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This paper reports on the generation of the second harmonic by a bismuth single crystal in a 
magnetic field that is normal to the crystal's surface. A resonance peak in generation was observed 
in the magnetic field. This peak is due to the nonlinear cyclotron resonance of conduction elec- 
trons in the central cross section of the Fermi surface. 

PACS numbers: 76.40. + b 

INTRODUCTION second harmonic will not be radiated. In an oblique field, the 
The surface impedance of a semi-infinite metal in a generation of the second harmonic is possible even in the 

magnetic field normal to its surface has been studied fie- isotropic case. As will be shown below, in the case of an 
quently. As was shown in Ref. 1, the surface impedance in anisotropic dispersion law for the carriers, a strong reso- 

the anomalous skin effect does not depend on the magnetic nance takes place at @yo i.e., the radiation of the second 
field in first-order approximation. In the succeeding ap- harmonic is many times greater at resonance than far from 

proximations in the anomaly parameter, components appear resonance. The  point is that the nonequilibrium contribu- 

in the surface impedance that depend nonanalytically (as tion to the distribution function, which is quadratic in the 

T-tco) on the magnetic field2 (T is the time of free flight). amplitude of the electromagnetic field, experiences much 

These features are connected with the electrons near the el- Stronger growth than the linear at @zn and in 

liptic limiting points (if there are such) and also with the the region of velocities =S/r (where Ty is the mean over a 
electrons of those parts of the Fermi surface where extrema single period of the value of the velocity along the magnetic 
of the quantities %/apy and ) are reached simulta- field). Therefore, electrons with velocities 75: S/T can make 

neously. H~~~ s ( py ) is the area of the intersection of the the principal contribution to the nonlinear conductivity at 

~~~~i surface with the = const and m*( py)  is the the frequency of the second harmonic, increasing with in- 
cyclotron mass, while the magnetic field is directed along the crease in 7. Consequently, even in the fundamental approxi- 
y axis. mation in the anomaly, there is resonance with the reflected 

~h~ following must be noted. ~ l ~ h ~ ~ ~ h  the linear con- second harmonic, due to the electrons that are close to the 

ductivity in the first-order approximation in the anomaly cross 

does not depend on the magnetic field, a significant contri- We shall show, using an illustrative example, whence 

bution to it and, it seems, to the surface impedance also, can the resonance in the radiation of the second harmonic can 

be made by electrons near the central cross section, which come. We consider the Fermi surface in the form of a severly 

remain for a long time in the skin layer and which interact elongated, inclined ellipsoid of revolution. As will be shown 

resonantly with the electromagnetic field. ~ ~ t ~ ~ l l ~ ,  by using below in the section "Theory," the principal contribution to 

the well-known expression for the conductivity tensor the resonance is made by electrons close to the central cross 

o+(k,m), it is not difficult to establish the fact that at section Ty SS/r. For simplicity we shall approximate this 

= o,WT> 1,k-6- I > ~ / V ,  is the frequency ofthe wave, region of the Fermi surface by a cylinder inclined to the sur- 

k is the wave vector, 0 is the cyclotron frequency, V, is the face of the sample at an angle a (Fig. 1). The occupies 

Fermi velocity, S is the skin depth) the basic contribution to 
o+(k,o), and to the corresponding surface impedance is 
made by electrons with velocities V, 5: S/T. In the given situ- 
ation, the resonant growth of the nonequilibrium increment 
to the distribution function, which is linear in the electric 
field in the range of velocities Vy S S/T is compensated in the 
calculation of the conductivity u+(k,w), by the smallness of 
this region. The surface impedance of Bi in a normal magnet- 
ic field has been studied in a number of  work^.^.^ In Refs. 5 
and 6, the generation of the second harmonic in bismuth 
under the Azbe1'-Kaner conditions of cyclotron resonance 
has been studied. Here the magnetic field lies in the plane of 
the sample. In the present work, we have investigated the 
generation of the second harmonic in a geometry in which 
the magnetic field is perpendicular to the surface of the sam- 
ple. From symmetry considerations' it is seen that in such a FIG. 1 .  I-trajectory of electron in coordinate space; 2-orbit of electron 
geometry the anisotropy of the dispersion law in momentum space; a and b-points of electron entry into and departure 
of the carriers in necessary, since in the isotropic case the from the skin layer. 
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the half-space y>O and is located in a constant magnetic 
field H,. We denote the alternating field in the skin layer 
(depth S ) by h, . We consider an electron moving in the mag- 
netic field. Its orbit in real space is a circle of radius r,, 
which depends on the magnitude and direction of the mag- 
netic field. Let a, and a, be the angles between the directions 
of the magnetic field H, + h, and H,, respectively, and the 
cylinder axis. We shall assume that the time of flight in the 
skin layer T, is much smaller than the period of rotation in 
the magnetic field 2r/O and the period of the electromag- 
netic field 2r/w. At the moment when the electron flies into 
the skin layer, it begins to move over the cross section per- 
pendicular to the acting magnetic field in the skin layer H, 
and its cyclotron mass in the skin layer is 

m,*=mo*/cos a , ,  

where m,* is the cyclotron mass at a = 0. Outside the skin 
layer, 

Because of the difference in directions of the magnetic field, 
the cyclotron mass in and out of the skin layer are different. 
This leads to a change in the time of flight in the skin layer: 

46 
) I 1 ' (  l + tg  or%) h, =ro+rw,  

" = ( V.R. sin 2 c ~ '  

where T, is the part of T, independent of h, , 0, is the cyclo- 
tron frequency at a = 0, and T, is the part of T, that depends 
linearly on h,  . 

Within a time T, ( t , )  the electron receives the following 
increment to its velocity: 

where E(t ) is the electric field in the skin layer, T is the time of 
free flight, m is the mass in the direction of E(t,) and e is the 
charge of the electron. 

In order to find the velocity at the instant of time t, it is 
necessary to sum these increments over the re-entries into 
the skin layer, with account of damping: 

Under the condition w2rrm 4 1 we have for the velocity at the 
frequency 20, 

zo eEoroiwro exp ( i2no . lR)  exp ( - 2 i o t )  V ( t )  = -----. 
m ( 1 - e x p { i 2 n o ; / R ) )  (1-exp ( i 4 n o . l R ) )  ' 

It is seen from the formula that under the condition w = no ,  
n = 1,2, the term V2" increases resonantly by a factor ( 0 ~ ) ~ .  
Such a strong increase in the nonlinear current of resonant 
particles is no longer compensated by the smallness of their 
number: N,, cc 1/r and the total nonlinear current has a res- 
onant character. 

In the present model, we have considered the genera- 
tion mechanism connected with the change in the time of 
flight in the skin layer. Complete account of all the mecha- 

nisms leading to generation of the second harmonic within 
the framework of Newton's equations of motion of the carri- 
ers is very complicated. We shall carry out the analysis and 
interpretation of the results on the basis of the solution of the 
Boltzmann kinetic equation for electrons in a magnetic field. 

EXPERIMENT 

In the experiment, we studied the generation of the dou- 
bled frequency in a single Bi crystal located in a magnetic 
field normal to its surface. The sample, which was placed at 
the bottom of a rectangular bimodal resonator (modes 
TE ,,, , TE ,,, ), was irradiated by a microwave electromag- 
netic field at a frequency of w/2r = 9.37 GHz (see Fig. 2). 
The signal of double frequency was investigated, detected by 
a superheterodyne receiver. The source of the electromag- 
netic field at the frequency 9.37 GHz was a magnetron oper- 
ating in the pulse mode: the pulse duration was rP = 2 psec, 
the repetition rate 30 Hz. The power in the pulse was of the 
order of several tens of watts. To obtain a constant magnetic 
field, we used a Helmholtz system. The resonator with the 
sample was placed in a long metallic vessel, and these were in 
turn placed in the liquid helium; in this way it was possible to 
eliminate helium bubbles in the resonator. The experiment 
was conducted at T = 4.2 K .  

Change in the pulse duration and the repetition fre- 
quency used in the study did not change the value of the 
useful signal. This permits us to state that the sample was not 
heated. The temperature near the sample was monitored by 
a germanium thermometer. Details of the experimental set- 
up have been reported in Ref. 5. 

The experiment was carried out on Bi samples having 
the shape of disks of diameter 18 mm and thickness 1 mm. 
The bisector axis C ,  was perpendicular to the plane of the 
sample. The investigations were carried out at various direc- 
tions of the external microwave magnetic field h, and of the 
magnetic field of the second harmonic h,, relative to the 
crystallographic axes of the sample. Figure 3 shows the char- 

FIG. 2. 1-resonator- 2-lines of force of the magnetic field at the fre- 
quency w (the TE,,, mode); 3-lines of force of the magnetic field at the 
frequency 20 (the TE2,, mode); &sample; 5-sample holder; W i a -  
phragm. The sample was irradiated through a rectangular window at the 
bottom of the resonator. The center of the window was displaced from the 
center of the bottom of the resonator in order that the radiation at the 
double frequency to be excited in the TE,,, mode. 
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FIG. 3. Dependence of the amplitude of the second harmonic P,, on the 
constant magnetic field H: 1-theoretical position of the cyclotron reso- 
nance o = 0 of the electrons of the a ellipsoid; 1/2- resonance 20  = 0 ;  
3/2-resonance 2o = 30; 2-resonance o = 20. The polarization is 
h, I(h,, (IC,. The curve b is recorded with larger gain than a. 

acter of the dependence of the second harmonic signal on the 
external magnetic field. The most intense generation of the 
second harmonic was observed in the region of a magnetic 
field corresponding to cyclotron resonance w = L! from an 
almost vertical ellipsoid, which we designate as the a ellip- 
soid. (The angle between the long axis of the a ellipsoid and 
the normal to the surface of the sample n was about 6".) To 
the left of it is observed a series of resonances at multiple 
fields of significantly lower intensity. The peak to the right 
corresponds to the resonance 20 = 0. It should be noted 
that at such an orientation of the crystal in an external mag- 
netic field Ho((nllC, the cyclotron mass of the other two elli- 
spoids (we denote these as thepand y ellipsoids) are the same 
and equal to double the cyclotron mass of the vertical ellip- 
soid. Therefore, resonances from these two ellipsoids lie in 

u 
0 5 10 15 20 

Y' 
FIG. 4. Dependence of the position of cyclotron resonance o = 0 on the 
angle e, between C, and H in rotation in the binary-bissector plane: 1- 
theoretical location of the resonance for thea  ellipsoid; 2-for thebellip- 
soid; + --experimental position of the vertex of the fundamental peak. 

the doubled magnetic field and can be superimposed on the 
resonances from the vertical ellipsoid. On the other hand, 
the cyclotron masses of these two ellipsoids are more sensi- 
tive to the inclination of the magnetic field than the cyclo- 
tron mass of the vertical ellipsoid. In the experiment we 
could rock the magnetic field direction from - 20 to + 20" 
both in the plane formed by the C, and C, axes, and in the 
plane formed by the C, and C, axes. Measurements showed 
that the singularities move in correspondence with the 
change in the cyclotron mass of thea ellipsoid; therefore, the 
observed feature is connected precisely with it (Fig. 4). Upon 
increase in the temperature of the sample to 10-15 K, the 
fundamental peak was shifted toward large magnetic fields 
by 2-3 Oe, became diffuse and then disappeared. 

THEORY 

We now turn to the theoretical consideration of the gen- 
eration of the second harmonic in a normal magnetic field. 
In the solution of the problem of the reflection of an electro- 
magnetic wave at the second harmonic, it is necessary to 
calculate the nonlinear current j"'( y)e -2imt, created by the 
fields of the fundamental frequency in the semi-finite con- 
ductor. Since the character of the reflection of the electrons 
by the surface is not very significant in the given case, we 
limit ourselves to a simplified approach, assuming that the 
fields and the currents are excited in an unbounded conduc- 
tor by an external current sheet. 

We now consider an unbounded conductor. Let the 
electromagnetic field in it have the form 

E (y, t )  =E (k,) e'ks~-i"'+E (k,) eikz~-i"t, 

h (y, t) =h (k,) e'Rly-iwt+h (kZ) eikzg-iwt. 
(1) 

We now find the nonlinear current ja "'( y,t ), created by 
the electromagnetic field (1) and proportional to eqk'+k2b, 
i.e., 

jz' (y, t) =jA2)  (k, 20) e'ky-2iot, k=kl+ kz. (2) 

We introduce the nonlinear conductivity tensor am(k,, k,) 
in the following manner: 

h 

where P (k,, p; k,,y) is the symmetrization operator over the 
wave vectors and the vector indices (summation over the 
permutations). The tensor aa8,, is represented in the form 

(") (") 
0.0~ (kg, k2) =Gab7 (kir kz) f Gab1 (k,, kz) , (4) 

where the first term is the contribution to the nonlinear con- 
ductivity due to the Lorentz force, while the second is due to 
the nonlinearity which is quadratic in the electric field. 

For the description of the location of the electron in 
momentum space we introduce, as usual, the variables &,pY 
and p where E is the energy, py is the projection of the mo- 
mentum of the electron of the magnetic field H and p is the 
phase (p = Ot,), where t, is the time of motion along the 
trajectory in a constant magnetic field, and O is the cyclo- 
tron frequency). 

Solving the kinetic equation, we can obtain an expres- 
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sion for both terms in (4). Omitting the intermediate calcula- 
tions, we write out the results at once. The nonlinearity due 
to the electric field is 

( E )  e3 
0.. ( k t ,  k,) = - i - z  j de dp,,m* 

2x2 " ,  .-, 

V x  a(P k,) V,"k,) x{v;ln (k) [ I  (2) (k2)-k1  (Ta) - Pr n ( 1 

where7, is the average, over the period, of the projection of 
the velocity on they axis along which the field H is directed, 
the alternating part of the velocity is FH = V,, - F,, in* is 
the cyclotron mass, n and I are integers, and f, is the equilib- 
rium distribution function. 

In addition, 

I 2n i ' (2) ( k )  = - 5 dg*eap {-ilg + -- 5 d r p ' k ~ ~ ( r p ' )  }. 
d P :  I 2no  ~ P T  22 

ThequantitiesF r(k ), @, (k ),I, (k )areexpressedintermsofthe 
functionsF, (p ),@ (p ),I (p ),respectively,accordingtoformu- 
las similar to Eqs. (6),  namely, 

The nonlinearity due to the magnetic field is 

. v,";, ( k )  k2(1-6ru) vnT(k2) - 1 -- -- - VlB(k1) 
[kV,+ (Z+n) 52-2o-iz-'1 dp, [k,V,+lQ-o-iz-'1 

where 

In obtaining Eqs. (5) and (8), we have assumed the relaxation 
time to be independent of the momentum. 

Let the dispersion law have the form 

E (p) ='lzaNvpNpv. (9) 

Solving the equations of motion in a constant magnetic field 

we find the connection of the variables E,  p,  p,, with the 
components of the momentum p. We shall use the following 
parametrization of the trajectory: 

px=pz + jx , , ,[A cos rp-B sin cp sign ( e H )  1, 
( A  ,+BL) 

a=u -- sign ( e H )  sin rp  , 
m ' I (111 

where 
Fx=ma2 ( a z ~ r - a , a , z )  p,, 

pr=m*2 (&r~~,-&a,,)  p,, 

Using (1 I), we can determine V" , FH,  FH, dp/dp; sub- 
stituting these expressions in (5), we find Vn "(k ),Fn Y(k ), 
Wn "(k ), @, (k ), and so on. We shall not give the expressions 
for them here, since these calculations do not present any 
difficulties. We shall assume that the conditions of the 
anomalous skin effect are satisfied: 

- 
where V,,,, is the maximum value of the velocity 7, . Tak- 
ing Eqs. (5) and (8) into account, we can verify that the basic 
contribution to the nonlinear current and amplitude of the 
reflected second harmonic will be made by the Fourier com- 
ponents of the electromagnetic fields with wave vectors 
I k I - I k, 1 - I k21 -6 - '. Thus, we must investigate the ob- 
tained expressions (5) and (8) in the case 
Ik I - lklI -lk21 -6-'. 

It is seen from Eqs. (5) and (8) that the components of 
the tensors dh ' and dE)  can experience resonance upon sat- 
isfaction of the conditions w = nL2 (by virtue of (9) we have 
L2 (E,P, ) = const), if L ~ T ,  1. Mathematically, this is connect- 
ed with the fact that kk, < 0 poles relative to the variablep, 
appear in the integrands of Eqs. (5) and (8); these poles lie on 
opposite sides of the real axis and approaching one another 
when the ratio w/L2 approaches an integer. Of course, the 
resonance takes place only in the case of an anisotropic dis- 
persion law. 

It is clear that the principal contribution to the nonlin- 
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ear conductivity at the resonance w = nR as T-cc is made 
by electrons with velocities pH 5 S/T. These electrons can, 
moving out of the skin layer, return to it frequently (the dis- 
persion law is anisotropic), and it is this which leads to reso- 
nance. If they do not emerge from the skin layer within the 
time 2a/D, however, the resonance is due to the inhomoge- 
neity of the field in the skin layer. 

In the linear approximation, a resonant increase in the 
distribution function of the electrons in the region of veloc- 
ities 7, 5 S/T, which takes place ifw = 0 ,  is compensated in 
the calculation of the current by the smallness of this region. 
As a result, the contribution to the current from the elec- 
trons taking part in the cyclotron resonance turns out, gen- 
erally speaking, to be of the same order as the contribution of 
the nonresonant electrons with velocities TH 5 Sw. In other 
words, the linear conductivity in the anomalous skin effect, 
as is well known, has no singularities at w = R (and also at 
o = nf2 ). The increment of the distribution function is qua- 
dratic in the electromagnetic field at w = nR, T+CO in the 
region FH 5 S/T experiences a much greater increase than 
the linear increment, which is not compensated for by the 
smallness of the given region. Therefore, cyclotron reso- 
nance can appear in the nonlinear conductivity at w = no .  

It is seen from Eqs. (5) and (8) that the components of 
the tensors dE) and dh) contain both contributions that in- 
crease as w = nR, T-cc in proportion to T, and contribu- 
tions that increase in proportion to T'. In the tensor dE)  an 
increase that is proportional to r2 can be had only by those 
terms with indices apy. The corresponding resonance con- 
tribution (we denote it by 5:;;) is connected with the penulti- 
mate term in the curly brackets of Eq. (5). It is not difficult to 
calculate it: 

Upon satisfaction of (13), we have shown that V, and also the 
quantities V,, "(k ), vnB(k1), J,  (k2F/R ) are practically inde- 
pendent ofp,, if 

Similarly, we can calculate a!&-the resonance term in (8) 
that increases most rapidly with increase in T: 

kz(1-6 ) x-T~x v~: ( k )  Vn7(k2) V n B ( k t )  I a = e p . ~ u  =a 
o 

We now proceed to the consideration of the nonlinear- 
ity in bismuth. We shall assume that the C ,  axis is identical 
with they axis and the C3 axis with the z axis. Also, we shall 

assume that w = 277.9.3 lo9, while the parameter 
wr = 10-30. At this frequency, the depth of the skin layer in 
bismuth 6 z  1.5 . cm. 

We now estimate the contribution to the nonlinearity of 
the electrons of the a ellipsoid. For the a ellipsoid, we have 

6o/Vm,=6o/V (p,=O) -1. (15) 

Consequently, the given situation is very favorable for the 
observation of the resonance w = R ("), where R ("I is the cy- 
clotron frequency of the ellipsoid a. Actually, in this case, 

where V,,, is the maximum value of the velocity of the 
electrons on the Fermi surface. It follows from (15) that the 
electrons close to the central cross section move into the skin 
layer for about one-half of the cyclotron period. It should be 
noted that the skin effect for the electrons of the a ellipsoid is 
not extremely anomalous, since 

06/VH --I. (17) 

Nevertheless, the asymptotic formulas (13) and (14) "work" 
well near the resonance w = R("), since the condition for 
their applicability is the fulfillment of the inequality 

I o-Qi-i-c-' I 6/VH ,,,<I, (18) 

while in our cases /FH,,,~-O. 1-0.03. By virtue of (15), the 
principal contribution to Eqs. (5) and (8) at w-R(") will be 
made by the terms with n, I- 1. 

As can be demonstrated, for the electrons of the a ellip- 
soid at w -R("', far from resonance, the components of the 
tensors dE) , dh ) with indicescr,p, y # y, are dominant, while 

( h )  e3 
P1P2 sin lozzz (H=O) I - --- 0 (-k,  k ,)  

2n oZ mi [ (m3 /m1)  cos2 Po+sin2 Po] ah ' 

wherep,,p,,p, are the semiaxes of the ellipsoid; m,, m,, m3 
are the effective masses, corresponding to the principal axes 
1, 2, 3 (Ref. 7). Near the resonance w =R(")  at wr)l, the 
components with a, 0, y = x ,  z become the principal 
terms. Directly at the resonance w = a ( " ) ,  we have 

We now use the quadratic model of the electron spectrum 
(9), which is quite sufficient for the estimate of the nonlinear- 
ity. However, we note that account of the nonquadratic spec- 
trum, for example, in the model of McClure and C h ~ i , ~  leads 
[as can be established from ( 5 ) ]  to the appearance at reso- 
nance of components of the same order as (20) in c$&. This 
circumstance is connected on the one hand with the fact that 
because of the nonquadratic nature of the dispersion law the 
cyclotron frequency R (") depends significantly on the ener- 
gy, and on the other hand, with the fact that the skin effect 
for electrons of the a ellipsoid is not strongly anomalous. 

The cyclotron mass of the P and y ellipsoids is twice as 
large as that for the a ellipsoid. Therefore, at w = 0'") the 
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electrons of the fl and y ellipsoids are also located at reso- 
nance w = 2f2p). 

For electrons of the /? and y ellipsoids, 

Taking into account (21) Eqs. (5) and (8), and also (13) and 
(14), we can establish the fact that the resonant contribution 
of the 0 and y ellipsoids to the nonlinearity at w = 2fip) is 
much smaller than the contribution of the a ellipsoid. This is 
connected with the fact that the electrons of the B and y 
ellipsoids, even close to the central cross section, stay in the 
skin layer a time that is much shorter than the cyclotron 
period. Estimates show also that the nonresonant contribu- 
tion of the nonlinearity of theP and y ellipsoids is also much 
smaller than the resonant contribution of the ellipsoid. 

In normal incidence of an electromagnetic wave on the 
bismuth sample, longitudinal fields are excited in it due to 
the anisotropy. As a result, even in our case, when the C ,  axis 
is directed along the normal to the surface, holes can make a 
contribution to the amplitude of the reflected second har- 
monic. However, the contribution turns out to be insignifi- 
cant. 

We see thus that at the resonance w = O("' the nonlin- 
ear conductivity increases strongly and turns out to be due to 
the electrons of the a ellipsoid. In zero magnetic field, as can 
be shown, in the case in which the electric field of the inci- 
dent wave is parallel to thez axis (the C, axis of bismuth), the 
contribution to the transverse nonlinear current of theB and 
y ellipsoids is approximately an order of magnitude larger 
than the contribution of the a ellipsoid (we note that the 
nonlinear transverse current in the given case is also directed 
along the z axis). Taking this into account, and also the esti- 
mate (20), we see that the transverse nonlinear current at the 
resonance w = fi'") is about an order greater than in zero 
magnetic field. Inasmuch as the surface impedance and the 
skin depth in the region of magnetic fields at which O'"' 5: w 
are practically constant, it follows that the amplitude of the 
reflected second harmonic at the resonance w = fi(") is also 
about an order of magnitude greater than in zero magnetic 
field. 

It is seen from Eq. (14) that the contribution to the non- 
linear current made by an electron in one revolution in the 
magnetic field depends on the value of the field and is not a 

maximum at w = since V,Y (kl, k2), Vz(k ) depends on 
the magnetic field. It must therefore be expected that the 
amplitude of the reflected second harmonic as a function of 
the magnetic field will have its maximum somewhat shifted 
(by about the width of the resonance line) relative to the posi- 
tion determined by the equation w = f i  ("). 

It should be noted that in spite of the closeness of the 
observed resonance to the resonance from the point of the 
almost vertical ellipsoid, it must be assumed that the ob- 
served resonance singularity in the generation is connected 
with the electrons of the central cross section of the Fermi 
surface, since these electrons interact much more effectively 
with the electromagnetic field in the skin layer than the elec- 
trons of the limiting point, which depart from the region of 
interaction after less than the period of the UHF field. 

CONCLUSION 

The resonance in the nonlinear response observed in the 
research is completely described within the framework of 
the theory developed. However, the exact location of the 
resonance and also the line shape require numerical calcula- 
tion. The strong increase in generation of the second har- 
monic in the region of cyclotron resonance allows us to hope 
that the nonlinear cyclotron resonance can be observed not 
only in metals of the bismuth type, but also in metals with a 
large number of carriers. 

The authors express their gratitude to V. F. Gant- 
makher for useful discussions and interest in the research. 
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