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The excitation of a two-level and of certain three-level systems by light pulses that vary weakly 
during times of the order of the reciprocal frequency detunings is analyzed. Expressions are 
obtained with which to estimate the selectivities attained in various schemes for the detection of 
rare isotopes by the method of laser multistep ionization of atoms. 
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1. INTRODUCTION 

One might think that the subject of the present article 
has been fully covered. A large number of monographs (e.g., 
Refs. 1-4) and original articles have been devoted to the in- 
teraction between atoms and light fields. I know, however, of 
no papers containing, in particular, the answer to the follow- 
ing simple question: Assume that a quasimonochromatic 
light pulse E (t )cosOt of frequency located far on a radiation- 
broadened line acts on a two level atom, and let the charac- 
teristic time of variation of the envelope E (t ), which is of the 
order of the pulse duration T,, satisfy the intermediate rela- 
tions 

~ ,< r - l ,  (1) 

TP> 1 Q-010 1 -', (2) 

where r -' is the time of spontaneous decay of the upper 
level and w,, is the transition frequency. Assume next that 
the amplitude E satisfies the condition 

(dolE/2fi) .tp-i, (3) 

where do, is the dipole moment of the transition. The ques- 
tion is: what is the probability of finding the atom on the 
upper level after the pulse has practically terminated? 

This question arises inevitably, for example, in the 
problem of detecting rare isotopes by the method of multis- 
tep laser photoionization of atoms. Indeed, let the pulse of 
the first step be at resonance with a transition in the rare- 
isotope atom and let it excite this atom with a probability of 
the order of unity [condition (3)]; let furthermore the detun- 
ing due to the isotopic shift in the atom of the background 
isotope satisfy the condition (2). The answer to the question 
posed yields then in fact the lower bound of the selectivity of 
the method, although the isotopic shift in the subsequent 
steps can of course increase the selectivity.' 

It may seem at first glance that the answer can be given 
directly in terms of the transition rate expressed via the cross 
section on the wing of a homogeneously broadened profile of 
width r: 

In itself, however, this formula, which describes the prob- 
ability of departure of a photon from the incident wave, does 
not distinguish between real excitation of the upper level and 
elastic scattering of a photon, and it turns out that this for- 

mula, when conditions (1)-(3) are satisfied, describes just the 
scattering process. 

Another approach to the problem is possible. We forget 
for the time being the spontaneous decay and assume the 
pulse to be turned on and off adiabatically slowly. It is then 
known8 that the atoms can be at each instant of time on a 
quasienergy level that is adiabatically coupled to the ground 
state. This means that after the pulse is turned off the atom 
has unity probability of remaining in the ground state. We 
arrive thus at the assumption that the source of the popula- 
tion of the upper level can be only the nonadiabaticity and 
the spontaneous transitions from a lower quasilevel to an 
upper quasilevel that is adiabatically coupled with the excit- 
ed state of the atom. 

We shall hardly ever deal in this paper with the nona- 
diabatic part of the atom excitation. It is well known (see, 
e.g., Ref. 1) that this effect is exponentially small in the pa- 
rameter (O - W ~ ~ ) T , ,  and we shall assume that it can be ne- 
glected. 

In our investigation of the atom excitation on account 
of spontaneous transitions between quasilevels we confine 
ourselves to a phenomenological description of the sponta- 
neous relaxation, within the framework of the density-ma- 
trix formalism. The simplest variant of such a description is 
quite sufficient not only for a two-level atom 1,2 but also for 
a multilevel one, if there are no identical frequencies in the 
system.9 In addition, we use a resonance approximation, i.e., 
despite the relatively large detuning from resonance we shall 
assume that the detuning is substantially smaller than the 
transition frequency. 

The excitation of a two-level system is considered in 
Sec. 2. In Sec. 3 we explain the physical meaning of the re- 
sult. In the sections that follow we analyze the excitations of 
certain three-level systems that are of interest from the view- 
point of previously proposed schemes for the detection of 
rare isotopes. 

2. TWO-LEVEL SYSTEM 

The equations for the density-matrix elements of a two- 
level system in a light-pulse field will be written in the form 

dpoo/dt=-iFu+r,pll, 
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Here u and v are antisymmetric and symmetric linear combi- 
nations of off-diagonal elements of the density matrix: 

- i6 t -p ioe ib t ,  u=pole ~ = p , , e - ~ ~ ~ + p , ~ e " * .  

We have also introduced the following notation: 
6 = 0 - w,,; F = d,,E /2fiis thematrixelement oftheinter- 
action operator of the atom with the field and is assumed for 
simplicity to be real; r is the rate of the spontaneous 1 - 4  
transition; P i s  the rate of the spontaneous decay of the excit- 
ed level via other possible channels. (The indices labeling 
these quantities have been omitted for brevity.) In accor- 
dance with the statements made in the Introduction, it is 
assumed also that F depends on the time, changes very little 
over a time of the order of 6 - I ,  and vanishes as t- + CO.  

It is not difficult to develop a procedure for finding the 
successive terms of the asymptotic expansion of the solution 
of the equations in (5) in powers of the shortest time 1/6 in 
the system. Sincep,, = 1 andp,, = u = v = 0, as t-+ - CO, 

we can write formally 

r+r 
u ( t )  =-2i exp (- t ) J F  (7)  LC. ( r )  -pi, ( r )  1 

- ca 

x exp (7 r ) cos 6 ( t - r )  dr, 

p, , ( t )= i e x p [ - ( r + P ) t I  5 ~ ( r ) u ( r ) e x p l  ( r + p ) r l d r ,  (7) 
-OD 

t i 

p,, ( t )  = I-i ( F ( r ) u ( r ) d r + r  5 p i ,  ( r )  dr.  
- m -cc 

(8) 

Next (see, e.g., Ref. lo), integrating (6) by parts, we obtain the 
following asymptotic expansion: 

(9) 
and we apply to Eqs. (7)-(9) the usual procedure of successive 
approximations in powers of 1/6 2. In first order, substitut- 
ing p,, = 1 and p,, = 0 in (9) and integrating, we find 

2i r f r  r + f  
u=- esp  (- t ) $ [ F  esp  (T t  )]  , (lo) 

So far, no terms that vanish as the field amplitude (or F) tends 
to zero have appeared in the expression forp, ,. Equation (1 1) 
describes the usual coherent admixture, in a light field, of the 
wave function of the excited state to the wave function of the 
ground state. The first principal nonvanishing term appears 
in the next approximation. Omitting the intermediate steps, 
we write down forp,, an expression that is accurate to terms - 11s 4: 

r t 

+ T e x p [ - ( r + i i ) t ]  ~ ~ ( r ) e x p [ ( ~ + f i . r ] d r .  
- OD 

(13) 

The last term in (13) describes the "incoherent" part of the 
population of the excited state and is precisely the one of 
principal interest to us. If condition (1) is satisfied we can 
single out the times when it can actually be assumed that the 
pulse was terminated, but the spontaneous decay did not 
manage to occur. For these times there remains precisely the 
last term. It yields 

PIP ( F I ~ ~ )  r ~ ~ ,  (14) 

where the bar denotes time averaging. The remaining terms 
in (13) describe the coherent part of the population,' which 
follows the instantaneous values of the field amplitude and 
its derivatives. Of somewhat different form is the last term- 
it describes the quasistationary correction to (1 1) for the irre- 
versible departure of atoms via other spontaneous-decay 
channels. 

3. INTERPRETATION OF THE LAST TERM OF (13) 

The physical meaning of the result of Sec. (2) is con- 
tained in fact in the paper by Zel'dovich.' This result can be 
obtained without resorting to calculation, and using only the 
well known structure of the quasienergy states (QES) of the 
two-level system. Denoting by p, and p, the quasienergy 
wave eigenfunctions, and by $, and $, the wave functions of 
the stationary states, we have 

where18,1 = le,,I=l, Ieo,I = le,,l=:IF/Sl at IF/SI<l.As 
noted in the Introduction, when conditions (1)-(3) are satis- 
fied the presence of population on the upper level after the 
termination of the pulse is due to spontaneous transitions 
from the lower QES to the upper QES in the course of the 
pulse. In this two photons of frequency 0 are 
absorbed from the field and the atom emits simultaneously 
one photon of frequency 20-w,,; the rate of the process is 
w,, = ~ ~ o , 8 , 0 ~ 2 ~ ~ ( F / S ) 4 ~ .  This leads directly to Eq. (14). 

We are thus attempting in fact to identify the last term 
of Eq. (13) forp,, with the population of the upper QES of the 
atom. We should like to show here that the remaining terms 
of (13) have no connection with the population of the upper 
QES. This, however is impossible in the framework of the 
QES concept, since we are considering a situation in which 
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the amplitude of the external field changes with time.'' We 
proceed therefore differently, using the test-field method 
(seem e.g., Ref. 2) but in not quite the usual modification. 
The take a test pulse of duration rt and satisfying the follow- 
ing conditions: 

T~ K z ~ .  T~ , >> 16 I-' .  (15) 

The first of these conditions permits, as it were, to probe the 
"instantaneous" resonances of the atom, while the second 
ensures a sufficient resolution of the transition from the up- 
per level (or quasilevel) into a certain third state and of a two- 
photon transition from the lower level into the same state, 
with participation of one photon of the effective field and one 
photon of the test wave. 

It will be shown in Sec. A of the Appendix that in such a 
probing system the absorption of the system at a frequency at 
resonance with the upper level is proportional to the combi- 
nation 

R=pll-'/,(Re q )  v-'l,i(Im q) u, (16) 
where the function I I  satisfies the equation 

exp (- Tt); [ q  exp ( yt ) ]  -i6q+iFq2=iF (17) 

with an initial condition corresponding to vanishing of 7 as 
F A ,  i.e., in the absence of the effective field. Solving Eq. 
(17) by successive approximations we arrive, accurate to 
terms - 1/S 3, at the expressions 

Equations for u andp,, were already written above [see (9) 
and (13)l. For v we have, accurate to terms - 1/S 3, 

exp (y llr) sin 6 ( f - r ) d r  

Substituting (9), (13), (18), and (19) in (16) we obtain accurate 
to terms - 1/S 4, 

i.e., as expected, R is exactly equal to the last term of (13). 
Although we are interested in this article in the action of 

pulsed fields on an atom, we note nevertheless that the result 
is meaningful also for the stationary case (of course, when 
there are no extraneous channels for the decay of the upper 
level, i.e, = 0). In this case the last term of (13) reduces 

simply to (F/S)4. From the result of this section it is clear it is 
precisely to this quantity (and not top,,)  that the resonant 
response of the atom is proportional near the frequency of 
the transition from the upper level to some third state. 

Thus, in the stationary case the population of the upper 
QES should be (F/c~)~. This can in fact be demonstrated by 
different methods (e.g., by rewriting Eqs. (5) in the quasien- 
ergy representation and simply finding the stationary solu- 
tion). 

4. THREE LEVEL SCHEME USED IN THE METHOD OF 
ENRICHING THE INITIAL STATE 

Let us consider the system shown in Fig. 1. We assume 
that the atom whose excitation probability is of interest to us 
is in the state lo), whereas the frequency of the light pulse is 
much closer to the frequency w,, of the 1 1)-+12) transition 
than to the frequency w,, of 11)-+lo). This situation is typi- 
cal of a previously p r~posed '~ . ' ~  method of detecting rare 
isotopes, which can be called enrichment of the initial state. 
In this method the atoms of all the isotopes are initially pre- 
dominant in the state 12), and then the atoms of the back- 
ground isotopes are pumped by a cw laser into the state 10). 
In this process, at sufficient spacing between the levels 10) 
and 12) and at typical values of the isotopic shift, one can 
obtain very high rare-isotope enrichment of the level 12) (see 
Ref. 14). We next apply a pulse at the frequency of the 
12)+11) transition in the rare-isotope atom, and the esti- 
mate of the selectivity will be primarily connected with the 
probability of exciting the background isotope from the 10) 
states, i.e., we arrive precisely at our three-level scheme 
shown in Fig. 1, in which S,, is the isotopic shift. 

We shall assume, naturally, that the frequency detun- 
ings and the rates of the spontaneous decay satisfy the condi- 
tions (1) and (2). We estimate the population of the upper 
level I 1) at the end of the pulse, using the concepts of sponta- 
neous transitions between the QES. For our case we have for 
the quasienergy wave eigenfunctions 

FIG. 1. Three-level system used in the method of enriching the 
initial state. The dashed lines give the level positions in the rare- 
isotope atom. A single arrow denotes the continuous radiation 
that enriches the level 12) relative to the rare-isotope atom. The 
double arrows denote the pulsed field, in which the probability of 
exciting the background-isotope atom from the state 10) is of in- 
terest to us. 
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The rate of the spontaneous transition to a QES that is adia- 
batically coupled to the upper level is 

and since ISIOI > ISZI I, we arrive at the expression 

Section B of the Appendix contains an equation (A.5) forp, ,, 
obtained accurate to terms - 1/S from the equations for the 
density-matrix elements. The incoherent term, as expected, 
is completely described by the rate (22). 

5. TWO-STEP EXCITATION IN A THREE-LEVEL SYSTEM 

Let the atom be acted on by two pulses with frequencies 
0, and 0, close respectively to the frequencies w,, and w,,, 
but not at resonance in the sense of conditions (2) and (3). 
Two cases must be distinguished here. In the first the pulses 
do not overlap substantially in time, and in the second the 
pulses act on the atom simultaneously. 

It is implied in the first case, of course, that the total 
time of the action on the atom is shorter than the spontane- 
ous decay times of both excited states. The calculation of the 
populationp,, of the upper level then reduces simply to mul- 
tiplying the excitation probabilities of two two-level systems. 
We have 

pz2= ( (F>/G,,~) rIo.tii' I [ (F,zC/6214) r2,~?) I .  (24) 

This procedure is easily generalized to include also excita- 
tion with a larger number of steps. 

The second case is more subtle. The main contribution 
to the population of the upper level (after the termination of 
the pulse) is made here by spontaneous transitions (during 
the pulse) from the lower QES to the upper. Assuming that 
the detuning from the two-photon resonance is large 
enough, so that the condition 

is satisfied, we supplement the coefficients (21) in the expan- 
sion (20) by the following two: 

FoiFtz FoiFiz 
l0ozl= 1 1. IBul= 1 

Sio (6io+&i) 62, (610+621) 1 .(25) 

The rate of the spontaneous transition of interest to us is 

wo2= l ~ o i ~ z o  1 Zrio+ 1 e02e21 1 (26) 

Hence 

where ?, should be taken to mean the characteristic time of 
overlap of the two pulses. The first term of (26) describes a 
process in which two photons of frequency 0, and one pho- 
ton of frequency 0, are absorbed from the field and the atom 
emits simultaneously a photon of frequency 
2-0, + 0, - w,, - a,,, while the second term describes a 
process with absorption of one 0, photon and two 0, pho- 

tons and emission of a photon of frequency 
0, + 20, - w ,, - w,, . From a comparison of (27) and (24) it 
can be seen that, other conditions being equal, the atom is 
more strongly excited when the two pulses are superimposed 
in time. Both terms of (27) correspond exactly to the two 
incoherent terms ofp,, in the complete equation (A.6) given 
in Sec. C of the Appendix accurate to terms - 1/S 6. 

It should be noted that Eq. (27) is valid also in the parti- 
cular case when one of the fields is stationary. In this case ?, 
should be taken to mean simply the duration of the pulse of 
the second field. 

6. CONCLUSION 

Returning to the problem of detecting rare isotopes by 
the method of multistep laser photoionization of atoms, we 
present some simple estimates. We consider first the selectiv- 
ity of the one-step excitation, assuming that the pulse inverts 
the population in the atom of the rare isotope ( ~ / 2  pulse), 
and taking for the sake of argument the pulse duration to be 
an order of magnitude shorter than the time of the spontane- 
ous decay (TT, = 0.1). Then, using (14), we arrive at the esti- 
mate 

S , = ~ , , - ~ - I O - ~  (s,,, ~ r ) ~ c ,  (28) 

where S,, is the isotopic shift of the transition frequency, and 
Cis a numerical factor of the order of unity and depends on 
the shape of the pulse. [For example, C = 2 for the Gaussian 
pulse F (t ) = F,exp( - t ' / T ,  ').I Typical ratios of the natural 
isotopic shift and the radiative width of the level are 10'-lo3 
(or even more), so that S, = lo5 - lo9. In addition, for those 
cases when the isotopic natural shift is small, it is possible16 
to have a rather large isotope Doppler shift in the collinear 
direction when working with an accelerated atomic beam. 

When isotopic shift is present for several transitions, 
excitation by successive pulses leads to multiplication of the 
single-step selectivities [see, in particular, Eq. (24)l. (The use 
of accelerated beams makes this possibility universal.16) We, 
however, discuss also another situation, when the isotopic 
shift is relatively large only for the first transition 10)--+I 1), 
and compare the selectivity S 10) of a successive two-step reso- 
nant excitation with the selectivity S IA of a two-photon res- 

FIG. 2. Illustrating the comparison of two possible schemes of 
detecting a rare-isotope ion at a small isotopic shift in the transi- 
tion ( 1)+12). The dashed lines show the positions of the rare- 
isotope atom levels. S r' and S LA' are respectively the selectivities 
of the two-step and two-photon excitation (see the text). 
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onant excitation with detuning A at the intermediate level 
(see Fig. 2 and Ref. 17). The value of S ?'is given in fact by the 
estimate (28). In two-photon excitation of a rare isotope, the 
population is inverted at 

Interest attaches to the realistic case whenr,, < r l o .  Putting 
Fol = F,, and Tz1rp = 0.1 we obtain from (27) the estimate 

i.e., for example at T1dF2, - 10 and ~ l o / ( S s h  ( - one 
can expect in two-photon excitation with intermediate de- 
tuning an gain in an approximate ratio lA /ash I. Of course, 
the larger the detuning A,  the higher the required radiation 
intensities. 

Our concluding remark concerns the influence of non- 
monochromaticity of the radiation on the obtained estimate 
(28), in the sense that the width Av,,, of the laser-pulse spec- 
trum can be larger than the width set by the pulse duration. 
In this case the estimate of the selectivity is changed, for now 
the intensity needed to saturate the transition in the rare- 
isotope atom is larger by the factor by which Av,,, exceeds 
7; l .  Since the probability of exciting the upper level in a 
two-level system with detuning is proportional to the square 
of the intensity [see Eq. (14)], the decrease of the selectivity 
on one step is [Av,,, rp 1'. (Of course, we assume here that the 
spectral intensity of the laser pulse at the frequency of the 
transition in the background-isotope atom is small enough 
for Eq. (14) to be meaningful at all.) Since cw lasers have 
better spectral characteristics than pulsed lasers, it is possi- 
ble that a realistic scheme will be one in which the atom is 
acted upon in one of the steps by a stationary field. Every- 
thing necessary for estimates of the selectivities for this case 
is contained in the results above (see the remarks at the ends 
of Secs. 3 and 5). 

The author thanks V. S. Letokhov, V. G. Minogin, V. I. 
Mishin, A. M. Shalagin, and V. I. Yudson for helpful discus- 
sions. 

APPENDIX 

The Appendix employs a common system, written in 
the resonance approximation, of equations for the density- 
matrix elements of a three-level system in a two-frequency 
field. It is assumed that the level ( 1) lies above the level (0), 
but the level 12) can be either above (Secs. A and C )  or below 
(Sec. B) level 11). The last two cases differ in the sign of the 
detuning S,, = + (0, - Iwzl 1 )  of the field frequency from 
the transition frequency (positive at w,,)O and vice versa). 
Spontaneous decays from levels 11) and 12) through other 
channels (F, and F,) and introduced in the common equa- 
tions. For the sake of brevity, the off-diagonal elements of 
the density matrix are explicity designated Pjk =pjk 
exp( - isjk t ) in place of their linear combinations u and u in 
(5). In this notation, the equations take the form 

Of course, in these equations either r,,-O or r2,=0. In 
addition, the quantities Fo, and F,,  are assumed to tend 
smoothly enough to zero as t-+ + co (see the formulation of 
the problem in the Introduction). 

A. Regarding the test-Jield method (Sec. 3). We assume 
in Eqs. (A. 1) that r, = r,, = r,, = 0 and neglect the quan- 
tity p2, in the equation for PI,. In addition, we assume p, ,, 
Po,, andp,, to be given functions of the time and determined 
by the solution of Eqs. (5) for a two-level system. As a result 
we arrive at the following abbreviated inhomogeneous sys- 
tem of equations: 

d~izldt=i~oi~oz-i6zipi2-'lz ( ~ , , + ? r l )  pi,-iF,,p,, ( t ) ,  

(A.2) 
dpazldt=- i (610f  62i)poz+iF~lPlz- iFizpo1 ( t )  . 

We are interested in its solution that goes to zero as t-t - w . 
We introduce formally the solutions of the corresponding 
homogeneous system in the form 

{piz=p ( t ) ,  poz=x  ( t ) P  ( t )  1, {piz=q (4 Q ( t )  , Poz=Q ( t )  1, 
(A.3) 

which satisfy the condition P ( - w ) = Q ( - ) = 1 and 
x ( - UJ) = v( - W )  = 0. Solving after this substitution the 
inhomogeneous system by a method similar to the WKB 
approximation we find that at a small value of S,,, which 
cancels out the Stark shift of level I I ) ,  the first of the solu- 
tions in (A.3) is nonoscillating, whereas the second is rapidly 
oscillating. The solution, of interest to us, of the inhomogen- 
eous system (for PI,) is written in the form 

Retaining in (A.4) only the nonoscillating first term and sub- 
stituting it is Eq. (A. 1) forp,,, we find that at Fol # O  the role 
ofp,,  is played by a combination of the quantities p,, ,  Po,, 
andp,,. The function ~ ( t  ) in (16) and (17) corresponds to that 
introduced by definition in (A.3). 

B. Regarding Sec. 4. We put T,, = T, = 0 in Eqs. (A. 1) 
and use the same procedure of finding an asymptotic expan- 
sion of the solution as in Sec. 2 for a two-level system. Accu- 
rate to terms - 1/S :, , the matrix elements~,,, PI,, poo and 
p l l  correspond to expressions (10)-(12) and to the first term 
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in (19). To the same order, we have 

Continuing the successive approximation procedure, we obtain for p1 the following expression, which is accurate to 
terms - 1/S 4: 

-- r"+Ph12 S17012 (r) dr+-f?:exp (--I'd) fFo14 (r);exp dr 
610' - ec 610 

-m 

where rl = rlo + r12 + ?', is the total rate of spontaneous decay of the level 11). The terms in the curly brackets in (A.5) 
duplicate, with slight modification, expression (13) forp,, in the case of a two-level system. From among the new terms, only 
the last one does not vanish as the field amplitude tends to zero. Its meaning was explained in Sec. 4. If the pulse duration is 
shorter than the time of spontaneous decay of the upper level, we arrive at expression (23), where it is also taken into account 
that the quantities Fol and F,, are proportional to each other, since the field in the scheme of Sec. 4 has only one frequency. 

C. Regarding Sec. 5. We put r,, = 0 in Eqs. (A. 1) and use the same procedure of finding the asymptotic expansion of the 
solution as before. Here we are interested in an expression forp,, accurate to terms - 1/S 6 .  The intermediate calculations are 
quite lengthly, and we write therefore only the final result: 

1 1 +4--- ---- 
r, dZ ] ~ d ' i , '  erp (- -i- t )  z- [F., exp (g t )] 

6i0262i(6io+621) 610'621 (61o+621) 

I?iF,t2Fi,2 
t 

-- rioF,,2 j Fa12(r) dr+ -7 exp (-r1L) J F0,'(r) X ~ X P  (rrr) dr+ 
rziFiz" 

610' (610+621) - L) 610'6621 
-m 

610262iz(s,o+6,i) 

t 

x exp (-r,t) JL:(~) F,: (r) eap ( r d )  dr + 1 

6~ozSz,Y6io+621) ~ X P  ( - r ~ t )  { r loj  FOl4 (TI Fl: (TI exp (rZr) d~ 
-OD 

-ee 

where rl and r2 are the total velocities of the spontaneous "The division of the population of the excited level into coherent and 

decays ofthe levels 11) and 12). when the field amplitudes incoherent parts is the usual terminology applicable to the situation 
when it is necessary, for example, to distinguish between elastic scatter- 

tend to zero, only the last term does not vanish. It describes ing and fl,orescence (,,,, e.g., Refs, and 12). 
the incoherent part of the population of the level 12) by spon- ')One could, for example, rewrite ( 5 )  in the quasienergy representation, 
taneous transitions from a lower QES to the very uppermost. but in this case it is impossible to be completely rid of the coherent 

admixture of the upper QES in the lower one-terms that contain deriva- 
If the duration of at least one of the pulses is shorter than the tives of the field amplitude remain, 
time of spontaneous decay of level 12), we arrive at expres- 
sion (27). 'N. B. Delone and V. P.  Krainov, Atom v sil'nom svetovom pole (Atom in 
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