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The temperature dependence of the threshold values of the magnetic fields turned off in WP- 
mode experiments is investigated. It is shown that the threshold values can be related to the 
characteristics of the attractor regimes of magnetization relaxation in 3He-B in a turned-off field. 
The regime in which the external field is partially turned off and the subsequent relaxation of the 
magnetization occurs in a residual field of the order of the dipole field is also considered. It is 
concluded that the fields turned off can have threshold values in this case as well. The existence of 
the threshold fields is ascribed to the existence of instability and chaotic-state regimes in the spin 
dynamics of superfluid 3He-B. The form of the order parameter for the initial phase of the spatial- 
ly inhomogeneous relaxation in a threshold magnetic field is discussed. 

PACS numbers: 67.50.Fi 

INTRODUCTION 

The progress that has been made in the understanding 
of the nature of the superfluid phases of 3He is in many re- 
spects due to their investigation with the aid of nuclear mag- 
netic resonance. The first experiments were performed by 
the pulsed NMR method (see Ref. l), which allowed the de- 
tection in 3He-B of adistinctive regime of nonlinear magneti- 
zation ringing called the Brinkman-Smith mode.' Later ex- 
periments were devoted to the study of regimes in which the 
external field Hi was changed abruptly to some steady field 
of intensity H parallel to the initial field Hi. Nonlinear ring- 
ing modes different from the Brinkman-Smith mode were 
discovered in these experiments,' and the analysis of the 
nonlinear magnetization ringing modes occurring in differ- 
ent NMR regimes is an interesting problem. 

In the present paper we consider the relaxation of the 
magnetization in superfluid 3He-B in two regimes: 1) in the 
absence of an external field; 2) in a constant external magnet- 
ic field whose strength is, in order of magnitude, close to that 
of the dipolar field. It  is assumed that in the initial equilibri- 
um state of the system the spin vector S is perpendicular to 
the rotation axis c of the orthogonal order-parameter matrix 
R (t9,c) for 3He-B (here t9 is the rotation angle of the matrix 
R (8,~)) ;  in actual experiments the direction of the vector c is 
fixed by the walls of the rectangular cavity containing the 
3He-B, while the direction of the spin vector S is determined 
by the initial external field (see Refs. 1-3). After the system 
has relaxed to the equilibrium state, the field Hi is turned off 
abruptly (i.e., in a time much shorter than the relaxation 
time) either completely or partially to some field H (which in 
the present paper will be called the residual field) parallel or 
antiparallel to the initial field Hi. After the initial field has 
been turned off, the system relaxes from the resulting non- 
equilibrium state, which is characterized by the perpendicu- 
larity of the initial spin S and the initial axis c of the order 
parameter. 

The relaxation regimes described above have been ex- 
perimentally investigated.'-3 The relaxation in zero field, 

i.e., after the initial magnetic field has been switched off 
completely, has been investigated in great detail. A long- 
lived magnetization ringing mode-the so-called WP (or 
wall-pinned) mode-has been found to occur in this regime, 
and the theoretical explanation of this mode is one of the 
triumphs of the Leggett-Takagi (LT) theory4 of spin relaxa- 
tion in superfluid 3He (Refs. 4-7). In particular, a very good 
experimental confirmation of the linear time dependence of 
the square of the period of the WP mode has been ob- 
tained.3*4 

Webb et have reported the discovery of an interest- 
ing phenomenon: the dependence of the WP mode on the 
strength of the initial field Hi. They found that, if the 
strength of the field Hi turned off is increased at a fixed 
temperature, then there exists a critical field for which the 
WP mode is no longer observed, and that the normal nonlin- 
ear magnetization ringing appears on going through the 
critical field. Thus, in the case of the WP mode there exists a 
threshold value for the external field turned off, which, as 
has been established by Webb et is temperature depen- 
dent (see Fig. 1). In their paper3 Webb et al. attempt to ex- 
plain the observed temperature dependence by suggesting 
that a textural transition that destroys the ringing of the WP 
mode occurs in the 3He-B sample at the threshold value of 
the magnetic field. But there exists for the textural transi- 
tions occurring in 3He-B located in an external magnetic 
field a theory, developed in Ref. 8, which shows that the 
corresponding critical field is temperature dependent. It is 
significant that this temperature dependence does not agree, 
even qualitatively, with the dependence reported by Webb et 
~ l . ~  Thus, it can be assumed that the threshold fields for the 
WP mode do not owe their existence to the textural transi- 
tions. 

In that case what is the cause of the disappearance of the 
WP mode for the threshold magnetic fields? 

The answer to this question is offered in the present 
paper on the basis of the phenomenon of instability that we 
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FIG. 1. Dependence on the reduced temperature 1 - T / T ,  of the criti- 
cal field H,,, above which the WP mode is no longer observed in ' H ~ - B  
under a pressure of 20.7 bar. The dashed curve depicts the temperature 
dependence of the critical field for the textural transition; the contin- 
uous curve, the temperature dependence of the threshold value comput- 
ed in the present paper from the condition for certain passage through 
the pinch point P; actually, the threshold is apparently lower; and 
denote two series of experimental points. 

earlier found9 to occur in the spin dynamics in 3He-B. In- 
deed, we can consider the more general situation, corre- 
sponding to the mode found by Maki and H u , ~  in which the 
magnetic field is not turned off completely, but there re- 
mains some residual field several times (e.g., 2-3 times) 
weaker than the dipolar field. It turns out that in this regime 
also there exist threshold fields for which the corresponding 
modes cease to exist. 

The theoretical investigation of the magnetization re- 
laxation in the field range studied in the present paper meets 
with certain difficulties, since the highly developed asymp- 
totic methods for strong fields'' are of limited applicability. 
Therefore, it is justified to use the methods of qualitative and 
numerical analyses, which have been successfully used in a 
number of recent investigations."-l4 

THE THRESHOLD VALUES FOR FIELDS TURNED OFF 
COMPLETELY 

The order parameter for 3He-B has the form 

where Rv is a three-dimensional rotation matrix given by the 
angle 9 and the unit vector c of the axis of rotation: 

It should be noted that Rg is invariant under the transforma- 
tion 

In the region of fields studied in the present paper the 
characteristic frequencies satisfy the condition w ~ (  1, where 
T is the quasiparticle lifetime at the Fermi surface, and, con- 
sequently, the LT theory4 can be considered in the hydrody- 
namic approximation. Further, assuming spatial homogene- 
ity with respect to the spin and the order parameter, we can 
represent it as a Hamiltonian system with a dissipative func- 
tion.15 With the aid of the dimensionless variables 

where y is the gyromagnetic  ratio,^ is the susceptibility, and 
wo is a characteristic frequency, which is taken in the present 
paper to be equal to lo6 rad/sec, since we consider fields 
close in strength to the dipolar field and the corresponding 
frequencies are close to a,, we can write the LT equations in 
the form (the index R is dropped everywhere below) 

d I 1 1 - c = -[ (S-H) x c] + -(S-H) ctg - 0 
d t  2 2 2 

d 16 -0= (S-H)c+ --; I'lloo-l sin 0 
d t  Is 

Here H is the external field, f2 = 0, is the Leggett frequen- 
cy, and rII is the width of the longitudinal NMR lines. It 
should be noted that the equations (2) are invariant under the 
transformation ( I ) .  In this section we assume that H = 0, i.e., 
that the initial field is suddenly turned off. 

In Ref. 13 one of us (V.L.) introduced the scalar varia- 
bles 

s1,=sc, S,= (S2-S,2) ' I 2 ,  0) 

which, in the case of zero external field, satisfy the following 
system of equations": 

d 16 - O=Sll + - rlloo-l sin 0 
dt  15 

It should be noted that the equations for the WP mode, 
which is equivalent in form to the mode found by Brink- 
man,' are obtained by discarding the relaxation term pro- 
portional to Tll w; ', and equating the right-hand sides of the 
system (3) to zero. As shown in Refs. 11 and 9, the space of 
the variables Sg , S,, and 9 has a surface that attracts the 
solutions to the equations (3) (see Fig. 2), i.e., the system of 

FIG. 2. Phase picture of the system of equations (3). The heavy curves 
depict the trident formed by the WP mode and the unstable solution 
0 = r, S,, = 0. The thin lines depict the attractor; Pis  the pinch point of 
the attractor; the dashed curves depict typical trajectories. 

542 Sov. Phys. JETP 58 (3), September 1983 V. L. Golo and A. A. Leman 542 



equations (3) possesses an attractor. Since the equations (3) 
are a consequence of the equations (2), the latter also should 
possess an attractor, which, however, is less visualizable. In 
fact it is located in the seven-dimensional space of the varia- 
bles S, c, and 6. Thus, the scalar variables SII , S,, and 6 are, 
as it were, a three-dimensional window in the seven-dimen- 
sional world of the spin dynamics. 

As shown in Ref. 9, the legs of the attractor (see Fig. 2) 
come very close to the prongs of the WP mode, which, to- 
gether with the unstable solutionl1 6 = r, SII = 0, form a 
figure resembling a trident. At the trident's cross-piece, 
which corresponds to magnetic fields of the order of the di- 
polar field, the attractor possesses a pinch point, which de- 
termines the region of in~tability,~ in the sense that two close 
trajectories, having come fairly close to the pinch point, di- 
verge in the order-parameter space so rapidly that the dis- 
tance between them become of the order of unity after one 
period of rotation of the vector c . ~  The dispersal of the trajec- 
tories in parameter space entails the dispersal of the corre- 
sponding values in spin space.9 

The central point is the observation that the threshold 
fields discussed in the Introduction can be estimated as a 
function of the nature of the arrival of the solutions to the 
system (3) at the attractor. If the initial field is sufficiently 
weak, a trajectory is drawn fairly quickly (with characteris- 
tic time of the order of 1 msec) to an attractor leg, and is 
identified in experiments as the WP mode.9 If the initial field 
is too high, the trajectory is drawn to the attractor in the 
region above the pinch point, and is identified as a nonlinear 
magnetization If the initial field has a value at 
which the trajectory is drawn to the neighborhood of the 
pinch point, then the system falls within the instability re- 
gion,9 where the spatial inhomogeneities of the spin and the 
order parameter should be taken into consideration. Actual- 
ly, inhomogeneities of this kind always exist in a real system; 
the question is how strong they are. Owing to the instability, 
they can develop to such an extent that a dephasing of the 
spin occurs, and coherent ringing becomes impossible. 

A possible procedure for computing the upper thresh- 
old fields with the aid of a computer follows from the obser- 
vations made above. In the present investigation the solu- 
tions to the equations were computed with the aid of the 
Runge-Kutta algorithm; the double-precision regime was 
used to monitor the accuracy of the solutions. 

The experimental data, which correspond to a pressure 
of 20.7 bar, were taken from Refs. 3 and 16. The temperature 
dependence for fl has the form16 

The temperature dependence for rll can be extracted from 
Ref. 3 in the following manner. It follows from the Leggett- 
Tagaki theory4 [see Eqs. (6.13) and (6.31) in Ref. 41 that 

where a is the coefficient of proportionality in the time de- 
pendence of the mode frequency: f -' = f ,- + at. The val- 
ues of a appreciably depend on the initial fields (see Fig. 7 in 
Ref. 3). If we extrapolate a to zero initial fields, then the 

temperature dependence for a has the form a-' = A x 101° 
(1 - T/T , ) .  A value of 5.8 is given for A in Ref. 3. 

As T, is approached, A varies within the limits 5.8-6.0, 
but, as the computations carried out in the present investiga- 
tion show, this does not affect the computed threshold-mag- 
netic-field values to within 0.01 G. 

Figure 1 shows the computed threshold field values. 
The constant A was taken to be equal to 5.8. It can be seen 
that the computed threshold field curve qualitatively agrees 
with the experimental data. 

THE THRESHOLD VALUES FOR PARTIALLY TURNED OFF 
FIELDS 

In the present section we assume that the field is not 
turned off completely, and that the system relaxes in a resid- 
ual field that is parallel or antiparallel to the initial field and 
is of the same order of magnitude as, but lower than, the 
dipolar field. At the initial moment of the relaxation the vec- 
tor c is oriented by the walls of the container perpendicularly 
to the field, while the angle 6 has the equilibrium value 
arccos( - 1/4). 

The behavior of the solutions to the system (2) is investi- 
gated by constructing an auxiliary system for the orthogonal 
invariants of the initial vectorial variables S and c. Construc- 
tions of this kind were first introduced by Pohlmeyer" in the 
chiral theory of fields. In the present paper we consider the 
three-dimensional rotation invariants Hc, (S - H)H, 
(S - H)', (S - H)c, [SXHIc, 6, for which the following 
equations, which follow from the system (2), are satisfied: 

d 1 0 
-(S-H)c= dt [SX H]c+ -[ 2 (S -H)"( (S -H)C)~]C~~  - 2 

d 16 51 
-(s-H)H= dt 15 - (-) o, sin 0 (cos 0 + i) 4 HC, 

d 8 Q Z  
-(s-H) dt '= -( 15 -) o, sin 0 (eos 0 + 4 

d 1 
-[SX H]c= (He) (S-H) H+ - (s-H)' ] , 
dt 2 

d - O= (S-H).+ -%,,o.-l sin 0 cos 0 + - 
d t  15 ( 4 .  i ,  

It should be noted here that the general behavior of a 
conservative dynamical system is in many respects deter- 
mined by the steady-state solutions for the system. These 
solutions are of no less importance in the description of the 
relaxation effects. All the steady-state solutions to the Leg- 
gett equations for 3 ~ e - ~  were recently found by Fomin" 
with the aid of the Euler angles and rotating systems of co- 
ordinates. For the purposes of the present investigation it is 
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necessary to find an expression for the steady-state solutions 
with the aid of the variables introduced above. To do this, it 
is sufficient to set the right-hand sides of the equations in (4) 
to zero, and discard the relaxation term in the equation for 0. 
As a result, we obtain the following expressions: 

1) the Brinkman-Smith s o l ~ t i o n ' ~  

0 
(S-H) H=-2 sinZ, [Hz- (He) '1, I HI = I SI ; 

2) the constant solution 

3) a solution that is a generalization of the solution for 
the WP mode in the presence of a field1' 

arccos (--I/&) <0<2n-arccos (-'I&), 

(S-H) H 

4) solutions that have been destabilized on account of 
the presence of relaxation, 

the expressions for (S-H)2 and (S-H).H are the same as in 3) 
above; 

B. 0=n, (S-H)c=O, He=O, SIIH; 

C. 0=n, (S-H)c=O, ( S - H ) H = ~ ~ H C ) ~ - ~ H ~ ,  

(S-H) '=4H2-~(Hc) '; 

D.  O=n, H=S, c=const. 

The indicated formulas describe the relative configuration of 
the spin and the order parameter; for the resonance frequen- 
cy shifts, see Refs. 4 and 18. 

It is noteworthy that all the steady-state solutions are 
given by equations for only Hsc, (S-H).H, and 8, i.e., they 
can be seen all at once through the same three-dimensional 
window defined by the indicated scalars. 

Besides the steady-state solutions, the solution first 
found by Maki and Hu6 is of great importance for the under- 
standing of the nature of the relaxation. It was obtained by 
Maki and Hu under the assumption that there was no dissi- 
pation, and that the angle 8 varied little. Setting f3 = const, 
Maki and Hu obtained an expression for this solution by 
means of elliptic integrals. Below we shall call the mode cor- 
responding to the Maki-Hu solution the MH mode. In the 
presence of relaxation it is highly improbable that we shall 
obtain a handy formula for the MH mode, and in the present 
paper we study this mode numerically. 

The form of the MH mode as seen through the con- 
structed three-dimensional window is shown in Fig. 3; the 

FIG. 3. Picture of the three-dimensional window defined by the system of 
equations (4). The heavy lines represent the stable steady-state solutions: 
A) the Brinkman-Smith mode; B) the WP mode. The dashed lines repre- 
sent unstable steady-state solutions. The lines in the 6 = ?r plane are also 
unstable steady-state solutions. The thin curve represents a typical MH 
mode. The transformation ( I )  maps the right half (with reference to the 
6 = ?r plane) into the left half of the picture. 

mode is long-lived-its lifetime can be as long as several 
hundred milliseconds-and its turns also number in the 
hundreds. 

In studying the long-lived modes, we should take into 
account the fact that the experimental conditions existing at 
the moment when the external field is switched off can assign 
to the spin and the order parameter a configuration that does 
not belong to any of the long-lived modes. Generally speak- 
ing, the system quickly relaxes into one of such modes, but 
the specific dependence of a mode on the initial conditions is 
difficult to predict. In the present investigation it was as- 
sumed that at zero time the spin vector S is perpendicular to 
the axis c of the order parameter, that the residual external 
field is parallel or antiparallel to the spin vector, and that the 
angle of turn of the order parameter has the equilibrium val- 
ue arccos( - 1). A numerical analysis shows that the only 
modes that can be obtained from the indicated initial config- 
urations are the MH mode and oscillations about the con- 
stant solution S = H, c = const, e = arccos( - $. It is very 
significant that, for the MH mode to exist in the course of the 
relaxation, it is necessary that the strengths of the turned-off 
and residual fields lie within certain limits. This pheno- 
menon can be analyzed as follows. 

If the residual field is not equal to zero, then we cannot 
use such distinct structures as the attractor in the preceding 
section, but we can still use the most important part of the 
argument: the existence of instability bands. Here we should 
again use the steady-state solutions. Using the usual pertur- 
bation-theory technique, we can verify1' that the only 
steady-state solutions that are stable in the presence of relax- 
ation are the Brinkman-Smith mode, the constant solutions 
S = H, c = const, t9 = arccos( - d), and the WP mode, in the 
sense that in the presence of relaxation it goes over into oscil- 
lations about the initial steady-state solution. But the most 
important circumstance is the fact that all the steady-state 
solutions corresponding to the fixed value 8 = n- of the or- 
der-parameter turn angle are unstable. 

We can use for the purpose of deducing from the indi- 
cated instability a criterion for the determination of the up- 
per threshold value of the magnetic field the following prop- 
erty of the solutions to the equations (4) in respect of the 
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fields turned off. If for a fixed residual field H the increment 
A H = Hi - H, where Hi is the initial field, is sufficiently 
small, then the system will quickly (with a characteristic 
time of the order of 1 msec) relax into a regime of oscillations 
about the constant solution S = H, c = const, 8 
= arccos( - t), and the MH mode is not realized. If we con- 

tinue to increase the increment A H for a fixed residual field, 
after the turned-off field exceeds a certain value, which we 
can call the lower threshold, the system begins to relax into 
the MH mode, which in turn relaxes slowly into the indicat- 
ed oscillations about the constant solution. 

It should be noted here that damping of the magnetiza- 
tion ringing can occur in the case when the strength of the 
field turned off is close to the lower threshold value. Indeed, 
a numerical analysis shows that, for fields weaker than the 
lower threshold field, the typical situation is characterized 
by the presence of narrow bands (of widths smaller in order 
of magnitude than 0.1 G), such that, for fields that assume 
values in the various bands, the system relaxes into the indi- 
cated constant solutions, the H.c values for which can differ 
by an amount of the order of the residual field H itself. We 
can assume on these grounds that the weak spatial inhomo- 
geneities in the spin and the order parameter that obtain at 
the initial moment can begin to grow and destroy the coher- 
ent ringing in the system. This observation should be taken 
into consideration when estimating the lower threshold field 
for the MH mode. 

If after reaching the lower threshold value we continue 
to increase the strength of the field turned off, then, as a 
numerical analysis shows, the following picture will be ob- 
served. The system will continue to relax into the MH mode, 
and, as the strength of the field turned off is increased, the 
trajectories will, in the initial fast period of the relaxation, 
come closer and closer to the region defined by the condition 
8zP (see Fig. 4). For the same value Hi = He,, they will 
begin to enter the neighborhood of the vertical 8 = P, 
H.c = 0, and at that moment the following can happen. Two 
close trajectories will come close to the axis 8 = P, H.c = 0, 
and one of them will immediately begin to coil along the 
spiral of the MH mode, while the other will bypass the axis 
8 = P, H.c = 0 and arrive at the MH-mode spiral from the 

FIG. 4. A series of trajectories for the MH mode as a function of the 
intensity of the magnetic field turned off; the residual field is fixed. For the 
threshold field values the trajectories approach the line 9 = r, H.c = 0. 

right side. It should be borne in mind here that the transfor- 
mation (1) maps the right half of the picture in Fig. 4 into the 
left half, and, consequently, the right spiral will be mapped 
into the spiral in the left half of the figure; since the relaxa- 
tion is small, the two spirals will be located close to each 
other. In order to verify that the trajectories have diverged, 
we must consider the pattern of motion in the order-param- 
eter space. 

Topologically, the order-parameter space for 3He-B is a 
three-dimensional sphere with radius P and with the antipo- 
dal points of the bounding spherical surface identified in ac- 
cordance with the transformation (1). The points of the 
sphere correspond to the vectors Oc drawn from the coordi- 
nate origin of the three-dimensional space. As usual, 8 and c 
are the angle and axis of the order parameter. The trajector- 
ies discussed above give rise to two trajectories in the order- 
parameter space. As the trajectories approach the region 
O=;T in the space of the variables H-c, (S-H).H, and 8, the 
trajectories in the order-parameter space approach the 
boundary of the sphere (see Fig. 5), and in such a way that the 
trajectory corresponding to the left spiral does not go as far 
as the boundary of the sphere, whereas the trajectory corre- 
sponding to the right spiral pierces the boundary of the 
sphere and emerges from the antipodal point, which corre- 
sponds to a change in sign of the vector c under the transfor- 
mation (1). 

The numerical analysis performed shows that the mo- 
tion in the order-parameter space is such that two close tra- 
jectories diverge so quickly that the distance between them 
after one rotation period of the vector c is of the same order 
of magnitude as the values of the dynamical variables them- 
selves (see Fig. 5), and entails spin divergence. Thus, 8zn- 
corresponds to a region of instability of the relaxation. 

The above-described picture allows us to suggest a pro- 
cedure for estimating the upper threshold value as functions 
of the temperature and the residual magnetic field. Figure 6 
shows the results of the computations carried out for residu- 
al fields of 1 and 2.5 G. It should be noted that there are two 
upper threshold values (just as there are two lower threshold 
values) corresponding to the fact that the increment in the 

FIG. 5. Two close trajectories A and B in the order-parameter space; A 
corresponds to a field value higher than the threshold value; B, to a field 
value lower than the threshold value. The trajectory A pierces the bound- 
ing spherical surface and emerges from the antipodal point. To the thresh- 
old field correspond those solutions of the equations (3) which go to the 
pinch point of the attractor. In the order-parameter space they possess 
limit cycles: arcs of great circles on the bounding spherical surface of 
radius i~. The disposition of the great circles is given by the values of the 
Brinkman-Cross vector L. 
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FIG. 6. Possible dependence of the upper threshold field on the tempera- 
ture 1 - T / T ,  for a pressure of 20.7 bar. The curves A and B correspond 
to residual fields parallel to the initial field and equal 1 and 2.5 G; the 
curves C and D correspond to antiparallel residual fields of intensities 1 
and 2.5 G. The dashed curve corresponds to the threshold values in the 
absence of a residual field. 

field turned off can be parallel or antiparallel to the residual 
field, which corresponds to one or the other sign of (S-H).H 
(see Fig. 4). 

CONCLUSIONS 

The existence of threshold values for the magnetic fields 
turned off in WP-mode experiments is important for the un- 
derstanding of the general character of the magnetization- 
relaxation process in 3He-B. The qualitative agreement of 
the experimental data with the theoretical curve indicates 
that the instability investigated in the present paper is indeed 
significant: it can lead to the development of spatial inhomo- 
geneities, whose role in the relaxation processes has already 
been pointed out by F ~ m i n . ~ '  

The phenomena investigated in the present paper are 
first and foremost connected with the complex structure of 
the order-parameter space for 3He-B. In this respect, some 
analogy can be drawn here with the electro-hydrodynamic 
instabilities in the theory of liquid  crystal^.^' We can, how- 
ever, assume that the situation in 3He-B is simpler, since the 
equations of spin dynamics are less unwieldy than the hydro- 
dynamic equations for liquid crystals, and, furthermore, the 
greatly simplified spatial-homogeneity approximation in the 
case of spin dynamics turns out now to be entirely viable for a 
broad class of experimental situations. 

The instability as a consequence of the complex topo- 
logical structure of the order-parameter space is the cause of 
the existence of the chaotic spatially homogeneous relaxa- 
tion regimes in 3He-A (Ref. 22) and 3He-B (Refs. 9 and 23). It 
should be noted here that it has often been suggested in the 
last few years24 that the existence of the chaotic relaxation 
regimes, which approximates the behavior of real systems 
(e.g., in hydrodynamics), can serve as a model for turbulent 
behavior in the original system. The best known example of 
this kind is the Lorenz model, which describes with some 
limitations the convection of a heavy viscous In this 
respect, the importance of the equations of spin dynamics 
lies in the fact that they admit of a chaotic regime after a 
simplification that is minimal from the point of view of the 

Leggett-Takagi theory: the discarding of the gradient terms. 
But, as the existence of the upper threshold fields shows, the 
gradient terms should be taken into account in the instability 
region, where the angle of the order parameter approaches 
B T. 

It can be assumed that the characteristic dimension of 
the spatial inhomogeneities at the moment of their appear- 
ance will be of the same order of magnitude as the dimension 
L of the system, since they can appear as a result of the effect 
of the walls of the vessel and the inhomogeneities of the ex- 
ternal field. Consequently, their characteristic frequencies 
are, in order of magnitude, equal to w, = v,/L, where v, is 
the velocity at the Fermi surface, equal in order of magni- 
tude to the velocity of the spin waves corresponding to the 
spatial inhomogeneities. The frequency w, is significantly 
lower than a,, the characteristic frequency of the spatially 
homogeneous spin dynamics for the external-field intensi- 
ties considered in the present paper. Thus, there obtains an 
asymptotic separation, consistent with the allowance for the 
gradient terms, of the fast and slow variables. We can use the 
standard procedure: describe the slow variables of the spatial 
perturbations with the aid of the integrals of the spatially 
homogeneous problem. For this purpose we can use, for ex- 
ample, the Brinkman-Cross vector' 

L =  
sin (0/2)  0 

[[sclctg - - s+s,,c] 
(S2-SIl2) I" 2 

which in the absence of dissipation is an integial of motion 
for the spatially homogeneous dynamics. At the moment 
when the gradient terms become important, the vector L 
ceases to be an integral of the motion. If we average the equa- 
tions of the system over the fast variables, i.e., over the spa- 
tially homogeneous solution, then the vector L, together 
with the angle $, which describe the dephasing, will give the 
order parameter of the averaged spatially inhomogeneous 
motion. It is worth noting that L and $ determine the order 
parameter, which assumes values in the three-dimensional 
rotation group. This order parameter describes only the ini- 
tial phase of the development of the spatial inhomogeneities, 
when the gradients are still small, and we can use the spatial- 
ly homogeneous approximation as the first approximation. 
It is of interest in connection with the description of the 
onset of spin relaxation in an initial external field Hi equal to 
the threshold field. The characteristic time of this process 
can be estimated as the time during which we can find the 
solution to the LT equations without allowance for the gra- 
dient terms in the region BZT.  

This work was done in close contact with I. A. Fomin, 
who pointed out to the authors the possibility of estimating 
the threshold fields with the aid of attractors. The authors 
are grateful to him for this fruitful idea, as well as for the 
numerous consultations and discussions, without which this 
paper could not have been written. The authors are also 
grateful to Yu. M. Bmk for his critical comments. 
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