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The time evolution of the single-particle distribution function of the particles in a nonrelativistic 
plasma in the absence of an external field is studied. A linear differential equation that describes 
the high-energy part of the distribution function is derived. Approximate analytic solution of this 
equation yields the thermalization (Maxwellization) time of particles in the region of energies E 

>kT:t, ~ 0 . 6 4 ( ~ / k ~ ) ~ / ~ t , ,  where to is the relaxation time in the region of the characteristic mean 
energies (E - kT). The significance of the results is discussed for the example of the y luminosity of 
the accretion plasma around a black hole. 

PACS numbers: 52.25.Dg, 95.30.Qd, 97.60.Lf 

1. INTRODUCTION the single-particle distribution function f (p,r,t ), an integral 

In problems associated with the study of the various Fokker-Plan& equation holds (see, for example, Ref 5): 

physical processes in a nondegenerate hot plasma, great im- -+----v=--- 8f p df d U  a f  aJi 

portance attaches to the rate at which thermal equilibrium is d t  m d r  d r  ap api ' 
(2) 

established for the different components of the plasma. The where J is the vector functional with components 
characteristic thermalization times of the electron, tee, and 
ion, t,, , components, and also the time of equalization of the 
temperatures between these components, t, , have been in- 
vestigated in detail (see, for example, the reviews'-3). How- 
ever, much still remains unclear about the nature of and the 
time required for the establishment of thermal equilibrium 
of the high-energy (relative to the mean energies) tail of the 
Maxwell distribution, though it is obvious that the establish- 
ment of this equilibrium is a slower process than the therma- 
lization in the region of the characteristic mean energie~.~ 
Moreover, in many dynamical problems it is precisely the 
time evolution of the high-energy tail of the distribution 
function that plays the most important part. 

In the present paper, we investigate this problem for 
nonrelativistic systems. 

2. KINETIC EQUATION FOR HOMOGENEOUS SYSTEMS IN 
THE APPROXIMATION OF WEAK COUPLING 

It is well known that in a nondegenerate fully ionized 
plasma the kinetic stage in the evolution of the system can be 
divided into three time intervals with different scales, in 
which there is successively establishment of thermal equilib- 
rium of the electron component, the ion component, and 
then between these two components of the plasma. This cir- 
cumstance makes it possible to reduce the investigation of 
the behavior of the complete ensemble to independent study 
of the evolution of each of the components. 

We consider a nonrelativistic system of N identical par- 
ticles described by the Hamiltonian 

where m is the mass, r is the radius vector, p i s  the momen- 
tum operator, is the interaction operator, and U is the 
operator of an external field. In the kinetic stage of the evolu- 
tion, when it is possible to describe the system by means of 

c =mJ q 3 V t  dq ,  V ,  = J V( r )  e a C d r .  (38) 
0 

In the expressions (2) and (3),  summation over repeated 
Latin indices is understood. In addition, for brevity we have 
introducedthenotationf =f (p,r,t )and f,rf (p,,r,,t ). Inthe 
special case when the mean changes in the physical quanti- 
ties in each elementary interaction are small compared with 
their initial values, Eq. (2) can be reduced to a linear differen- 
tial Fokker-Planck equation. It should also be noted that the 
expression (3) for the collision integral L ('' = - dJ/dp is 
valid when: 

a) the characteristic inhomogeneity scales for the sys- 
tem are apprecialby greater than the range of the forces 
between the particles; 

b) the mean interaction energy ( V )  is much leaa than 
the mean kinetic energy - kT; thus, for the Coulomb inter- 
action this means that e2n1I3&k~,  i.e., n(5-103'.(kT/ 
m , ~ ~ ) ~ c m - ~ .  

We now consider the special but nevetheless very inter- 
esting case of a homogeneous and isotropic system. Under 
these conditions, the distribution function f depends only on 
the modulusp of the momentum and on the time t: f = f @,t ). 
In addition, it is obvious from general considerations that 
the vector J = J(p,t ) must be parallel to the vector p, whose 
direction is the only one that is distinguished on space. This 
makes it possible to simplify significantly the collision inte- 
gral L '2' by expressing the divergence of J in spherical co- 
ordinates and bearing in mind that I JI = J, : 

Integrating (3) over the directions of p,, we obtain 
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Integrating (4) overp,, we arrive at the collision integral in 
the form 

where n is the concentration of the particles, and w( <p,t ) is 
the probability of finding a particle with momentum less 
thanp at time t; further 

is the mean energy (per particle) of the particles that at the 
time t have momentum less than p. 

Thus, for an isotropic and spatially homogeneous 
(U = 0) system ofN identical particles we obtain an equation 
for the single-particles distribution function: 

a f ~ a t = ~ ( ~ )  ( p ,  /) , (8) 

where L "' is determined by Eqs. (4)-(7). 
The operator L "' (4) can be reduced to a linear differen- 

tial form for the region of the variable p greater than the 
characteristic mean value p. Strictly speaking, in fact, we 
require fulfillment of only the condition 

wherep2 2 3b2. 
Indeed, forp2%p2 the main contribution to the collision 

integral L "' (4) is determined by the region of integration 
p ,  Sp,  since the disribution function f decreases rapidly at 
large p; thus, in the limiting case t-+m it is obvious that 
f @)+exp( - p2/2mkT). Then on the right-hand side of the 
expression (4) we can replace the limit of integrationp by co , 
obtaining 

where P = E( < W )  is the mean kinetic energy per particle. 
Since this mean energy is conserved in a conservative sys- 
tem, we can go over to the new independent dimensionless 
variables 

z=p2/2m6, ~ = t / t ~ ,  (lo) 
CI='/~C, to= (mO)' la /~%'~z .  (11) 

Thus, Eq. (8) is reduced to the form 

It is obvious that the Maxwell distribution f = e - " sat- 
isfies the stationary equation (1 2). The quantity 8, which oc- 
curs implicity in Eq. (12), is the temperature that is estab- 
lished in the system as t+ a. It is in this sense that we shall in 
what follows speak of the temperature of the plasma even 
when it (or rather its high-temperature tail) is still far from 
the equilibrium state. 

To elucidate the evolution in time of the energy distri- 
bution of the system, it is expedient to make the substitution 
f = ge-', after which we obtain 

The funtion 

determines the degree of thermalization at the point z at the 
time t and in the limit T-+ co tends to unity. 

Equation (12) for the high-energy "tail" of the distribu- 
tion function f @,t ) was obtained earlier in a different way by 
G ~ u l d . ~  However, the derivation of Eq. (12) in Ref. 3 used 
the assumption, not stricly obvious, that it is permissible to 
expand the distribution function f in the collision integral 
with respect to the parameter Ap/p, whereas in the present 
paper Eq. (12) is derived more consistently. In particular, we 
are now able to determine correctly the region of applicabi- 
lity of this equation: z>3. 

3. SOLUTION OF THE KINETIC EQUATION FOR THE HIGH- 
ENERGY PART OF THE DISTRIBUTION FUNCTION 

Suppose that at the initial time the ensemble consists of 
particles with energy E. We find the time evolutin of the high- 
energy part of the distribution function f = ge - ' . For this, 
we must solve Eq. (13) in the regionz,(z < co with the initial 
condition 

g(z ,  0) -0 (154 
and boundary condition 

g(zo, 7 )  =Y(T).  (1 5'3) 

Going over to the new variable u, we obtain 

Since u >u, = 4/5z2I4) 1 and u- is a slow function, 
we can, considering the solutins of Eq. (16) with the initial 
and boundary conditions (15) in the region u,(u<yu,, 
where y- 10, regard b in a first approximation as a constant, 
and replace it by some mean value in the given region. Then 
Eq. (16) becomes a heat conduction equation with constant 
coefficients, the solution of which (for a semi-infinite line) is 
well known (see, for example, Ref. 6). Indeed, after the sub- 
stitution 

where x = u - u,, Eq. (16) reduces to 

with the initial and boundary conditions 
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The solution of this equation can be written in the form 

To find the concrete solution p(x,r), it is necessary to 
know the boundary function P(T), which, strictly speaking, 
must be determined from the solution of the kinetic energy in 
the general case for z- 1. However, if we assume that the 
thermalization at the point z, takes place directly at the ini- 
tial time, this does not lead to a significant distortion of the 
distribution function for z-yz,)z, (uw,).  Therefore, set- 
t i n g ~ ( ~ )  = 1 and making some manipulations in the expres- 
sion ( 19), we find 

1 
g (x, T) = ---= ( e - " " d ~ + e ~ ~  J e - ~ l d v )  , 

I n  

where 

Noting that for x) 1 the lower limit in the second integral in 
(20) is greater than unity, and that the error function @ (s) 
decreases very rapidly for large s, we can ignore the second 
term in (20) compared with the first for any T. Substituting 
for the mean value in b the corresponding value for the main 
term at the point z* =z/2, we obtain b-1.24/~'/~. 
Noting also that 

I 

x='[~ (z~/~-z~" ) =4/s~5/a, ZB I, 
we find 

Since in the limit T+ co the function a(z, T) tends to - co , we 
conclude directly from (21) that g, which determines the de- 
gree of thermalization of the system of particles in the region 
of z, tends to unity, as was to be expected. 

The characteristic thermalization time at the given 
point can be determined from the conditiong(z, T) = 0.5, as a 
result of which we arrive at the condition a(z, T) = 0, i.e., 

It should be noted that the obtained approximate solu- 
tion (21), (22) does not in fact depend on z,. Moreover, the 
thermalization time for the region z-yz,, where y- 10, is 
appreciably greater than T, (by z3I2 times). Therefore, the 
assumption g(z,, T ) = ~ ( T )  = 1 made above is justified for any 
z, used in the finding of the approximate solution g(z, T) in 
the region z- lOz,. Thus, the restriction y- 10 required 
above is also not critical. 

Figure 1 shows the curvesg(z, T) for some values of T. It 
can be seen from the figure that the high-energy part (z) 1) of 
the distribution function for T < T, is strongly suppressed 

FIG.  1.  Degree o f  thermalization g(z, r) as a function of  r = t / to  and 
z = E/kT.  The values of T are given next to the curves. 

compared with the Maxwell distribution. It is therefore ob- 
vious that the fulfillment of the condition At- to, where At is 
the characteristic lifetime of the plasma, is not yet sufficient 
for one to be able to use the Maxwell distribution to calculate 
the rates at which physical processes take place in the plas- 
ma. 

Hitherto, we have discussed the evolution of the distri- 
bution function without particularizing the physicaI pro- 
cesses that lead to the thermalization of the plasma. The only 
parameter that depends on the interaction process and oc- 
curs implicitly in Eq. (12) is the scale factor to, which is a 
relaxation time. Its value is determined by the expressions 
(1 1) and (3a). In the special case of the Coulomb interaction, 
when V ( r )  = e2/r,  we obtain the well-known result for the 
relaxation time (see, for example, Ref. 3): 

where A is the Coulomb logarithm, and m is the mass of the 
colliding particles. 

For proton-proton collisions there are not only the 
Coulomb forces but also the nuclear forces, which become 
important once kT> 1 MeV. The total cross section of elastic 
proton-proton scattering in the energy interval 10-300 MeV 
can be well approximated in the form7 

o,,N=o,,N=10.63/~Z-29,92/~+42,4 [mb 1, (25) 

where p = v/c, and v is the relative velocity of the colliding 
particles. 

To estimate the relaxartion time t f due to the nuclear 
forces, we use the well-known relation 

where 

ot= 5 ( I -COB -8) do 

is the so-called transport cross section, which determines the 
rate of energy transfer. 

In the center-of-mass system, the angular distribution 
of the scattered nucleons is almost and, therefore, 
a, -- ( 1 / 3 ) 4 .  Accordingly, 
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It follows from comparison of the expressions (28) and (24) 
that for kT- 10 MeV the nuclear relaxation time is about 
one and a half orders of magnitude shorter than the relaxa- 
tion time due to Coulomb collisions. With increasing tem- 
perature, the ratio t f/t becomes even smaller. Thus, de- 
spite Gould's assertions, elastic nuclear collisions lead to 
thermalization of a plasma with temperature k n  1 MeV 
much more rapidly than the Coulomb interaction, dispite 
the long-range nature of the latter. Therefore, for a high- 
temperature ion plasma the nuclear forces are dominat. This 
tends to equalize the relaxation times T,, and re,, whereas 
T,, remains appreciably larger than T,, and re,. Therefore, 
independent consideration of the evolution in time of the 
distribution functions of the electrons and protons is even 
more justified. 

The time delay of the thermalization of the high-energy 
tail of the distribution function will influence the formation 
of the radiation spectrum of the plasma, which is associated 
with both the electron and the ion component. We shall con- 
sider this question for the special example of the y luminosity 
of a plasma due to the decay of secondary lrO mesons, which 
have a high production threshold. 

4. LUMINOSITY OF A HIGH-TEMPERATURE NUCLEON 
PLASMA AS A RESULT OF THE PRODUCTION AND DECAY 
OF 7P MESONS 

At proton energies >I50 MeV in the center-of-mass 
system, the inelastic channel for pion production is opened. 
Since the pion production cross section up to - 500 MeV is 
appreciably smaller than the cross section for elastic proton- 
proton scattering, inelastic collisions will not significantly 
influence the evolution of the particle distribution function 
in a plasma with kT< 100 MeV. Nevertheless, the produc- 
tion and decay of lro mesons during a time - 10-l6 sec is of 
interest from the point of view of the y luminosity of the 
plasma. Thus, for a Maxwellian plasma this mechanism of 
radiative cooling of nucleons becomes predominant at tem- 
peratures k n 2 0  MeV.'' 

The rate of lrO production in a plasma with Maxwellian 
distribution of the particles has been calculated by many 
authors."-'4 The radiation spectrum has a characteristic 
maximum at E, -- 70 MeV. Its shape depends weakly on the 
distribution function of the protons and is largely deter- 
mined by the kinematics of the decay lr0+2y. Therefore, the 
plasma luminosity L, at the time t is determined directly by 
the rate of production of the lrO mesons, and this rate does 
depend strongly on the proton distribution function. There- 
fore, for times 

where E ,  z 150 MeV, the luminosity L, will be suppressed 
compared with the luminosity of a plasma in which the Max- 
well distribution has been established. This can be seen in 
Fig. 2, in which we have plotted the plasma luminosity ratio 

as a function of the time T = t /to. The calculations of R, (T, 
T) were made for the distribution f = e - ' g  on the basis of the 

FIG. 2. Dependence of x = R ,  (T, r) /R,  (T, m )  on the time T = t / to  and 
the plasma temperature kT. The values of the temperature kT (in MeV) 
are indicated next to the curves. 

lro production cross section compiled in Ref. 15. The calcu- 
lations of R, (T, cc ) corresponding to the Maxwell distribu- 
tion agree with the previously obtained results of Ref. 13. 

A high-temperature plasma (n 101'"K) can be formed 
near compact relativistic objects such as neutron stars and 
black holes (Refs. 1 1, 12, and 16-20). An important argu- 
ment in favor of the existence of such an astrophysical plas- 
ma would be the detection of y radiation due to the decay of 
secondary lrO mesons. 

To estimate the y luminosity of an accretion plasma, 
one usually finds the mean energy of the hot nucleons in the 
region of generation of the radiation; further, under the as- 
sumption that the nucleons have an established Maxwellian 
distribution with k T  = (2/3) < E > , one calculates 
R, (T)=R, (T, cc ). However, the results obtained in this way 
will be correct only if 

At>t,, (30) 

where t, is determined from Eq. (29), and At is the "lifetime" 
of the hot nucleon plasma. We discuss the fulfillment of this 
condition for two models of a high-temperature accretion 
plasma around a black hole. 

a) Spherically symmetric accretion 

For standard spherical accretion, the proton tempera- 
ture as a function of the distance r from the gravitational 
center is 

where rg is the gravitational radius, and p 2 1 is the Mach 
number. It follows from this that for r 5 lor, the nucleon 
temperature T, -- (2/3) < E > reaches values 2 10 MeV. 
Further, the time of falling of the plasma At -tR and the 
proton concentration n, at the distance rare  (see, for exam- 
ple, Ref. 2 1) 
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where 0, is the Thomson cross section, m, = M / M ~ ,  , 
7 = L /LEd,  and 

Lf,,=2nr,m,cl1~0, 

is the critical accretion rate. We estimate the ratio of the 
relaxation time t f (28) to the time of falling of the plasma: 

toN - 10i6q ( T )  -- r " IOq(T)-. 
t f  f ntf f mo 

Substituting th2 characteristic values q ~ 5 ( 1 0 < k T < 1 0 0  
MeV), 7 z 0.1, mo z O .  1, we find that tf ( t  t, and, therefore, 
pion production in the plasma is strongly suppressed in the 
case of spherical accretion. 

b) Disk accretion 

Shapiro, Lightman, and Eardleyl' showed that it is pos- 
sible to have a regime of disk accretion onto a black hole, in 
which the rapid cooling of the electron component due to 
Comptonization of low-frequency radiation results in the 
formation of a two-temperature plasma with T, - lo9 OK 
and Ti > 10" O K .  

For disk accretion, the time of radial falling of the plas- 
ma is 

where rT = nhuT is the optical thickness of the disk with 
respect to Thomson scattering, equal in order of magnitude 
to unity for the discussed model, and h ~ O . l r  is the half- 
thickness .of the disk. Using the characteristic value for 
7 Z: 0.06 in the region of the main energy release of the disk, 
r< lor,, where the high-temperature ion plasma is formed, 
we obtain 

where, as before, mo = M /Mc, . For appreciable y luminosi- 
ty of a Maxwellian plasma we require fulfillment of the con- 
dition (29), i.e., 

10 MeV -" 2 lorg 
T ( TI2( 7) mo21.  

Unfortunately, because of the large uncertainties in. the 
values of the parameters that describe disk a~cretion,~'  it is 
at present impossible to say anything definite about the ful- 
fillment of the condition (35) and, therefore, about the effec- 
tive generation of pions in accretion disks around black 
holes. 
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