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An analytic theory of the self-trapping barrier for Wannier-Mott excitons is developed on the 
basis of the expansion of all quantities in the small parameter me /m,  4 1, where me and m, are 
the electron and hole masses. The height of the self-trapping barrier is calculated and its tunnel 
transparency is estimated (with exponential accuracy). The results are compared with the calcula- 
tions of other authors. 

PACS numbers: 71.35. + z 

Free and self-trapping states of an exciton in a polaron 
crystal are separated by an energy barrier1 and can therefore 
c ~ e x i s t . ~  This phenomenon, first observed in alkali-halide 
crystals (AHC),3 is at present under study for a large class of 

The height of a self-trapping barrier in a con- 
tinual approximation is best carried out for a Frenkel exci- 

For a Wannier-Mott exciton the situation is much 
more complicated because it has additional degrees of free- 
dom connected with the relative motion of the electron and 
hole. The difficulties are great even in models with a nonde- 
generate valence band, to which all the studies known to us 
are confined at present. 

Since the electron is usually much lighter than the hole, 
it is natural to attempt to use the small parameter me /m,  to 
construct an analytic theory. Regardless of how applicable 
the asymptotic formulas obtained in this paper are to real 
crystals, the qualitative picture obtained can be quite in- 
structive. As shown by variational ca l c~ la t i ons~~  (in accor- 
dance with the prediction of Ref. 1 I), the height W of the 
barrier decreases with decrease of this parameter. Conse- 
quently, the lifetime of the free exciton must also decrease. 

We consider in this paper Wannier-Mott excitons in 
polar crystals in the continual approximation, which goes 
back to the Pekar theory of po lar~ns . '~  We assume that the 
effective-mass approximation holds for the electron and 
hole, and that the crystal lattice can be regarded as a contin- 
uous polarizable medium with fixed natural frequency low 
enough for the adiabatic approximation to be applicable. 
The result is the notion13 that a Coulomb interaction takes 
place between an electron and a hole located in a common 
potential well produced by the slowly varying polarization 
of the lattice. Leaving aside the question of the localized self- 
trapping state of such a system, we obtain the barrier height 
and (with exponential accuracy) the time of tunneling 
through it; our equations are valid in the limiting case of a 
large difference between the electron and hole masses. It is 
then possible to construct of some sort of an adiabatic ap- 
proximation with the small parameter m,edmh ( E ~  - E ,  ) 
and carry out the calculations almost analytically. The main 
results reduce to the following. 

The height of the barrier (more accurately, the energy of 
the saddle-point state) 

W = 2 . 1 4 r n , 2 ~ ~ E ~ / m ~ ~  ( E ~ - - E ~ )  (1) 
is small compared with the exciton-ionization energy 

The polarization potential well on the barrier has a radius of 
the order of the exciton Bohr radius fi2&, /me e2 and a depth 
E, me /mh . The time of tunneling through the self-trapping 
barrier is, accurate to a factor in front of the exponential, 

~ = o - '  e x p  ( W/Ao) (2) 
(w is the phonon frequency). The shape of the polarization 
well and the wave function on the optimal tunneling paths 
are similar to those in the saddle-point state. The expressions 
obtained for Wand T are valid subject to the condition 

fioa w, 
which is thus the adiabaticity criterion for our problem. 

1. SADDLE POINT STATE 

In the adiabatic approximation the total energy of the 
system (Wannier-Mott exciton in a polar crystal) is of the 
form l4 

where Z. = ( E ,  ' - E; I)-' and p(r) is the electrostatic-induc- 
tion potential. It is more convenient to seek'the free, self- 
trapping, and saddle-point states as the stationary points of 
the functional10 

where p(r) is defined by the expression 

The values of the functional (4) at the stationary points give 
the energies of the corresponding states. 

The entire analysis that follows is based on an approxi- 
mation which we shall call the model of a "rigid" exciton. 
Namely, we assume throughout that the relative motion of 
the electron and hole are described by the same hydrogenlike 
wave function as in the case of a free exciton. This approach 
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is certainly applicable to the self-trapping state but, as will be 
shown, for the saddle-point state and for all the states on the 
optimal path for tunneling through the barrier the distortion 
of the inner structure of the exciton and its influence on the 
energies of the state is small in the parameter me /m, ( 1. 

We transform right away to new measurement units, 
namely the length ii2&, /mee2 (the Bohr radius of the exci- 
ton at me (m,) and the energy m,e4/fi2~, P; (the exciton 
Rydberg multiplied by 2E , /E) .  

The motion of the rigid exciton is described by the wave 
function $(r) of the mass center, which coincide in the limit 
me dmh with the hole. The charge density is given by 

p ( 1  = [ $ ( r  - J ( r )  $ ( r )  r -;I$ (r) , (6) I 
where x (r) = P- 'l2e - is the wave function of the ground 
state of the relative motion of the free electron, and the po- 
tential (5) is equal to 

1 
g(r)=e  Jm P (r') d3r'-eRp (r) =eXi;g2 (r) . (7) 

The identities (6) and (7) define the linear operators,? and 6. 
Using as the origin the free-exciton energy, we obtain 

from (4) a functional that contains only one parameter 

The stationary points of this functional define the free, self- 
trapping, and saddle-point states in the rigid-exciton model, 
while the values of2 [$(r)] at these points define the energy of 
the states relative to the free exciton. In the present section 
we obtain the wave function $(r) of the mass center and the 
energy Wof the saddle-point state in the limit of large values 
of the parameter M. 

Variation of the functional (8) with respect to $ yields 
the nonlinear "Schrodinger equation" 

-A$ (r) /2M+V(r)$ (r) =Eg (r) , (9) 

where 

V (r) =-;X&~ (r) , 

and E is a Lagrange multiplier chosen to obtain normaliza- 
tion to unity and called hereafter the Schrodinger energy. In 
the case of a spherically symmetrical internal-motion wave 
functionx (r) we can assume, without loss of generality, that 
x (r) is also spherically symmetrical. 

The "potential energy" (10) has a property that will be 
useful later, namely it decreases rapidly over distances that 
are large compared with the exciton size. This property, due 
in final analysis to the exciton electroneutrality, is possessed 
also by a wave function that falls off slowly at large r, for in 
this case 

~ $ z = - ' / z ~ $ 2 ,  v (r) =-&&2=--n~$2. 

We assume now that the polarization well binds the ex- 
citon weakly, i.e., that the Schrodinger energy E in the re- 
gion r - 1 of the well is small compared with the characteris- 
tic potential energy V(r) and the kinetic energy M - '. In this 
case, owing to the rapid decrease of V (r) in Eq. (9), it is possi- 
ble to single out two overlapping distance regions: a central 

region r((M ( E  ()-''Z in which the right-hand side of E$(r) 
can be neglected, and a peripheral region r> 1, where the 
term V (r)$(r) is negligibly small. 

We turn first to the peripheral region. Equation (9) has 
then a solution that decreases at infinity for V=O, in the 
form 

$ (r) mr-' exp [- (2M I E ( ) "r] . 
In the normalization integral, the contribution of the region 
r 5 1 is negligibly small, therefore the normalization coeffi- 
cient is uniquely connected with E. As a result we have 

$ (r) =n-"' (MI E 1 /2) '14r-L exp [- (2M I E 1 ) 'Izr] , r> I. (1 1) 

In the central region Eq. (9) without the right hand side is 
reduced by the substitution 

$ (r) =M-'lz@ (r) (12) 

to the equation 

which contains no parameters. The required solution is 
uniquely determined by the condition that it decrease at in- 
finity [in the intermediate region l(r((M IE I)-' '2  Eq. (12) 
must be compatible with (1 I)]. This function has no singular- 
ities and decreases at infinity like r-'. Equation (9) was 
solved by us by an iteration method. We used the iteration 
function 

with six variation parameters, for which we obtained the 
values R = 3.253; A, = 0.1929; A, = 0.1005; A, = 0.131 1; 
A, = 0.2235; A, = 0.0005. 

All the quantities calculated in the present paper are 
expressed in terms of two constants obtained from the func- 
tion @: 

The constant E, determines the Schrodinger energy in the 
saddle-state point, since the solutions obtained in the central 
and peripheral regions should coincide at 1 (r((M IE I ) - ' / 2 .  
Equality is reached at 

Calculating the potential energy V(r) from (lo), we can 
use for $ expression (12), which is valid in the neutral region, 
and obtain 

The function V (r) decreases like rP4 at r( 1 and is of the order 
of M - ' at r- 1. We see thus that the Schrodinger energy is 
indeed small, as assumed. 

The total energy of the system [the value of the func- 
tional (8)] in the saddle-state point can be written in the form 

where 
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are the mean values of the kinetic and potential energies of 
the rigid exciton. The energy is concentrated in the region 
r  5 1. Taking the corresponding expression (12) for the wave 
function, we obtain up to terms of higher order in M -' 

T=-U=2WoM-', 

whence 

Let us describe once more the obtained qualitative pic- 
ture of the saddle-point state. The polarization potential well 
turns out to be shallow (radius - 1, depth -M -I). The wave 
function has two spatial scales: internal, over which is con- 
centrated the energy of the system (the exciton has a low 
probability M -' of being in this region), and external r-M, 
which characterizes the decrease of fir) at infinity and en- 
sures satisfaction of the condition J g2d 3r = 1. 

2. TUNNELING 

A theory of tunnel self-trapping, based on a quasiclassi- 
cal approximation, was developed by 1ordansk; and 
RashbaI5 for electrons interacting with acoustic or unpolar- 
ized optical lattice vibrations. We shall proceed in analogy 
with Ref. 15 and consider the interaction of a rigid exciton 
with polarization optical phonons. The applicability of this 
model will be discussed later. 

We introduce, as usual, an imaginary time T = it mea- 
sured in reciprocal phonon frequency o-' (the energy and 
length units were introduced in the preceding section). The 
quasiclassical tunneling probability is defined by the quanti- 
ty exp( - SS,), where So = m,e4/@oe, E is a dimensionless 
parameter assumed to be large, and S is the value of the 
functional 

at its saddle point relative to &-,r)." After eliminating the 
phonon coordinates p(r,r) the problem reduces to finding 
the saddle point of the functional 

+ODe-''-" l 

9% (r, T) 6x6 $' (rf, zl) dzr] d3r d ~ .  -- 
(19) 

The integration with respect to T in (19) is from - co to 
+ CO. The point T = 0 is regarded as the end point of the 
tunneling described by the segment - c4 < T<O. The func- 
tion $(T) is continued into the region of positive T in even 
fashion. 

Variation of 3 with respect to $leads to the Euler equa- 
tion 

-A$ (r, z) lM+V (r, T) $ (r, T) =E (TI $ (r, TI, (20) 

Equation (20) is a Schrodinger equation at each instant of 
time. Since there is no bound state in an insufficiently deep 
well, we have $(r)rO (more accurately, $(r) is normalized to 
the volume of the crystal) at 171 > T,, where T, is the instant of 
time at which a bound state appears in the V(r,r) well 
(E ( + 7) = 0). 

We assume now that ~ ~ ( 1 ,  i.e., the bound state exists 
only during a brief concluding stage of the tunneling [as can 
be seen from (21), the characteristic time of phonon-well for- 
mation is T- 11. In this case the coordinate dependence of 
V(r,r) becomes separated in first-order approximation from 
the time dependence: 

This expression gives grounds for assuming that V(r,r) 
differs little from V(r, f r0) in the entire region 
- r0 < T < rO, and the state is weakly bound. 

Weakly bound states have the following property of im- 
portance to us. At small changes of the potential-well depth 
the coordinate dependence of the wave function remains 
practically constant within the well, but the shift of the state 
energy E alters the decrease of $(r) at large distances. Nor- 
malization yields for $(r) at small r a common factor that 
depends on the energy E, which determines at small E all the 
changes of the wave function in the central region. 

In the calculation of the potential energy (21) only the 
central region of r is important, just as in the case of the 
saddle state. Therefore, just as $(r) in the central region, V(r) 
should be constant accurate to a time dependent common 
factor; this can be expressed as 

= } rSi, 
V (r, 's) =[I+a(z) I Vo(r) 

(23) 

where Vo(r) is the potential energy at T = + 7,; 0 < a(?)( 1 at 
171 < r0. At the points T = + T, the functions E (T), A (T), and 
a(r) vanish. 

To obtain Vo(r) and @ (r) we substitute (23) in (21). At 
( T I  < rO( 1 we obtain 

+me-~~-"l 

[ l+a (z) I V. (r) =-p^~;@'(r) J - 
2 

A2 (z') dzr. (24) 

To determine the coordinate dependences, the principal ap- 
proximation in r0 is sufficient, so that in the region 171 < T, 

we can neglect a(r) in the left-hand side of (24) and replace 
exp( - I T  - 7'1) by unity in the right-hand side. Without loss 
of generality, we can write here 

-TO 

(this condition will hereafter be satisfied automatically) and 
obtain for the connection between Vo(r) and @ (r) an expres- 
sion similar to (10): 

Vo (r) = - M - ' ~ ; R ~ Q ~  (r) . (25) 
where Si~hstitiltin~ this ex~ression in place of V ( r , ~ )  in (20) and neg- 
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lecting as usual in the central region the term E*, we obtain 
for @ (r) Eq. (13), which describes the wave function of the 
saddle state in the central region. Thus, the function @ (r) 
coincides with that obtained in the preceding section and is 
characterized by the same constants Eo and Wo [Eq. (15)]. 
The function Vo(r) is given by (17). 

To explain the temporal picture of the tunneling we ob- 
tain first the connection between A (7) and a(r). The quantity 
A (t )is connected with the Schrodinger energy E (r) by a rela- 
tion that follows from the matching of the expressions for 
$(r) in the central (23) and peripheral (11) regions: 
A '(7) = (M I E I /E~)"'. The changedE of the Schrodinger en- 
ergy following a small change Vo(r)da of the well can be 
obtained from (20) by stationary perturbation theory. Tak- 
ing (25) and (15) into account we have 

dE=da<@l Vo ( r )  I I $ > = ~ W ~ M - ' A ~ ~ ~ = ~ W ~  ( I E 1 IEoM) '"da, 

whence 

To determine a(r) we substitute in (24) the expressions ob- 
tained for @ and Vo. After canceling Vo(r) we obtain the inte- 
gral equation 

Differentiating this equation twice with respect to r we ob- 
tain the differential equation 

a"=l+ (1- WoM/Eo)a, 

from which we get at M> 1 

a-const cos (r[WoM/Eo] I"). 

The proportionality coefficient is determined by substitu- 
tion in (27), and as a result we have 

a ( r )  = (Eel WoM) 'I* cos [ T  (WoM/Eo) '"I , 'T0='/~n (Eo/ WoM) '". 
(274 

At - rO < r (0  the wave function takes according to (26) and 
(27a) the form 

We see that the assumption that r0 is small holds, so 
that in the temporal picture of the tunneling there are two 
scales, the time r- 1 of formation of the polarization well, 
and the interval r - M  -"'( 1 during which the bound state 
exists in this well. The state is weakly bound at all times, 
since the Schrodinger energy is of the order ofM -'while the 
well has a depth M - I .  

We note that, as expected, at the end of the tunneling 
path the total energy is zero (the lattice polarization energy 

W,,M -' is cancelled by the binding energy E(0)  = 
- WJ4 -' of the exciton in the well). 

It remains to calculate the value of the action along the 
obtained optimal trajectory. Substituting (28) in (19) we ob- 
tain 

S= W0M-'= W ,  

i.e., the extremal action is directly expressed in terms of the 
energy of the saddle state. The lifetime of the free exciton is 
estimated with exponential accuracy (in ordinary units) at 

%,-o-' exp ( Wlho)  . (29) 

3. ADIABATIC APPROXIMATION 

We begin the discussion of the applicability of the ap- 
proximations made with the rigid-exciton approximation, 
by estimating the corrections to the calculated quantities in 
powers of the parameter me /mh . 

We have seen above that both in the saddle state and on 
the entire tunneling path the polarization well has a radius of 
the order of the exciton radius and a depth small, in the 
parameter me /mh , compared with the internal energy Ei of 
the exciton. Such a well deforms slightly the exciton it con- 
tains, and the relative change of the wave functionx (re - rh ) 
of the internal motion, and hence of the operatorb [see (7)], is 
of the order of me /mh . This leads to small corrections in Eq. 
(18) for the wave function in the central region, and these 
alter @ by -me /mh . Of the same order is the relative change 
of the mean values of the kinetic Tand potential U energies 
of the exciton in the polarization well and, in final analysis, 
of the total energy W of the saddle state. To estimate the 
corrections to the Schrodinger energy E we note that outside 
the well the "non-rigidity" of the exciton does not manifest 
itself in any way, so that the mass-center wave-function 
expression (1 l), the matching of which to (12) determines E, 
remains in force. This means that the corrections to E are of 
the order of (m,/mh)E rather than (me/mh)W, as might 
seem because of the relation E = T - U. Thus the estimates 
presented show that the corrections to all the calculated 
quantities are small in the parameter me/mh , i.e., the rigid- 
exciton approximation yields the principal terms of the ex- 
pansions for all the quantities in terms of the adiabatic small 
parameter me /mh . 

We examine now the restrictions imposed by the re- 
quirement that the lattice motions be slow compared with 
those of the electrons. In our case the internal energy of the 
exciton is high and the adiabaticity condition reduces in fact 
to smallness of the phonon energy fio compared with the 
binding energy of the exciton in the polarization well E (the 
Schrodinger energy). 

On tunneling through the self-trapping barrier, the 
characteristic energy E is of the order of the energy Wof the 
saddle state," so that the adiabaticity condition takes the 
form 

Since the exponential that determines the tunneling rate is 

exp (- Wlho)  , 

873 Sov. Phys. JETP 58 (4). October 1983 F. V. Kusrnartsev and S. V. Meshkov 873 



the condition (30) coincides with the condition that the tun- 
neling be quasiclassical and in fact with the very condition 
that a self-trapping barrier exist. 

We consider now the saddle state. It has a rigorous 
meaning so long as the phonon energy is lower than the 
Schrodinger energy in this state: 

When this condition is violated, the concept of saddle state 
loses an exact meaning, but this does not mean, generally 
speaking, vanishing of the self-trapping barrier. The restric- 
tion on the phonon frequency is stronger than (30), since 
E- W/M( W (see Sec. 2). This raises the question of the bar- 
rier height in the case 

E, wlo< W ,  
when the barrier exists but the saddle state has strictly speak- 
ing no meaning. In this case, since "on that side" of the bar- 
rier the binding energy E increases rapidly with increasing 
potential-well depth to states that are still close enough to 
the saddle state, the adiabaticity condition begins to be satis- 
fied. The self-energy of the polarization well changes little in 
these states compared with the saddle state, so that the total 
energy3 is %' =: W - Cio. Thus, in the case considered the 
"trans-barrier" states with total energy 8 < W - Cio are de- 
scribed by the adiabatic approximation. 

This allows us to conclude that in the case E, (&I( W, 
despite the absence of a true saddle state, expression (2) for 
the barrier height remains valid. The value of W is only 
smeared out and is lowered by a small amount of the order of 
Cio. It must be emphasized in this connection that h is in 
general the usual scale of the corrections to the principal 
terms of the adiabatic approximation (see, e.g., Ref. 12). 

4. DISCUSSION 

To conclude, we compare our results (see the Introduc- 
tion) with other results known to us. The work of Nasu and 
Toyozawa," who calculated both the barrier height and the 
tunneling time, is based on exceedingly rough approxima- 
tions. Their paper contains no explicit analytic expressions 
for the final results, so that comparison with their results is 
difficult. 

Pekar et al.,1° who determined the barrier height by a 
direct variational method, did not trace the asymptotic be- 
havior as me /mh -+O. The equations in Ref. 10 show that the 
three-parameter Gaussian trial function used there yields for 
the barrier height the asymptotic expression 

which differs from (1). The weaker dependence, compared 
with ours, on the adiabatic parameter M =  (mh/ 

- E ,  ) / E ~ ]  is due the fact that the trial function of 
Ref. 10 does not reflect the fact that the wave function of the 
exciton mass center has two scales (see Sec. 1). At M >  5 our 
asymptotic expression yield a lower barrier height than Eq. 
(25). At the same time, the results of Ref. 10 show (see Fig. 1) 
that the asymptotic relation (25) is very remote. For exam- 
ple, at E ,  = E the asymptotic (25) reaches an accuracy of 

FIG. 1. Value of the functional 8 [see (3)] reckoned from the free-exciton 
energy in units of m,e4/1iZ&,Z, as a function of the parameter 
M -' = m,B/m, E, . Curves 1 and 2 were calculated from the variational 
equations of Ref. 10 at 2/&, = 1 and Z/E, = 4, respectively (the upper 
curve describes the saddle state, and the lower the self-trapping state). 
Dashedline-asymptotic plot of O(M -')calculated from the equations of 
Ref. 10. Dotted line--exact asymptotic form of 8 ( M  - I ) .  

10% only at m,/mh < 50. There are apparently no grounds 
whatever to regard the region of applicability of the exact 
asymptotic relation (1) as wide. This situation seems quite 
natural in light of the fact that the very existence of the self- 
trapping barrier calls for a large carrier-mass difference.I0*l3 

Since the valence band of real AHC is degenerate16 com- 
parison with experiment is meaningless. Furthermore, the 
band parameters of these crystals are far from well known. It 
is instructive, for example, that at the published values of me 
and m, of those AHC in which self-trapping was reliably 
observed, there is no self-trapping minimum at all according 
to the theory with a nondegenerate valence band (the plots of 
Ref. 10). 

The authors thank E. I. Rashba and A. S. Ioselevich for 
helpful discussions. 
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