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The equation of motion of a vortex in a ferromagnet with the easy-plane type of anisotropy (planar 
ferromagnet) is derived. The velocity of such vortices depends not only on the circulation, as in 
hydrodynamics, but also on a second invariant: the polarization (the sign of the magnetic-moment 
component along the axis of the vortex core). The canonical equations of motion (Hamilton's 
equations) for a system of straight parallel vortices are derived. 
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81. INTRODUCTION 
Much attention has been given in recent years to the 

investigation of the dynamics of topologically stable defects 
in condensed media. Among them are quantized vortices in 
superfluid liquids and superconductors. Similar linear de- 
fects can exist also in planar ferromagnets or antiferromag- 
nets, which exhibit an anisotropy that tries to hold the spon- 
taneous magnetic moment or magnetic moments of the 
sublattices in some crystal plane (the easy plane). They are 
called magnetic vortices or disclinations: on going round 
them the magnetic moment turns in the plane through an 
angle that is a multiple of 27~. 

On the basis of a number of topological properties, the 
Bloch lines in 180-degree domain walls should also be classi- 
fied with magnetic vortices. Such lines play a great role in the 
dynamics of domain walls, and have been the subject of a 
number of theoretical and experimental  investigation^.'.^ 
Magnetic vortices are also important for the problem of the 
stability of helical structures in magnetically ordered sys- 
tems (one of which is the A phase of superfluid He3). The 
transport of spin in such structures is nondissipative, just as 
the transport of mass in superfluid liquids is nondi~sipative.~ 

The magnetic vortex has the simplest structure in the 
model of a planar magnetic material, in which there is no 
anisotropy in the easy plane (i.e., there is degeneracy with 
respect to the angle of turn of the magnetic moment in the 
easy plane) and the dipole-dipole interaction and the demag- 
netizing field due to it are neglected. The magnetic-vortex 
dynamics in such a model has been studied by Volovik and 
Dotsenko4 in the Poisson-brackets formalism. The authors 
employ the method used in the analysis of the motion of a 
hydrodynamic vortex, and obtain an expression for the total 
momentum flux through a cylindrical surface of large radius 
surrounding the vortex. This flux should be equal to zero in 
the absence of external forces. As a result, Volovik and Dot- 
senko arrived at the conclusion that, in the absence of a spin 
flux at infinity and magnetization along the Z axis, a mag- 
netic vortex in a planar magnetic material can move with any 
constant velocity. This differs significantly from hydrodyna- 
mics, where according to the Helmholtz theorem, a vortex 
can move only with the velocity of the medium, i.e., it is, as it 
were, "frozen" in the liquid. 

The problem of the motion of a magnetic vortex in a 
planar ferromagnet has been solved by us by another meth- 

od, specifically, by a method based on the derivation of the 
solvability condition for the inhomogeneous linear equation 
describing the corrections to the field of the magnetic mo- 
ment, that arise as a result of the vortex motion. This method 
has been used before to establish the law of vortex motion in 
type-I1 superconductors5 and in He 11 in the vicinity of theil 
point.6 To use it, we must have a theory that is able to de- 
scribe the behavior of the medium everywhere, including the 
region where there is a marked departure from the ground 
state (the vortex core). In the case of a magnetic material 
such a theory is the Landau-Lifshitz phenomenological the- 
ory. The basis for its use in the present problem is the fact 
that, normally, all the parameters of the medium inside a 
vortex core change over distances significantly greater than 
the atomic distances. The use of the indicated method led us 
to a result that differs appreciably from the one obtained in 
Ref. 4: a vortex can move with constant velocity only when a 
spin flux proportional to the helical deformation of the spin 
system exists at infinity. In the absence of such a flux, the 
magnetic vortex, like the hydrodynamic vortex, is "frozen" 
in the medium. This is due to the fact that the ratio of the 
force acting on the vortex (the analogue of the Magnus force) 
to the vortex velocity is proportional to the difference 
between the magnetization along the difficult axis coincid- 
ing with the vortex axis and the magnetization at points infi- 
nitely far away from the vortex, and not just to the magneti- 
zation at infinity, as was found in Ref. 4. The vortex 
dynamics turns out to be dependent on the structure of the 
vortex core, which makes vortices behave differently in dif- 
ferent magnetic media. In a planar antiferromagnet in zero 
external field the magnetization is equal to zero both on the 
vortex axis and at points far away from the vortex, and there- 
fore the conclusion reached by Volovik and Dotsenko that 
vortex motion with arbitrary velocity is possible remains val- 
id. But for vortices in a ferromagnet the magnetization on 
the vortex axis can be nonzero even in the absence of magne- 
tization at infinity, which results in the freezing in of the 
vortices in the medium. 

To better understand the results obtained by us, we also 
carry out for the vortex a momentum-balance analysis like 
the one performed by Volovik and Dot~enko.~  It turns out 
that the expression chosen by them for the momentum (an 
expression which is nonunique and gauge dependent) has a 
singularity on the vortex axis, and we should, in construct- 
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ing the momentum balance, take account of not only the 
momentum flux through the surface a cylinder of large radi- 
us, but also the momentum flux through the surface of a 
cylinder of infinitely small radius (the axes of both cylinders 
coincide with the vortex axis). But a momentum-balance 
equation correctly constructed in any gauge furnishes the 
same law of motion for the magnetic vortex as the law found 
from the solvability condition. 

The law of motion of a vortex obtained in the present 
paper shows that a magnetic vortex, unlike the hydrody- 
namic vortex, is characterized not by one, but by two invar- 
iants. Besides the usual invariant-the number of rotations a 
magnetic moment makes on going around a vortex (the ana- 
logue of the number of circulation quanta for a vortex in 
quantum hydrodynamics)-we have an invariant deter- 
mined by the sign of the magnetic-moment component M, 
along the "difficult axis" (the axis perpendicular to the easy 
plane) near the vortex axis. Thus, the new invariant, which 
we call the polarization, can assume two values: + 1 and 
- 1. The magnitude and direction of the vortex velocity 

depend on the value of the polarization. 
The dynamics of magnetic vortices is also investigated 

in the paper recently published by Takeno and Homma.' But 
these authors modified without justification the basic equa- 
tions of motion for a spin system, as a result of which there 
arose in their system of equations in place of a law of conser- 
vation for the spontaneous-magnetic-moment component 
M, along the difficult axis a law of conservation for M :. For 
this reason, the equations of motion obtained by them for 
vortices differ from ours: their equations of motion do not 
contain the polarization. 

The rest of the paper is organized as follows. In $2 the 
solvability-condition formulation method is used to derive 
the law of motion of a magnetic vortex in a planar magnetic 
material that is homogeneous at infinity. It is shown that the 
vortex is "frozen" in the medium, and cannot move relative 
to it. In $3 this result is rederived by constructing the mo- 
mentum balance for the magnetic vortex. In $4 we derive the 
law of motion of a vortex in the presence of a helical defor- 
mation (i.e., of a spin flux) at points far from the vortex. In $5 
we derive the canonical equations of motion for a system of 
rectilinear magnetic vortices. 

92. A MAGNETIC VORTEX IN A PLANAR MAGNETIC 
MATERIAL THAT IS UNIFORM AT INFINITY 

The dynamics of a planar magnetic material is de- 
scribed by the Hamiltonian 

where M is the magnetic moment per unit volume, H is the 
magnetic field, n is the unit vector along the direction of the 
anisotropy field, and a andP are the inhomogeneous-volume 
and anisotropy constants; here a > 0 and f l> 0. 

We shall consider the two-dimensional problem, in 
which the parameters of the medium do not vary along the Z 
axis, whose direction coincides with the direction n of the 
anisotropy field and the direction of the magnetic field H, 
i.e., the easy plane coincides with the XY plane, the energy 
A? pertains to a unit length of the sample along the Z axis, 

and the integration in (1) is over the XY plane, r being a two- 
dimensional vector. 

Since the magnitude of the magnetic moment M re- 
mains constant, the magnetic moment at each point is 
uniquely determined by two parameters: m z M Z / M  and 
@ = arc tan(M,, /M, ), the angle of turn of the magnetic mo- 
ment in the easy plane. In these variables the Hamiltonian 
has the following form: 

The Landau-Lifshitz equation is equivalent to the following 
Hamilton equations for the pair of cannonically conjugate 
variables m and @: 

M dm 6 1  --=-- isa vi- 
7 dt 6m 6Vim' 

where y is the gyromagnetic ratio. 
Let us first consider a stationary vortex in a magnetic 

material that is uniform at infinity. For this case the solution 
to Eqs. (3) and (4), which we shall denote by m, and @,, 
admits of uniform precession of M with angular velocity R, 
with 

(Do (r, t)  =Qt+xcp+C, ( 5 )  

where e, = arc tan( y / x )  is the azimuthal angle in the cylin- 
drical system of coordinates whose axis coincides with the 
vortex line, tc is the circulation, equal to the number of com- 
plete turns of M in the easy plane on going around the vor- 
tex, and C is a constant. 

The quantity m,(r,t ) = m,(r) depends only on the modu- 
lus r, and is given by an equation that is obtained from (3) by 
substituting (5) into it: 

1 dm, +--) + 
I-m, 

A. 
-m, (r,-'- (V Q O )  ' )  + - r -'=O 

f l l c f 0  ' (6)  

where ro = ( ~ / / 3 ) " ~  is the radius of the vortex core, and the 
effective field 

is equal to the true magnetic field in the system rotating with 
the angular velocity R of the precession. The asmptotic val- 
ues of mo(r) are (see the Appendix): 

r+oo, m, (r) +m,=A.lpM, (8) 

r+O, m, ( r )  -+v. (9) 

The polarization v, which assumes the values + 1 and - 1, 
indicates the sign of the component of the magnetic moment 
M along the Z axis (the difficult axis) near the vortex axis. 
Vortices with polarizations v = 1 and v = - 1 belong to dif- 
ferent topological classes, since a continuous transition from 
a vortex with polarization v = + 1 to a vortex with v = - 1 
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is not possible if we require that such a transition should 
occur at a fixed value of mo at infinity and a fixed value of the 
magnitude of the magnetic moment1' M. The violation of 
any of these two conditions leads to a very large increase in 
the energy of the system (the anisotropy energy in the first 
case and the exchange energy in the second). 

Let us now show that the steady-state motion of a mag- 
netic vortex is impossible if the medium is homogenoeus, 
and the spin flux is zero, at infinity. For a steady-state vortex 
motion with velocity v we have 

We shall try to find the small corrections to mo and @, 
that arise from the vortex motion, i.e., let us represent m and 
@ in the form 

The system of equations, linearized in ml and @, as well as in 
v, has the form 

The Eqs. (12) and (13) constitute a system of inhomogeneous 
linear equations for m, and @,. In order for this system to 
possess a solution, the inhomogeneous terms (the right-hand 
sides of (12) and (1 3)) should be orthogonal to any solution of 
the corresponding system of homogeneous equations, i.e., 
the required solvability condition for the system of equations 
(12) and (13) has the following form: 

where lit(r) and & (r) are a solution to the homogeneous sys- 
tem, and the integration in (14) is over a surface S that, in 
general, consists of two parts: a surface S, that is infinitely 
far from the vortex line and the surface So of an infinitely 
thin cylinder surrounding the vortex axis, the contribution 
from which can be substantial only when the magnetization 
is singular on the vortex axis. The required solution to the 
system of homogeneous equations can be obtained by using 
the translational invariance. On account of this symmetry 
property of our problem, if mo(r) and @,(r) are a solution for 
the stationary vortex, then m,(r + d) and @,(r + d) are also a 
solution to the original system of nonlinear equations (here d 
is an arbitrary translation vector). From this it follows that 
the solution to the system of linear equations has the form 

After substituting (16) into (14) we can verify that the surface 
integrals in (14) vanish. This follows from the asymptotic 
behavior of the solutions (m,@ ) and (m,,@,] at r--tO and 
r-tm (which solutions are investigated in the Appendix). 
Finally, from the solvability condition (14) we obtain 

where e, is the unit vector along the Z axis. Because of the 
arbitrariness of the translation vector d, it follows from (17) 
that v = 0, and a vortex motion in a system that is homogen- 
eous at infinity is impossible. 

53. THE MOMENTUM BALANCE FOR THE MAGNETIC 
VORTEX 

Using the Noether theorem for classical fields (see, for 
example, Ref. 9), we can easily verify that, for the Lagran- 
gian 

M 
L = - J miav-a(p, 

Y 
v 

chosen by us, the translational invariance of the Landau- 
Lifshitz equations leads to the conservation of momentum, 
whose density is4 

The momentum flux density tensor in the reference fame 
moving with the vortex velocity v is given by 

In the absence of external forces acting on the system, the 
total momentum in the region surrounding the vortex axis 
should remain constant during the steady-state vortex mo- 
tion with velocity v; whence it follows that 

O=Pi= 1 pcdV=- I T + ~ ~ , ~ S ,  (21) 
v S 

where n is the normal to the surfaceSsurrounding the region 
in question, and consisting of two cylindrical surfaces S, 
and So of respectively large (r--+w) and small (r-0) radii. 
Using the asymptotic expressions obtained in the Appendix, 
we can easily compute the surface integrals in (21). The inte- 
gral over S ,  gives a nonzero contribution only when 
m , # 0, while the integral over So, the sign of which is deter- 
mined by the polarization v, always gives a finite contribu- 
tion, since, like the momentum density p, the last two terms 
in the expression for the momentum flux density diverge as 
r 4  like l/r. Finally, we obtain the following condition for 
momentum balance: 

The right-hand side of (22) can be called the force exerted on 
the moving vortex by the homogeneous magnetic substance. 
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It is clear that, if other forces do not act on the vortex, then 
this force should vanish, i.e., the vortex should be stationary, 
in complete agreement with the result obtained in $2 by an- 
other method. 

A comment should be made about the form of the La- 
grangian of the system: there can be some arbitrariness in- 
volved in its choice, specifically, it can, in the general case, be 
written in the following form (see Ref. 10): 

The arbitrary constant Co does not enter into the equation of 
motion of the vortex. We can, through the appropriate 
choice of this constant, remove the singularities in the ex- 
pressions for the momentum density and the momentum 
flux density on the axis of a vortex having only one of the two 
possible polarization values. Such a nonsingular momentum 
density is given in Ref. 11. The simultaneous removal of the 
singularities for oppositely polarized vortices requires a 
more complicated gauge transformation whose form de- 
pends on the configuration of the system of vortices. 

§4. MOTION OF A MAGNETIC VORTEX UNDER THE ACTION 
OF A HELICAL DEFORMATION (OF A SPIN FLUX) 

Let us now turn to the case in which the vortex is in a 
magnetic material subjected to helical deformation, as a re- 
sult of the action of which the magnetic moment rotates fair- 
ly smoothly as we move along the axis of the sample. In this 
case O and m can be represented in the form 

(D=(D0+(D*+(D1, m=m0+mf, (24) 

where O, = k-r is the angle of turn in the magnetic material 
with helical deformation in the absence of a magnetic vortex. 
Further, substituting (24) into Eqs. (3) and (4), and lineariz- 
ing them in O ', O, and m', we obtain equations that differ 

* from (12) and (13) by the replacement of O, by O ' and m, by 
m' and the appearance of terms linear in k, which we assume 
to be small (k<r; '). 

Corrections linear in k will appear in both the solvabil- 
ity condition (14) and the momentum-balance equation (22). 
The latter, in particular, will assume the following form: 

(v-mm)ro 

~ Y M  

Thus, the helical deformation leads to the appearance of 
forces acting on the vortex, as a result of which the vortex 
can move with constant velocity 

v=ayM (v+mm) k. (26) 

A similar expression is obtained from the solvability condi- 
tion for the equations for the corrections to the magnetic 
structure, corrections which arise as a result of the vortex 
motion and the helical deformation. 

As has already been noted, the helical deformation is 
connected with the flux of the spin component along the Z 
axis.3 In particular, Eq. (4) constitutes a conservation law for 
this component of the total spin. It follows from it that the 
flux density of the spin component along the Z axis in a 
system moving with the vortex velocity v has the form 

J=-ay (M2-M,Z) V(D-M,v. (27) 

From it we can easily verify that the momentum conserva- 
tion law can be represented in the following form: 

. 2nx 
P=--r,[e,X (JI,-JI,)], 

7 
(28) 

where JI, and JIo are respectively the flux densities of the 
spin component at infinity and on the vortex axis. This form 
of the law allows us to see some analogy between the force 
exerted by the spin flux on the magnetic vortex and the Mag- 
nus force exerted by the fluid flux on a vortex in hydrodyna- 
mics, though in the second case the corresponding expres- 
sion does not contain a flux J l o  near the vortex axis. 

55. THE CANONICAL EQUATIONS FOR A SYSTEM OF 
RECTILINEAR MAGNETIC VORTICES 

Let us now generalize our results for a single vortex to 
the case of a system of any number N of rectilinear magnetic 
vortices in a magnetic material that is homogenoeus at infin- 
ity. Each vortex is located in a deformation field produced by 
the remaining vortices. Everywhere, including the neighbor- 
hoods of the vortex axes (the vortex cores), this field can be 
represented in the form of a superposition of the deforma- 
tions induced by the individual vortices, i.e., in the form 

(r, is the radius vector of the j-th vortex, and x, is its circula- 
tion). In computing the deformation determining the veloc- 
ity of some i-th vortex with the aid of the formula (26), we 
should choose as k in (26) the value of V@ (r) for r+ri, dis- 
carding in (29) the term connected with the self-action, i.e., 
the term with i = j. The justification for such a procedure is 
similar to the one that is cited in the derivation of the equa- 
tions of motion of hydrodynamic vortices." As a result, we 
obtain 

vi=ayM (vi+m.) { ~ j [ e ,  X (ri-I)) ]/(I..-"I2)). (30) 
j+ i 

The individual terms in (30) represent the forces exerted on 
the vortex by the rest of the vortices; these forces determine 
not acceleration, but velocity. The equations of motion (30) 
for the system of vortices can be written in the form of Ham- 
ilton's equations. 

The procedure for deriving the Hamiltonian as a func- 
tion of the vortex coordinates is the same for magnetic vorti- 
ces' as for hydrodynamic vortices." In deriving it, we 
should proceed from the Hamiltonian (2), discarding all the 
gradients in it except VO, and setting m zm, , VO = 0. This 
assumption is valid everywhere except in small neighbor- 
hoods of the vortex axes (the vortex cores). Next, performing 
the integration, and retaining only the terms that depend on 
the vortex coordinates, we obtain 

N 

I=aM2.2n  (I-mmz) x i ~ r  ln(rollrk--&I). (31) 
i<k=l  

The equations of motion (30) can now be rewritten in the 
form of Hamilton's equations for the Hamiltonian (3 1): 
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If as the canonical variable we choose the coordinate x i ,  the 
canonical momentum conjugate to it is 

where 1 is the dimension of the system along the Z axis. (Let 
us recall that the Hamiltonian is the energy of the system per 
unit length along the Z axis.) 

#. CONCLUSION 

We have derived the equations of motion of rectilinear 
magnetic vortices for the simple planar-ferromagnet model, 
in which we neglect the dipole-dipole interactions, the an- 
isotropy in the easy plane, and the dissipation. 

The obtained equations of motion resemble in form the 
corresponding equations of motion of vortices in hydrodyn- 
amics; in particular, in the absence of spin fluxes (in ana- 
logues of mass fluxes in hydrodynamics) the vortices are 
"frozen" in the medium, and cannot move relative to it. But 
there is also an important divergence from the case of hydro- 
dynamic vortices, since the dynamics of magnetic vortices is 
determined not be one, but by two topological invariants: to 
the ordinary invariant-the circulation-is added a new in- 
variant-the polarization (the sign of the magnetic-moment 
component along the vortex axis in the vortex core). 

It follows from our analysis that the magnetic vortex 
can move relative to the medium only in the case when the 
magnetization along the difficult axis vanishes both on the 
vortex axis and at points far from the vortex; this occurs only 
in an antiferromagnet (in the absence of even weak ferromag- 
netism) in zero magnetic field. For this case the results ob- 
tained by Volovik and Dotsenko4 remain valid. 

In conclusion, let us note that the results of the present 
paper agree with the result obtained in Ref. 13, with which 
were able to get acquainted only after we had submitted our 
paper for publication. 

The authors are grateful to G. E. Volovik for useful 
discussions. 

APPENDIX 

To investigate the asymptotic behavior of the magnetic 
moment of a stationary vortex in a homogeneous ferromag- 
net, let us analyze the equation (6) for m,(r). To find the 
asymptotic form for r + ~ ,  we can discard all the gradient 
terms in Eq. (6), after which we obtain (for H $0) 

r+w, mo (r) =m, (1+x2r02/f). (A. 1 

For H = 0 the solution to Eq. (6) for r-+m is 

mo=const (r/ro) -'"exp (-r/ro) . ( A 4  
For r-+O, it is convenient to make the change of variable 
m, = cosOo in Eq. (6); 0, then satisfies the following linear 
equation: 

near the vortex axis 

O o = l ~ ( l - m , )  I x v 2  (r/rO) I X I  for v=+l ,  

00=n-~a/2(l+m,) 'x1/2(r/ro) I X 1  for v=-I, (A) 

and consequently 
mo=v-av (I-vm,) I"' (r/ro) 2 1 K 1 1  (A.4) 

where a is some numerical factor of the order of unity. 
To find the corrections, due to the motion, to the struc- 

ture of the vortex, let us substitute the asymptotic forms of 
m0 and Go, (A.l), (A.4) and ( 5 ) ,  into E ~ S ;  (12) and (13); we 
then obtain the following linearized system of equations: 

For r 4 :  
Ami r 

-m, r0-'- - 
2a (1-vm,) I X 1  (rho) 'Ix1 f 

2xv dm, 
2a (1-vm,) I"' (r/ro)21KIA@I - -- 

r2 drp 

where e, and e, are the unit vectors of the cylindrical system 
of coordinates. The solution to this system is (neglecting the 
small terms) 

1 
QI=vve,r - 

ro2yPM ' 
(A.7) 

For r-+ CQ 

- 4x2mm2 am, 2xm, dO, x 1 
$ = - -  

ro(l-m,2)2(r/ro)3 dr t drp r r : y p ~  '%I 

2xm, dm, 4n2mm2 dO, (A.8) 
(1-m,2)AOI---+-- 

1.2 da) ro(r/ro)3 dr -- - - 

the solution being 

x 1 2x2m, ln(r/ro) 1 m -- --ve,, (Dl=---- I - ve,. (A.lO) 
r YBM I-mm2 r ypM 

The cdirections G ' and m' arising from the helical de- 
formation can be determined in exactly the same way: 

for r 4  

ml=O1 O'=-ke,r; (A. 1 1) 

for r-t CQ 

2m-x rn'=- 4x2m, In (r/ro) 
rO2k%, Of=-- r,2ke,. (A. 12) 

r 1-mm2 r 

"The magnetic vortices being considered by us correspond to the elements 
of the relative homotopy group d ( S 2 , S  I )  with degree of mapping 4 and 
- 4, i.e., those elements for which the points of a plane intersecting a 

vortex are mapped into the upper or lower half of the sphere S ', which is 
thedegeneracy space for the order parameter in the vortex cores (this was 
pointed out to us by G. E. Volovik). 
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