it was shown that spontaneous radiation 
in channeling has a high spectral and spectral-angular den- 
sity, is polarized, and is spatially monochromatic. These 
properties of the radiation have attracted the attention of 
experimenters in the large nuclear centers where electron 
accelerators are located. Experiments carried out at SLAC,4 
Serpukhov,' S a ~ l a y , ~  Khar'kov,' T o m ~ k , ~  SUNY,9 Aar- 
hus,1° and elsewhere have confirmed the main results of the 
theory. 

At the present time there are already a number of re- 
views devoted to this problem."-l3 The spontaneous radi- 
ation accompanying channeling of relativistic electrons and 
positrons has been called in the literature "channeling radi- 
ation" or "Kumakhov radiation" (see for example the re- 
views1 '-I3). 

At high channeled-particle energies (above 100 MeV a 
quantum approach is necessary. In the low-energy region (l- 
10 MeV) the influence of neighboring atomic planes and 
strings on the motion of the particle turns out to be impor- 
tant, i.e., it is necessary to consider the motion of the electron 
in the periodic potential of the planes and axes of the crystal. 

As a result the energy spectrum of the particle has a 
band structure. The problem of finding the band structure 
for electrons in planar channeling was solved in Refs. 14-16. 
At low electron energies Kumakhov radiation has been in- 
vestigated by Tulupov." 

The present work is devoted to Kumakhov radiation 
emitted by low-energy electrons moving in an axial channel 
of a crystal. 

2. RADIATION IN AXIAL CHANNELING OF ELECTRONS. 
THEORY 

At relativistic particle energies the potential of interac- 
tion of the particle with the crystal is considerably smaller 
than the total energy of the particle, and the motion of the 
particle can be described by the Dirac equation with accura- 
cy to terms of order V2(r)/E ': 

(-c2h2A+mO2c'+2EV (r) ) g(r)  =E2q (r) . (1) 

We shall consider the thermal vibrations of the crystal atoms 
to be isotropic and to have a Gaussian distribution in each 
coordinate. We shall average the potential V(r) over the ther- 
mal vibrations: 

where u: is the mean square of the one-dimensional ampli- 
tude of the vibrations of the atoms. 

We shall introduce the continuous potential of an atom- 
ic string2: 

where d is the distance between atoms in the string, z is the 
coordinate directed along the string, and R = ( x ,yJ  is the 
coordinate in the plane transverse to the channel axis. Then 
the electron wave function can be represented in the form of 
the product of the wave function of the free motion along the 
z axis and the wave function of the transverse motion $(R) 
which satisfies the Schrodinger equation with the relativistic 
mass of the particle: 

where E, is the transverse energy of the particle. 
In the transverse plane the potential (4) is a periodic 

function 

U, (R) =Ut ( M a ) ,  (6) 

where a is the two-dimensional lattice constant (in the trans- 
verse plane). In view of the Bloch theorem the wave function 
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of the particle in the periodic potential (6) is subject to the 
condition 

1 (R+a) =exp ( i k ~ a )  (7) 
where k, is the two-dimensional quasimomentum of the par- 
ticle. We shall expand the continuous potential of the string 
and the wave function in the reciprocal lattice vectors G and 
H (G = kg, + Ig,, H = mg, + ng,): 

Ut ( R )  = x UE exp (iHR) , 

1 ( R )  = exp (ikLR) x CG exp (iGR) . (8) 
a 

It is easy to see that this expansion satisfies the Bloch condi- 
tion (7). 

Let us substitute the expression (8) into the Schrodinger 
equation (5). We obtain a system of algebraic equations from 
which we can determine the coefficients of the expansion of 
the wave function c, and the particle energy spectrum: 

The system of equations (10) has an infinite number of terms, 
and for specific calculations it can be cut off as follows. The 
Fourier coefficients in the expansion for the potential fall off 
rapidly with increase of H, and therefore the expansion can 
be terminated when U, /Uo, (I. Furthermore, with in- 
crease of the transverse momentum of the electron, i.e., with 
increase of the transverse energy, the particle energy spec- 
trum goes over to a continuous spectrum and the effect of the 
continuous potential of the atomic strings on the wave func- 
tion of the transverse motion become unimportant. Hence it 
follows that G must be sufficiently large to satisfy the condi- 
tion 

fi2GZ/2m>Uo,o. (10) 

The expansion coefficients of the wave function C, de- 
termine the populations of the levels in the bands and the 
dipole matrix element of the transition. If we match the elec- 
tron wave function and its first derivative in free space at the 
crystal boundary with the functions inside the crystal, we 
find that the probability of population of a level in a band 
with number j is given by the formula 

where k,,k,,-x, and y are the components of the electron 
momentum outside the crystal. Since 

k,=pcp cos blh, k,=pcp sin t /h ,  

wherep is the electron momentum and 6 is the polar angle, 
we have the possibility of investigating the population of the 
bands as a function of the angle of incidence p of the particles 
with respect to an atomic string. 

In calculation of the spectra of Kumakhov radiation by 
electrons with energy in the MeV range it is possible to use 
the dipole approximation. l8 In the very interesting case of 
radiation along the path of the particle (the energy of the 
quanta lies in the x-ray range) the number of quanta emitted 

by an electron per unit pathlength is given by the expres- 
sion19 

d o  is the element of solid angle, andpLj,, is the dipole matrix 
element of the transition, which is determined by direct cal- 
culation, 

It follows from (12) that in the dipole approximation the 
quasimomentum of the electron is conserved during the ra- 
diation. 

The continuous potential U,(R) can be obtained from 
analytic approximation of the atomic scattering amplitudes 
calculated by Doyle and TurnerZ0 in the Hartree-Fock ap- 
proximation. After averaging over the thermal vibrations 
and along the atomic string we obtain 

' 2hZ ac 
U t ( R ) =  xq bi/ ( 2 3 ~ ) ~ + 2 u ,  , exp (-R2/ (bi/ (2n) 2 + 2 ~ i 2 )  ) . 

Another possibility is use of the Moliere potential. In 
this case the continuous potential of the string has the fol- 
lowing form2' : 

- 
i -1 

where KO@) is a modified Bessel function of the second king 
of zero order. Averaging (15) over the thermal vibrations 
requires an additional numerical integration. The influence 
of thermal vibrations can be taken into account in a some- 
what different way. The value of U,(O) is determined analyti- 
cally'': 

Z ~ Z &  
(it ( 0 )  = Tz C, exp ( b h i 2 / 2 a ~ ~ ) E i ( b , ' u , ' / 2 a ~ ~ 2 ) ,  (16) 

( - 1  

where El@) is the exponential integral function. For 
O(R<flu, the potential of the string is approximated by a 
parabola, the location of the vertex of which is given by the 
expression (16), and at R = f l u ,  the parabola is matched to 
the potential (15), while for R > f l u ,  the continuous poten- 
tial is used in the form (1 5). Below we shall present the results 
of a calculation with the two approximations considered for 
the potential. 

3. RESULTS OF THE CALCULATION 

The results of calculation of the energy band structure 
for silicon and diamond crystals as a function of electron 
energy are shown in Fig. 1. From this figure it can be seen 
that with increase of the energy the number of bands in the 
potential well increases. The lower levels have practically no 
band broadening, and at E- 5 MeV only the upper sub-bar- 
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FIG. 3. Probability of population of bands as a function of the angle of 
incidence of the electron beam for the ( 1 1 1 ) axis of a silicon crystal; 

FIG. 1. Band structure for electrons in axial channeling in crystals of 
silicon (a) and diamond (b) as functions of the energy. The axis is (11 I) ,  
and the allowed bands are hatched. 

rier levels are broadened. For a diamond crystal the bands 
turn out to be broader, since the potential well is shallower 
(less than z,) and the strings are more closely spaced, i.e., the 
mutual influence of neighboring potential wells is greater. 

In Fig. 2 we have shown the first Brillouin zone for a 
two-dimensional lattice, and also the dependence of the 
transverse energy of the electron on the quasimomentum as 
it varies from zero to the band edge (the point k,). We can see 
from Fig. 2 that for the first band the dependence of the 

FIG. 2. Transverse energy as a function of quasimomentum for electrons 
with E,, = 1 MeV moving in a (1 11) channel of a silicon crystal. 

E,, = 1 MeV. The numbers of the curves coincide with the numbkrs of 
the bands. 

transverse energy of the particle on the quasimomentum can 
be neglected, whereas the second band has a width- 2 eV. 
With increase of the transverse energy this dependence be- 
comes stronger and stronger and approaches a parabolic de- 
pendence. 

In Fig. 3 we have shown the results of calculation of the 
probabilities of population ofbands as a function of the angle 
of incidence of electrons with E,, = 1 MeV with respect to 
the ( 11 1) axis of a silicon crystal. The angle p ,  corresponds 
to the point 1 in Fig. 2 (p, = 2 d f i / p a ,  where a is the lattice 
constant, and for E,, = 1 MeV we have p1 = 2.27.10-3 
rad). The arrow shows the Lindhard critical channeling an- 
gle. Within the critical angle not only sub-barrier bands, but 
also the superbarrier bands 4 and 5 are efficiently populated. 
Only for angles p 5 p, are practically all particles captured 
inside the potential well. However, as will be shown below, 
the radiation in transitions from superbarrier bands turns 
out to be less intense than in transitions inside the potential 
well. 

By choice of the angle of incidence it is possible to 
achieve an inverted population of the bands: for example, the 
difference of the populations of the second and first bands 
can reach about 10%. It must also be taken into account that 
the particles which populate the first band will be scattered 
significantly faster than in the second band, which will lead 
to an increase of the inversion. 

As in the case of planar channeling, in axial channeling 
it is possible to distinguish three types of transitions for radi- 
ation during channeling and under conditions close to chan- 
neling'': 

1. Transitions between bands inside the potential well 
(Kumakhov radiation). 

2. Transitions from superbarrier bands into the poten- 
tial well. 

3. Transitions between superbarrier bands (radiation 
during quasichanneling). 

The number of quanta radiated by an electron per mi- 
cron of path for all three types of transitions was calculated 
as a function of the angle of incidence onto the crystal for the 
( 1 1 1 ) axis in silicon (Fig. 4). The transition 2-1 (the first 
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N, quanta 

FIG. 4. Number of quanta radiated per unit pathlength along the motion 
of the particle, as a function of the angle of incidence of the electrons on a 
silicon crystal; the axis is (1 11) and E,, = 1 MeV. The transitions are as 
follows: (1) 2-1, (2) 3-1, (3) 4-1, (4) 4-2, (5) 4-3. 

type) turns out to be the most intense, and the number of 
quanta changes relatively little over a wide range of angles of 
incidence; the band broadening for this transition turns out 
to be small in comparison with other transitions. The transi- 
tions 4-1 and 4-3 turn out to be comparable in intensity with 
the 2-1 transition, but only in a narrow range of angles of 
incidence. On taking into account the real angular diver- 
gence of the electron beam, the number of quanta emitted in 
these transitions decreases greatly and they turn out to be an 
order of magnitude less intense than the 2-1 transition. It 
follows from this that for practical use the transitions 
between low-lying sub-barrier states turn out to be most effi- 
cient. This fact is confirmed by  experiment^.^.'^ Comparison 
ofthe results obtained above with those of Ref. 17 shows that 
radiation during axial channeling of electrons turns out to be 
more intense than in planar channeling at the same energy. 

4. COMPARISON OF THEORETICAL AND EXPERIMENTAL 
RESULTS 

In Fig. 5 we compare the orientation dependences ob- 
served at Aarhuslo (circles and crosses) with-the results of 
theoretical calculations (curves). The thickness of the silicon 
crystal was 1.2pm, the electron beam energy was 4 MeV, the 
angular divergence of the beam was 0.05", the solid angle of 
quantum detection was 0.6.10-~ sr, and the detection effi- 
ciency was !: 50% in the range of energies 1-8 keV.lo It 
follows from Fig. 5 that satisfactory agreement between the- 
ory and experiment is observed, but it is necessary to take 
into account that bremsstrahlung was also detected in the 
experiment in addition to Kumakhov radiation. In our cal- 
culations we considered only radiation during channeling. 
Therefore if we subtract the background from the experi- 
mental results, the difference from the theoretical curves 
will become more substantial. 

Below we compare the theoretical and experimentallo 
values for the energy of the radiated quanta in keV: 

FIG. 5. Orientation dependence of the number of quanta radiated by elec- 
trons in traversing the ( 1 1 1) channel in a silicon crystal. E = 4 MeV. (a)- 
Transition 5-1, (b)-transition 2-1. 

Moliere potential 6:5 4.4 2.1 1.3 

Potential (14) 63 4.0 2.4 1;3 

Experiment 6;7 4:5 2,3 1.2 

These data indicate that the Moliere potential matched 
to a parabola gives better results than the potential (14). 

Thus, our investigations show that representation of the 
wave function of the transverse motion of the particle in the 
form of a set of Bloch waves can be used effectively for calcu- 
lations of the spectra of Kumakhov radiation. However, at 
energies above 5 MeV (and for crystals of heavier elements 
even at lower energies) the number of Bloch waves, which 
determines the number of equations in the system (9), be- 
comes too large, and this produces definite difficulties in 
numerical calculations. An alternative to the approach used 
by us is the method of solution of the Schrodinger equation 
in the single-string appr~ximat ion ,~~ which permits calcula- 
tion of the position of the energy levels of a channeled elec- 
tron up to energies 100 MeV. However, in this case the posi- 
tion of the superbarrier bands is not determined and 
consequently the contribution to the radiation spectrum 
from transitions of types 2 and 3 is not taken into account. 
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