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The problem of the conductivity of long metallic wires is considered. The calculations are carried 
with the aid of the one-dimensional supermatrix a model. The transfer matrix technique is used. 
For arbitrary external frequencies the problem is reducible to the solution of two or three partial 
differential equations. Analytic solutions are obtained in the limits of low and high frequencies. 
The density-density correlator is computed, and it is shown that all the states of the system are 
localized. The permittivity is determined. The magnetic and spin-orbit interactions increase the 
localization length, but leave the form of the density-density correlator at low frequencies un- 
changed. 

PACS numbers: 72.15.Eb, 72.10.Fk, 7 1.50. + t 

1. INTRODUCTION 

Recently Thouless' predicted the localization of the 
electrons in long metallic wires. A similar assertion was 
made by Abragams et al.* The arguments in these papers are 
based on the use of the scaling-law hypothesis. According to 
Thouless,' the only quantity determining the behavior of the 
system is the total resistance of the sample. In sufficiently 
long wires the resistance should increase exponentially with 
increasing sample length L. The transition from short wires 
with linear length dependence of the resistance to long wires 
with exponential dependence occurs at some characteristic 
value LC of the length. The resistance of a sample with such 
length is approximately equal to 10 kn. To Thouless,' the 
wire thickness is not important, and all the predictions in his 
paper are made for both chains and thick wires. At the same 
time, these models are, from the formal point of view, entire- 
ly different. We have for one-dimensional chains well-devel- 
oped methods3" that allow us compute the frequency de- 
pendence of the conductivity. 

Weller et a1.' have analyzed with the aid of Berezinskii's 
method3 a system ofNcoupled chains, and have shown that, 
for low frequencies, the problem reduces to the solution of 
Berezinskii's equations for a single chain. Therefore, the 
conductivity goes to zero as w + 0. The model of coupled 
chains has also been considered by Dorokhov,' who comput- 
ed the dependence of the localization length on the number 
of chains. Anderson et have considered a model of N 
conducting channels with the aid of Landauer method. 
These authors also draw the conclusion that the electrons 
are localized. In principle, the models studied in these papers 
can be used to describe wires as well. But the number of 
chains or channels should not be large (or, conversely, the 
mean free path should be long); otherwise we cannot begin 
with a description in terms of the individual chains. This 
limitation corresponds to sufficiently thin or sufficiently 
pure wires. 

Below we shall consider the opposite limit of sufficient- 
ly thick metallic wires. We assume that the following condi- 
tions are fulfilled: 

where S is the cross-section area and E' andpo are the Fermi 
energy and momentum. 

The first of the inequalities (1) implies that we are con- 
sidering the case of weak localization. The second inequality 
in ( I )  corresponds to a situation in which the reciprocal elec- 
tron-impurity scattering time is much greater than the dis- 
tance between the levels of the transverse quantization. In 
this limit, classical diffusion occurs over small distances. 
The opposite case is apparently considered in Refs. 7-9. In 
the limit (1) of sufficiently thick wires being considered the 
system is three-dimensional in almost every respect. Only 
the sample geometry remains one-dimensional. The three- 
dimensional character of the Fermi surface leads to the usual 
three-dimensional integrals over the electronic lines in per- 
turbation theory. The one-dimensional character of the sam- 
ple geometry is unimportant for the integrals over the elec- 
tronic lines. But the one-dimensional character of the 
geometry leads to a contribution from the diffusional modes 
that diverge at low frequencies.'' Therefore, the contribu- 
tion of such modes must be taken into account exactly in the 
investigation of the conductivity problem in wires. Here the 
method of supersymmetry developed by one of the present 
authors" is very convenient. In this method the problem of 
the kinetics of a quantum particle in a disordered potential 
reduces to the problem of the investigation of the superma- 
trix a model. The inequalities (1) constitute conditions that 
are rigid enough to allow the use of such a a model in the 
model for a wire being considered. The one-dimensional 
character of the sample geometry leads to a one-dimensional 
a model. In the following sections the one-dimensional a 
model corresponding to the conductivity problem is solved 
exactly with the aid of the transfer matrix method. It is 
shown that all the states in the model in question are local- 
ized. The density-density correlator is computed. The effect 
of the magnetic and spin-orbit interactions is considered. 

2. WIRES AND THE ONE-DIMENSIONAL SUPERMATRIX u 
MODEL 

In Ref. 11 one of the present authors develops for the 
purpose of investigating the behavior of a quantum particle 
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in a weak random potential a supersymmetry method based 
on the writing of the Green functions in the form of path 
integrals over the boson and fermion variables. Let us briefly 
give the main points in the derivation of the supermatrix u 
model that arises in this method, and show how the one- 
dimensional character of the sample geometry makes such a 
u model one-dimensional. 

Let us consider a long metallic sample with a finite 
transverse dimension a. Assume that the dimension a is 
much greater than the atomic dimensions. The quantity a 
can be arbitrarily large if we are investigating the low-fre- 
quency behavior of a sample at absolute zero. At finite tem- 
peratures the dimension a should not exceed the critical dif- 
fusion length L,  = (DT,)"~, where r, is the inelastic 
scattering time and D is the diffusion coefficient. The sample 
may contain randomly distributed impurities. The allowed 
energy values are the eigenvalues of the Schrodinger equa- 
tion 

where the q, are the eigenfunctions corresponding to the 
energy E, .  The angle brackets in (2) denote averaging over 
the positions of the impurities, 2 is the regular part of the 
Hamiltonian (the kinetic energy and the interaction with the 
external field), and H ,  is the interaction with the impurities. 
We assume that the Hamiltonian H, in (2) can include both 
the scattering by the ordinary impurities and the scattering 
by the magnetic and spin-orbit impurities. 

It is convenient to describe the behavior of an electron 
in a random potential with the aid of the retarded density- 
density correlator 

OD rn 
de 

Xu= J dte-iuta Ip(r, t), p(O.0) I))= (n.-n.,.) K (e, o)- 2n 

Using the single-particle retarded G and advanced G A 

Green functions, we can reduce the function K (E,w) to the 
form 

In Eqs. (3) and (4) the symbol (...) denotes averaging 
over the impurities and the double brackets correspond to 
the addition of thermodynamic averaging. 

As in Ref. 11, we write the Green-function product 
G:G$+,  in the form of an integral over commuting and 
anticommuting variables: 

( G ~ : ~  (r, r') GeA (r', r) ) 

=I <+,i (r)qil (r) +sZ(r') $~~(r')e-")D*l (5) 

where the Lagrangian L has the form 

In Eqs. (5) and (6), X = ( r , a ]  describes the coordinate 
and spin of the particle and $ is a supervector having as its 
components the classical boson and fermion variables. In the 
case of spinless particles $has eight components, which can 
be written in the form . 

In the expressions (7) the superscript a indicates affili- 
ation with the retarded or advanced Green functions, x and 
x * are the anticommuting Grassman variables (the algebra 
of these variables can be found in Ref. 12), and s and s* are 
complex numbers. The letter T denotes the operation of 
transposition. The elements of the matrix C have the form 

where A is a diagonal matrix with elements 
A " = - A " = 1. The matrices c, and c, are equal to 

In the absence of external fields, H,  in (6) has the form 
1 az  

Ho=-& -I- --. 
2m dr'" 

If only elastic scattering by ordinary impurities is possible in 
the metal, then H ,  = U(r), where U (r) is the potential of the 
impurities. We assume that the potential U(r) is a random 
quantity, distributed according to the 8-correlated Gaussian 
law 

where T is the mean free path and v = m p d 2 d  is the density 
of states. 

We carry out the averaging in (5) with the aid of (9). The 
expression (5) has the same form after, as before, the averag- 
ing if by the Lagrangian L we mean the following quantity: 

1 1 
L= [ -iqH0$i- -($$)z+ i (o - i ( )+~+]  dr. (10) 

4nv.c 

It is shown in Ref. 11 that the supersymmetry possessed 
by the Lagrangian (10) at zero frequencies is spontaneously 
broken, as a result of which there arise the averages QaB 

= ( $, &). The quantity Q is a supermatrix containing 
both boson and fermion elements. This matrix satisfies the 
conditions for charge and Hermitian conjugation in- 
variance: 

where k is a superelement of the form 

As in Ref. 11, we mean here by the operation of charge and 
Hermitian conjugation the following transformations: 
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The symbols Tand * denote supertransposition and complex 
conjugation. After separating the averages in the ( $$)* term 
in (lo), we can write the Lagrangian L in the form 

(12) 

where Ssp M =Sp kM for any matrix M. The supertrace Ssp 
plays in the theory of supermatrices the same role played by 
the trace in the theory of ordinary matrices. 

For low impurity concentrations in not very thin wires, 
such that the conditions (1) are fulfilled, the eigenvalues of 
the supermatrix Q fluctuate little, and are determined by the 
saddle-point value of the free-energy functional correspond- 
ing to the Lagrangian L (12). At the same time, for o = 0, the 
ground state is highly degenerate. The general form of the 
supermatrix Z corresponding to the ground state can be 
written as follows: 

Q=W+A(l- Wz)'", 

where 

The matrices a ,  b, o ,  andp are 2 X 2 matrices, the elements of 
a and b being ordinary numbers and those of a and p being 
Grassman variables. Thep, b, o, and p matrices that ensure 
the fulfillment of the condition (1 1) have the form 

The strong degeneracy of the ground state at zero fre- 
quencies lead to the existence of Goldstone modes connected 
with the Q fluctuations. These modes and their interaction 
are described by a nonlinear generalized o model, in whose 
free energy the frequency plays the role of an external field" 

where D = T is the diffusion coefficient. 
The density-density correlator can accordingly be writ- 

ten in the form 

K=-2 (nv)' j 9:: ( r ) ~ : :  (r')  e-""DQ. (17) 

At sufficiently low temperatures, when the diffusion 
length determined by the inelastic processes is greater than 
the transverse dimensions of the system, only the states with 
coordinate-independent Q are important. The higher har- 
monics lead to a sharp increase in the energy, and can there- 
fore be discarded. Therefore, to study the low-frequency be- 
havior of the system, we need only consider the 
one-dimensional u model described by the formula ( 16). A 
simple analysis shows that the frequency should satisfy the 
following inequality: o ( D /S. At high frequencies the cor- 

rections to the classical diffusion are three-dimensional, and 
their contribution is small. 

In deriving the formulas (1 6) and (1 7) we made essential 
use of the conditions (I), which allow us to limit ourselves to 
the consideration of the saddle-point value of the matrix Q, 
and to replace the sums of the type 

that arise in the calculations by integrals over 6 = E, - E,. 

The symmetry of the matrix Q defined by the formulas 
(15) corresponds to a model in which the disorder is created 
by potential impurities (model I). The application of an ex- 
ternal magnetic field leads to the following substitution in 
the Lagrangian ( 16): 

VQ-VQ+ic-leA [Q, z,] , 
where r3 is the matrix 

1 0  

in the space of the matrices a ,  b, o, and p. As a result, the 
symmetry of the ground state is lowered, and some of the 
modes acquire a gap even at zero frequency. Such modes can 
be neglected in the limit o ( DeH /c. The expressions (13), 
(14), and (16) have the same form in this case if by a, b, a ,  and 
p we mean the following matrices (model IIa): 

To allow for the magnetic impurities and the spin-orbit in- 
teractions we must double the dimensions of $ and Q be- 
cause of the allowance for the spin structure. These interac- 
tions also lower the symmetry of the Lagrangian (16), and 
freeze out some of the diffusion modes. In the presence of 
magnetic impurities the supermatrix Q is defined, as in the 
case with a magnetic field, by the formulas (18). But now the 
quantities a,, b,, o,, andp, are 2 X 2 matrices proportional to 
the 2 x 2  unit matrix (model IIb). The model IIb coincides 
with the model IIa if we double in the latter the free energy 
and the density-density correlator given by the formulas (1 6) 
and (17). If there are no magnetic interactions, but there are 
spin-orbit interactions present, the matrices a, b, a ,  andp in 
(14) have the form (model 111) 

a,' al' bz' b,' 
(19) 

0= 

The expressions written above show that the problem of 
computing the density-density correlator reduces to the 
problem of investigating a one-dimensional supermatrix a 
model with symmetry that depends on the magnetic and 
spin-orbit interactions. In the following sections we shall 
carry out such an investigation with the aid of the transfer 
matrix method. 
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3. REDUCTION OF THE ONE-DIMENSIONAL a MODEL TO 
PARTlAL DIFFERENTIAL EQUATIONS 

The transfer matrix method is very effective in the in- 
vestigation of the one-dimensional classical  model^.'^,'^ The 
generalization to the case of systems whose free energies con- 
tain both boson and fermion variables does not present any 
difficultie~.'~ The use of this method allows us to solve the 
problem exactly. Let us, using the usual procedure, reduce 
the functional integral (17) to a definite integral over the 
supermatrices: 

K(x1, a) =-2n4o J r(0,  xi; Qo, Q,) (Q,) ::l. (x,, x,; Q,, Q,) 

- S ,  models I. IIa 
where = v = 

vS, models I I b ,  111' 
(204 

The kernel r in (20) satisfies the Schrodinger equation 

where the 6 function in the right member of Eq. (21) appears 
after the passage to the limii u + 0 in the following expres- 
sion: 

~ X P  (- ssp (Q-Q') 9 
a / .  

In principle, the Hamiltonian &" can be written in a 
differential form, but this requires a particular parametriza- 
tion of the supermatrix Q, and the corresponding formulas 
turn out to be very unwieldy. To simplify the calculations, let 
us retain for some time the integral form corresponding to 
the Schrodinger equation. In this representation the Hamil- 
tonian is given by the following expression: 

where @ (Q ) is an arbitrary matrix function. The evaluation 
of the integral on the right-hand side of Eq. (22) in the limit 
a + 0 would lead to the differential form of the Hamilton- 
ian. 

Let us expand the kernel in terms of the orthonormal 
eigenfunctions Yn of the Hamiltonian &P in the form 

=o(x'-2) Y ~ ( Q )  Yn*(Q1) e~p{-~n(z'-x) 1. (23) 
n 

The normalization conditions can be written in the form 

The functions Yn and Y can be either ordinary functions or 
Grassman variables. Therefore, the order in which they have 
been written down in the expression (24) is important. 

Substituting the expressions (23) and (24) into (20), and 
performing a Fourier transformation with respect to the co- 
ordinate, we obtain 

where L is the sample length. 
The function P t) (Q ) is connected with the kernel r by 

the following relation: 

P:"' (Q) 

=I  r(x,-XZ; Q, QI) ~ 1 2 1 ~ ~  (Q!) e(-a+~,)(=~-=~) dQ'd (21-4. 

(26) 
Multiplying Eq. (2 1)  by Q 12' Yn (Q '), and integrating both 
sides of this equation over Q ', we obtain after performing a 
Fourier transformation the equation 

(ik-E,+R) Pin) (Q) =QZIY (Q) . (27) 
As we have already mentioned, the Yn (Q ) and En are 

the eigenfunctions and eigenvalues of the Schrodinger equa- 
tion 

a Y  %=EnY ,,. (28) 

For the subsequent calculations, it is convenient to go 
over to the "polar" coordinates of the supermatrix Q (Ref. 
16). These coordinates are given by the following expres- 
sions: 

.. 

where 

The elements el, and O,, are equal to 

0 < 8 < n ,  01>0, 0a>O model 1, 

0 < 0 < n ,  01>0 models 11, 

0>0,  O<Ol<n, O<Os<n model 111. 

The supermatrices u and v in (29) satisfy the following 
conditions 

- uu=Ev=l, ii=uf, f=kv+k. (30) 

In the integral (22) the important values of Q ' are those 
close to Q. In this limit the supertrace of (Q - in the 
index of the exponential function can be written in the form 

Ssp (Q-Q') '=AF0+AFi ,  (31) 
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where 
AF0=2 Ssp  (AO) ', 

AF,=2 SSp [(Au c0s-8)~+ ( A V  cos%)'+2Au s i n % ~ v  sin 8 
- (Au)'- (Av)'] , A%=€~'-B, - 

Au=-AE=-ln(Eul) , Av=-AiT=-ln(i?v') , e=l/, (e+e'). 

The quadratic form (3 1) has been written with the accu- 
racy that we must have in order to obtain the first and second 
derivatives in the Schrodinger equation. 

The absence of weighting denominators in (20) is a con- 
sequence of the use of integrals taken over commuting and 
anticommuting variables. In the limit L -+ rn only the 
ground state makes a contribution to the sum over n in the 
expression (20). The right-hand side of this expression is fin- 
ite, and does not vanish only when the energy Eo of the 
ground state is equal to zero. Let us assume that the wave 
function Yo of the ground state possesses a high symmetry 
with respect to transformations in the space of the supermF- 
trices Q, and that it depends only on the "radial" variables 8. 
For such functions the normalization conditions can be writ- 
ten in the form 

The relation (32) can be proved in the following manner. 
Let us consider the integral 

where f (8) -+ f (O)#O for 8 -+ 0. 
On the face of it, it seems to be convenient to evaluate 

the integral (33), using the polar coordinates (29). But the 
Jacobian that arises when we go over to these yariables (see 
Ref. 16) is singular at 8 -+ 0. Therefore, the 8 integral be- 
comes divergent. On the other hand, the integrand does not 
depend on the matrices u and v. This leads to the vanishing of 
the contribution when we perform the integration over the 
anticommuting variables. Consequently, we arrive at an in- 
determinacy of the type 0. oo . At the same time, the integra- 
tion over in the 6'1 ( /3)/8/3 integral does not lead to diver- 
gences. The subsequent integration over the anticommuting 
variables in this integral yields zero, i.e., 

az(p) iap=o; (34) 

consequently, we find that I ( /3 ) = c, where c does not depend 
on /3. 

To compute c y e  can consider the limit /3 -+ a. In this 
limit the function f (8 ) in the expression (33) can be replaced 
by its value f (0) at the origin. Using the formula (l3), retain- 
ing in the limit /3 -+ rn only the term linear in Win the ma- 
trix Q, and evaluating the Gaussian integrals, we obtain 

The relation (35) is valid for any /3 and any f functions that 
decrease at infinity. The relation (32) can easily be obtained 
from the identity (35). 

Assuming t h ~ t  the wave function !Po of the ground state 
depends only on 8, we can write the Schrodinger equation 
for this function in its explicit form. To do this, we set 

@ (Q ) = !Po@ ) in Eq. (22), and integrate over u and v. In the 
limit a -+ 0 all the integrals that arise in (22) are Gaussian 
with respect to Au and Av. Evaluating these integrals, we 
reduce the right-hand side of Eq. (22) to the form 

whereq = + in the models I, 111, and q = 1 in the models IIa, 
IIb. 

The Jacobian J (8 ')in tbe expression (36) is a result of our 
going over to the variables 8, u, and v (29), while J -'(a ) ap- 
pears as a result of the integration of the exponential func- 
tion (22), (3 1) over Au and Av. The explicit form of the Jaco- 
bians J(8) can be found in Ref. (16). Going over to the 
variablesR, A ,, andil, with the aid of the formulasR = cos 8, 
A ,  = cosh 8,, and A, = cosh 8, (model I), or R = cos 8 and 
A ,  = cosh 8, (model 11), or A = cosh 8, A ,  = cos 8,, and 
A, = cos 8, (model 111), we rewrite the corresponding Jaco- 
bians in the form 

II-h21 JA = 
(hi2 + kg2 + h2 - 2hhlhz - t)2 models I and 111, 

model 11. 
(37) 

Expanding J (8 I ) ,  J -'(a ),and p0(8 ')inpowersof8 ' - 8, 
and evaluating the Gaussian integrals, we find in the limit 
a -+ 0 that 

8 o Y  050, 

The subscript m in (38) can assume the values 1 and 2 in the 
models I and 111, and is equal to 1 in the model 11. 

As has already been noted, only the ground state makes 
a contribution to the sum (25). Therefore, to compute the 
density-density correlator K (w,k ), we should solve Eq. (27) 
with the ground-state wave function in the right member and 
the ground-state energy E, = 0. Let us seek the matrix P$" 
satisfying such an equation in the form 

where in the model I 

in the model I1 
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and in the model I11 

In deriving the Hamiltonian ZO, (38), we used the fact 
that the ground-state wave function !Po does not depend on 
the matrices u and v. The expression (39) for the function P,,  
which contains only the first powers of u and v, allows us to 
derive the corresponding Hamiltonian for the function P,, 
which Hamiltonian depends only on 6. Let us substitute 
@ (Q ] = Pk into Eq. (22), and integrate first over A u  and Av. 
Using the expansions 

which follow from the expressions (3 I), we reduce the right- 
hand side of Eq. (22) to the form 

1 1 
ZORk --( ( A V ) ~ ) ~ R ~ - - R ~ (  (AU)~),+(AVR~AU)~ ii. 

2 2 I 
The symbol (.-) , denotes the following averaging: 

( . . . ) e-'td (An) d (Av) 
( . . . >,= 

j e-'1 d (Au) d (Av) 

The matrices u and v are separated in (40) from the 6 
variables. Therefore, the computation of the averages in (40) 
and the substitution of these expressions into Eq. (22) give 
rise to differential equations containing only the variables 8, 
el, and 8,. Such a procedure is similar to the one used in 
quantum-mechanical problems with centrosymmetric po- 
tentials. In such problems the angular variables separate, but 
give rise to additional terms in the radial part. The model I1 
contains two independent variables, A and A,, and two un- 
known functions fk and f,, . Carrying out the corresponding 
calculations, we obtain 

The analogous equations for the models I and I11 are 
more complicated. After rather tedious transformations we 
find 

a f k  
2 n i i ~ ( i k + % ~ ) f ~ + 2 ( - 1 ) ~ h ~ +  4[)v21hi2--11 

x 3 (hi, h, hz) (fk-flk) f hilhz2-1 1 P (h, h2, hi) (fk-fzk) ]=Yo7 
(42) 

+4 [ ae~i;;i~ p (ha, ha, 1)  (fbk-fak) 

In the equations (42), s = 0 for the model I and s = 1 for 
the model 111. The subscripts a and 6 can assume the values 1 
and 2, with a # 6 .  The three-variable function P (x, y, z)  is 
equal to 

Substituting (39) into Eq. (25), and integrating over u 
and v, we reduce the density-density correlator to the form 

K (a ,  k) =H(o, k) +R(a,  -k), (44) 
where in the model I1 

K=ln'vrzD j j Y .A( (is2-1) Ilk+ ( l - ~ z ) ~ )  dhl dh, 
1 - 1  

and in the models I and 111 

+ I  1-hzI fk)  dhc d;lz dh. (45) 

In the expression (45) the integration is performed over 
t h e r e g i o n l < A , < ~ ,  ~ < A , < c o ,  - l<A<lforthemodel  
Iandovertheregion - 1</2,<1,0<A2<1,  1<A< w for 
the model 111. The formulas (32), (38), (41), (42), (44), and (45) 
completely solve the problem of the kinetics of a quantum 
particle in a long metallic wire for all the types of symmetry. 
Unfortunately, Eqs. (32), (38), (41), and (42) are very compli- 
cated, and can be solved analytically only in the limiting 
cases of high (w > (y2D ) - I )  and low ( w g ( 9 ' ~  ) - I )  frequen- 
cies. In the intermediate region the results can be obtained 
only numerically. In the next section we shall consider the 
limiting cases of high and low frequencies. 

4. THE DENSITY-DENSITY CORRELATOR AND THE 
PERMllTlVlTY 

Let us first consider the high-frequency limit 
ws(9'D ) - I .  Naturally, the use of the transfer matrix method 
is not necessary for the computations in this region. It is 
much easier to use perturbation theory in terms of W, which 
is applicable in a space of any dimension. But the calculation 
in the high-frequency region allows us to verify the equations 
obtained, and to demonstrate how the transfer matrix meth- 
od works. At high frequencies the important values ofA, A,, 
and R, are the values close to unity. Therefore, it is conve- 
nient to use the following variables: 

hl=l+x,, h2=1+xz, h=l-x (model I), 
hi=l+x, h=l-x (model II),  (46) 

hl=l-xl, h2=i-x,, h=l+x (model 111). 

The dominant contribution to the integrals with respect 
to x,, x,, and x in the (44) and (45) is made by the region 
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x,  -x, -x - (DC2~)-1/2. In the leading approximation, we 
can integrate over all positive x,, x,, and x in (44) and (45). 
Expanding Eqs. (37), (38), (41), and (42) in powers of the 
small variables x,, x,, and x, and solving these equations in 
this limit, we obtain in the model I1 

\Y~=~- (+ ,+C)T  1 1 e-(rt+x)T 
* bmih=2= ik+ (io,D) . , 

and in the models I and I11 

where f = (v+),i(w - is). 
The ground-state wave function satisfies the normaliza- 

tion condition (32). Substituting the expressions (47) into the 
integrals (44, (45), and integrating over x, x,, and x,, we find 
in the leading approximation for all the models the correla- 
tor 

The formula (48) describes classical diffusion. 
Let us now consider the more interesting case 

w<(PD ) - I .  In this limit the dominant contribution is made 
by the region A ,  > 1, A,> 1, R - 1 in the model I, the region 
R,>l,R-1 in the model 11, and the regionR,-1, 2,-1, 
R>1 in the model 111. The Eqs. (38), (41), and (42) and the 
integrals (44), (45) are also much simpler in these regions of 
the variables. We can neglect the function f, and retain only 
f,, in the formulas (38), (41), and (44) for the model 11. In the 
formulas (38), (42), and (451, it is sufficient to retain onlyf,, 
and f,, in the model I and f, in the model 111. Let us seek the 
solutions to these equations in the leading approximation in 
the form: 
in the model I 

Yo=Yo (Ah*), fin=fur=Q)r(hthz), 
in the model I1 

Y O=Y o(hi), fir==% (hi) (49) 

in the model I11 

Carrying out a change of variables in accordance with the 
formulas 

z=ion2~2Dhih2 ( model I),  

z=io-2nZ~'Dh1 (model 11) (50) 

z=io -2n2~'Dh (model 111) 

and evaluating the integrals over the remaining variables, we 
obtain the following equations in place of (38), (41), (42), (44), 
and (45): 

4nvA (k) 
K(o, k) = 

io  ' 

In the expressions (51) the length LC is equal to 

n3D (.model I) 
L ~ =  ( 2nGD (model I1 andIII) 

(52) 

Remembering the formulas (20a) for +, we rewrite the 
expression for LC in the explicit form, applicable for all the 
three models: 

nvSD (model I), 
2nv;lSD (model 11), 
4nvSD (model 111). 

(53) 

Thus, the density-density correlator is given by identi- 
cal expressions in all the three models. Only the characteris- 
tic lengths LC are different. The solutions Y0(z) and @,(z) 
should decrease at infinity. Furthermore, the function Y,(z) 
should satisfy the boundary condition 

YO(O) =1: (54) 

The condition (54) is a consequence of the fact that Eq. 
(38) possesses at w = 0 an exact solution Yo (A,,A,,A ) = 1, 
which satisfies the normalization condition (32). Then, in 
terms of the z variables, the limit o -+ 0 is just the limit cor- 
responding to the condition (54). Furthermore, the integral 
for A (k ) in the expression (5 1) should converge if the domi- 
nant contribution arises from the region z - 1. Consequent- 
ly, the function should by integrable. The other possible 
functions, for which the region A, A ,, A, - 1 is the important 
region in the integrals (44), (45), give contributions of higher 
order in w. 

The equations (5 1) with the above-indicated boundary 
conditions coincide exactly with the low-frequency limit of 
Berezinskiys  equation^,^ which were derived for the prob- 
lem of the kinetics of a particle in a one-dimensional disor- 
dered chain, if we replace the length LC in the equations (5 1) 
by the mean free path I .  Solving the equations (5 l), we find 

Y o  (z) =2z"K1 (2z"), 

where K,, K,, and I ,  are Bessel functions and 
a = (1 + 4ik~,)"*. 

The functions Yo and @, , (55), decrease at infinity. The 
function Yo satisfies the condition (54), and the function @, 
is integrable in the region of small z values. 

Substituting the expressions (55) into the integral in 
(51), and carrying out the same calculations performed in 
Ref. 17, we find an expression for the density-density corre- 
lator at large distances x s L c  and times t -+ co : 
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K ( e ,  t+-=,x) = p ,  (x) 

The formula ( 5 6 )  shows that the correlator p m  (x )  de- 
creases exponentially with a localization length given by the 
formulas ( 5 3 ) .  This fact proves the localization of all the 
states in the system. 

In the region of low momenta k#L ; ' the function 
A (k ) has the form 

A (k) =I-4% ( 3 )  k2L,2, ( 5 7 )  
where f (3) is the Riemann zeta function. 

The function A ( k  ) for low momenta determines the per- 
mittivity &: 

The formulas (56)- (58)  have the same form as the corre- 
sponding formulas in the one-dimensional disordered chain 
model. But now the localization length LC - 1 (p i s ) ,  i.e., sig- 
nificantly greater than the mean free path I. 

In the high-frequency limit w>D / L  f , where the classi- 
cal formula (48) is applicable, the conductivity a is, accord- 
ing to the Einstein relation, equal to 

As the frequency w decreases, the formula ( 5 9 )  goes over 
smoothly into the formula ( 5 8 ) .  

The frequency dependences given by the three models 
are all different. In particular, in the model I11 this depen- 
dence is nonmonotonic, since in this model the first correc- 
tion to the conductivity in the high-frequency region is posi- 
tive.I8 

The dependence of the localization length LC ( 5 3 )  on the 
magnetic and spin-orbit interactions leads, according to the 
formula ( 5 8 ) ,  to a corresponding dependence of the permit- 
tivity. It is not difficult to estimate the orders of magnitude 
of those values of the interaction strengths at which the tran- 
sition occurs between the models 1, IIa, IIb, and 111. To do 
this, it is sufficient to consider the effect of these interactions 
on the first-order correction to the classical diffusion. An 
external magnetic field leads to a transition from the model 
I, which is invariant under time reversal and spin rotations, 
to the model IIa. The permittivity given by the model IIa is 
four times greater than the permittivity given by the model I. 
The transition between these models occurs in fields of 
strength H-Qo ( S ' I Z ~ , ) - ' ,  where Qo = &/e is the flux 
quantum. Upon the addition of a sufficiently large amount of 
magnetic or spin-orbit impurities (the models IIb and 111), an 
amount which ensures the satisfaction of the inequality 

the permittivity increases by a factor of 16 in comparison 
with the case of a wire without magnetic or spin-orbit inter- 
actions. 

The entire investigation carried out above is applicable 
at absolute zero, at which temperature inelastic processes do 
not occur. The interactions that cause inelastic scattering 
delocalize the electronic states, and reestablish classical con- 
ductivity. Jn such a situation lowering of the temperature 
should lead to an increase of the resistance. Experimentally, 
growth of the resistance with decreasing temperature in 
wires has been observed many  time^.'^-^' Unfortunately, all 
the measurements were performed at not very low tempera- 
tures, i.e., they were not performed in the temperature re- 
gion where the corrections to the classical conductivity are 
small. It would be interesting to measure the permittivity 
( 5 8 )  and compare this quantity with the diffusion coefficient 
D obtained from the formula (59 ) ,  which is applicable in a 

- - 

higher-temperature region, where the localization effects are 
suppressed. It would also be interesting to investigate the 
external-magnetic-field dependence of the permittivity. 
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