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Plane domain walls in a ferromagnet with exchange anisotropy are investigated. The one-dimen- 
sional discrete problem of minimization of the classical energy functional is solved rigorously. A 
linear combination of spin complexes, which corresponds to a classical domain wall, is found. 
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The thickness of plane domain walls in strongly aniso- 
tropic ferromagnets is comparable with the lattice constant, 
and in this case the continual approximation, usually em- 
ployed in classical theory, turns out to be quite crude.' It 
follows from general configurations that allowance for the 
discrete character of the lattice should lead primarily to a 
finite domain-wall energy density in ferromagnets with large 
anisotropy (the continual theory gives an unlimited growth 
of the energy density in this limit). Discrete computer calcu- 
lation points also to other peculiarities that vanish on going 
to the continuous description. Thus, a numerical investiga- 
tion was carried out in Ref. 2 of the dependence of the energy 
on the position of the wall relative to the crystal lattice. To 
elucidate such peculiarities, it is of interest to solve exactly 
the domain wall problem in a realistic model of the ferro- 
magnet. It will be shown below that this problem can be 
completely solved in a uniaxial ferromagnet at any value of 
the exchange-anisotropy constant. Since we are interested 
also in the quantum aspects of the problem, we write for the 
indicated model the Hamiltonian 

m,b - 

Here J > 0 and g )  1 is the exchange-anisotropy constant. S ", 
is the operator of the a-th spin component in the m-th site, 
and S is the vector joining the nearest neighbors. 

The model (1) is well known in magnetism theory and a 
number of magnets described by it are also known.3 In a 
particular case it is possible to obtain from (1) the isotropic 
Heisenberg model (g = I), the Ising model (g-t m ), and also 
the XYmodel (g4) .  The model (1) is one of the two simplest 
models of a uniaxial ferromagnet (the other, customarily em- 
ployed in the classical theory of domain walls, is the model 
with single-ion anisotropy,' which excludes, however, the 
spin s = 1/2 in the quantum treatment). We note also that 
the problem of the domain wall in the Ising model is solved 
trivially, and this facilitates the analysis of the solution at 
g< co. 

In the quantum case one uses in the theory of the spec- 
trum of the system (1) the fact that the z-th projection of the 
total spin is a conserved quantity and that the stationary 
states can classified in terms of the eigenvalue n of the opera- 
tor S" . The spectrum of the one-dimensional system (1) was 
investigated completely at s = 1/2 in a number of studies. In 
particular, for an anisotropic chain, explicit expressions 

were obtained for the energy " and for the wave functions of 
the bound state of n magnons in the case of periodic bound- 
ary conditions: as well as in the case of a semibounded 
chain5 These states are ofinterest also as a possible quantum 
analog of solitons of the Landau-Lifshitz e q ~ a t i o n . ~  In such 
an interpretation a domain wall corresponds to an extremely 
heavy ~omplex .~  Indeed, the mean value of Smz in this state 
is not uniformly distributed along the chain and is described 
in the case of a semibounded system by a certain domain 
wall. We shall study this distribution and ascertain how ac- 
curately the quantum results for the energy and for Smz 
agree with the corresponding classical results. As for the 
third characteristic of the wall, namely the mean value of 
Sm " , the answer is quite simple: in a spin complex, just as in 
any system with fixed n, we have S,,, " =O, whereas in a clas- 
sical wall the distribution of S, " is not uniform. It becomes 
clear thus that by confining ourselves to consideration of a 
state with definite n we cannot achieve full agreement of the 
quantum and classical results. On the other hand, Pok- 
rovskii and Khokhlachev7 have constructed for an infinite 
chain a stationary state in which the energies and the mean 
values of S, ' and Smx are described by a solution of the 
equation of the classical theory, i.e., if the classical problem 
had been solved, it is possible to construct a corresponding 
stationary state of the quantum system. From the consider- 
ations given above it follows that this state is not the limit of 
the stationary state of a semibounded chain. 

Analysis of this quite not ordinary situation has shown 
that actually there exists an entire class of states (a linear 
combination of spin complexes of a semibounded chain) in 
which the distribution of the mean S,' is described by do- 
main walls. These states (except for one-a spin complex) are 
stationary only in the limit No--PIX, where No is the average 
number of the bound magnons. The spin complex is station- 
ary at all N,. Among the indicated states there exists one 
corresponding to a classical wall. We shall find its explicit 
form. This state turns out to be a Gaussian combination of 
spin complexes. An exact connection of the complexes with 
the classical domain wall has thus been established within 
the framework of the model (1). We shall show that this state 
coincides with the one that can be obtained from the results 
of Ref. 7 and from the solution of the classical problem (4). 
We have observed in the present study also an analogy 
between the investigated domain wall and a Fermi step in an 
ideal gas. It is curious that a classical wall corresponds to a 
Fermi step of a gas within the framework of a grand canonni- 
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cal ensemble, while the wall of a spin complex corresponds 
to a Fermi step of a gas within the framework of a canonical 
ensemble. 

Having an explicit expression for the domain-wall ener- 
gy, we shall discuss at the end of the paper its contribution to 
the low-temperature thermodynamics of a one-dimensional 
magnet. 

1. CLASSICAL TREATMENT 

As is customary in classical theory,' we replace in ( 1 )  
the spin operators by classical vectors of lengths: 

SmZ=s cos Om, SmX=s sin 0, cos cp,, Smv=s sin 0, sin cp,. 

For the energy functional of the considered model we obtain 
in this case the expression 

1 1 
E(0, Ip) = lS2z [ i - sin 0, sin Om+* cos (gm-qm+b) 

m.6 

1 - cos 0, cos Om+* . (2) 

In a study of plane domain walls it suffices to consider 
the case qm = const. The 0 ,  distribution that minimizes 
E ( 0  j should satisfy the equation 6E /SOm = 0, which takes 
for the model (2) the form 

g sin 0. cos Om+,= cos 0 . z  sin 0.+.. ( 3 )  
8 b 

We consider first the one-dimensional case: 6 = + 1 .  
To solve the nonlinear difference equation we change to a 
new variable fm , where tanh fm = cos 0, .  From (3) we ob- 
tain after simple transformations an equation for fm : 

This equation is valid if we stipulate for any m satisfaction of 

The solution of such equation has the simple form 
fm = (m + m,)u, where m, is an arbitrary constant. With 
the aid of the solution obtained for fm we can calculate the 
energy ED,. We write the final result in the form 

Smz=s th (m+mo) o, SmX=s [ch (mfm,)  a] -I, 

E,,=2s2J th a. (4) 

The solution (4) describes a domain wall in the one-di- 
mensional case (Sm ' + + s as m - +  + co ). In the Ising model 
(a+ co )we have E ,, = Us2 < CXJ ; this result can be obtained 
also by direct calculation. In the limit of weak exchange an- 
isotropy ( g z  1 + 27' or u = 274 1 )  the energy functional 
takes the form 

Eq. (3) goes over into the equation 

0"-2q2 sin 20=0, 

whose solution is well known': 

cos 0=th (2q5), E=4Js2q. 

The last expressions can be obtained at u = 274 1 also from 
the general result (4). 

We proceed to consider plane domain walls in multidi- 
mensional ferromagnets. For the sake of argument we con- 
fine ourselves to cubic structure, where each lattice site is 
defined by the Cartesian coordinates mi of the radius-vector 
m. We study first a plane wall with the normal along a diag- 
onal of the cube (wall A ). In this case 0, depends only on the 
scalar 

where d is the dimensionality of the crystal. From (3) it is 
easy to derive the following equation for 86 : 

g sin 0E (COS Ot+,+cos 02-1) =cos 0E (sin OE+l+sin OE-l). 

This equation coincides with the one we solved in the one- 
dimensional case, so that the problem of the typed wall re- 
duces to the one-dimensional problem solved above. The dis- 
tribution of the spin density along the chosen chain of the 
crystal is given by expressions (4).  For the wall energy den- 
sity we easily obtain the result 

Here a is the lattice constant. The factor d 'I2, as follows 
from the calculations, takes into account the presence of 
neighboring chains and the increase of the area of the wall A 
compared with the area of the wall B in multidimensional 
crystals. We define the wall B as the one with the normal ( 1 ,  
0, 0). The distribution of 8,  in this wall is subject to the 
condition 

0m,m2ml=0mlrn~+im~=0mtmzma*i.  

The equation for Om, then takes the form 

g sin Om, (cos Bm,+,+cos Ow,,-1) 

=cos Bm1(sin 0,,+,+sin 0,,,,-,) - (g-1) (d-1)sin 20,,. 

It is easy to grasp that the problem of a wall in a one- 
dimensional ferromagnet with exchange and single-ion an- 
isotropy (with a definite ratio of the two anisotropy con- 
stants) reduces to the same equation. The indicated problem 
cannot be solved in the general case. In the continual approx- 
imation the equation becomes simpler, and for the energy of 
the wall B we obtain the expression 

E(B),4JS2qal-dd'/2, 

which coincides, as it should in this limit, with the energy 
E(A . The energy E(B)  can be easily calculated by a direct 
method also in the Ising model: 

E(B) =2Jsza'-d 
7 

in this limit 

In the Ising model, taking into account the different number 
of irregular bonds, it is easy to understand the difference 
between the energy densities of the two walls. From the con- 
tinuity of the solution with respect to the parameter u one 
should expect the inequality E(A ) > E(B)  to be preserved in a 
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certain range of anisotropy values, and possibly goes over 
into an equality only in the weak-anisotropy region. Thus, in 
the model considered, the energy of a plane wall depends on 
the position of the wall relative to the crystal lattice. There 
are no grounds for assuming that the considered energy dif- 
ference exists only in cubic structure, but an answer to this 
question can be obtained only by a special investigation of 
other lattices. 

2. ONE-DIMENSIONAL CASE--QUANTUM TREATMENT 

We investigate first a wall describing the distribution 
Smz in a heavy complex localized near the boundary of a 
semibounded chain. We obtained in another paper5 explicit 
expressions for the energy and wave function of a bound 
state of n magnons. These expressions can be conveniently 
written in the form 

n 

B,, , n= v.= ch (i-1) olch to, en=' / , l  th o th no. 

Here A, is a normalization constant, and 

As n+ co , the energy of the complex, as can be seen from (6), 
tends to a value (1/2)5 tanh a ,  which coincides2' with the 
energy (2) of a classical domain wall at s = 1/2. We need in 
addition to calculate ($, Ismz I@, )at larger n. Calculation 
of mean values of this type in a bound multiparticle state is a 
cumbersome problem that has so far been solved completely 
only for the case of a one-dimensional problem with a S- 
function a t t ra~t ion .~  The methods used in Ref. 9 for calcula- 
tion and the results there cannot be used in our case so that 
the calculation of the average S,' is a problem in itself. We 
write down first the easily derived relation 

where 

i- l 
- - .  

(mr t 

A simple analysis of the expression forp, (m) shows that 
at large n we havep, (m) =: 1 in the region man  andp, (m)=:O 
at m>n. We are interested in the behavior of p, (m) in the 
region n -m. Denoting n - m by f ,  we can obtain, after pro- 
longed calculations, for ng> 1 and ma> 1 : - 

Expression (8) satisfies the relationp(f ) = 1 - p(1 - f ), 
and this symmetry is due in final analysis to the invariance of 
the states of the chain to the substitution Smz+ - Smz. It 

follows from the foregoing relation that p(f ) > 1/2 at f ~ 0  
(m<n) andp(f)  < 112 at f >  0 (m > n). In the Ising model we 
obtain from (8) areal step:p(f ) = 1 (f (0) andp(f ) = O(g > 0). 
This state is also called a spin cluster. 

The classical expression forb(< ) = 4 - Sg " can be ob- 
tained from (4) by replacing m with f: 

P (t) - [exp(2o(g-m0))  +I]-'. (9) 

Comparison of the series (8) with expression (9) shows 
that it is impossible to define the constant m, in (9) so as to 
satisfyp(f ) =/I(f ). The two expressions can be shown to co- 
incide only in the region of weak anisotropy. Consequently, 
the energy of the heavy complex coincides with the energy of 
a classical wall at any value of the anisotropy, but 
($, IS, I $, ) coincides with the classical distribution of the 
z-projection of the spin only for weak anisotropy. The sub- 
stantial difference between the results for Sm " was already 
discussed in the Introduction. 

We consider next a linear combination of spin complex- 
es 

where the distribution of C") has a maximum near the site 
No and has a width An. In the general case this is a nonsta- 
tionary state. Under the condition An(N, and at times 
t((fi/J)eNo", it can be verified with the aid of the explicit 
expressions (6) that 1 @No ) is stationary, i.e., 

In the limit as No+ oo the state 1 @No ) can be regarded as 
stationary at all times, and this fact is in essence a manifesta- 
tion of the asymptotic degeneracy of the levele = E ,, of an 
infinite crystal. It is easy also to verify that ( e N 0  ISm' I@No ) 
is described by a domain wall whose type is determined by 
the coefficients C lfVo'. Since 1 eN0 ) is a linear combination of 
states with different n, in the general case Sm " is also differ- 
ent from zero. There are thus many states of the domain-wall 
type, and they are strictly stationary only in the limit as 
No+ co . 

To find the state I@No ), in which the mean energy val- 
ues S, ' and Sm " would coincide with the classical results, 
we note that the classical expression (9) for P(f) recalls in 
form the Fermi-Dirac distribution function for an ideal gas 
with an equidistant spectrum (the level spacing at the proper 
units is equal to the lattice constant, m, plays the role of the 
chemical potential, and the anisotropy constant the role of 
the reciprocal temperature). It turns out that the analogy 
with statistical mechanics of an ideal gas can be traced also in 
the quantum case. Indeed, at large n Eq. (6) leads to a simple 
expression for the probability given by the amplitude 
Bm, ... ma : 

I B m,..,,n I2=ao exp 
i 

where the constant a, does not depend on the indices mi. 
This equality expresses the fact that at large n the flipped 
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spins with small numbers n are rigidly anchored to the 
neighboring sites, and the coupling of spins with large i is 
determined by a parameter that does not depend on the num- 
ber: vi = e - ". The expression derived for IBm,.,,mn l 2  shows 
that the problems of calculating p, (m) and A, -2 coincide 
respectively in the quantum-mechanical problem with the 
problems of finding the occupation numbers p, (m) and of 
the partition function Z ,  of an ideal Fermi gas with equidis- 
tant spectrum and with fixed particle number n. The connec- 
tion is established in this case by the relations 

2o=fi=T-', A,-2=aoZ,, pn ( m )  = p ,  ( m )  . 

Using these equations we can obtain from (7) and (8) the 
partition function and the occupation numbers of the indi- 
cated system within the framework of a canonical ensemble. 
We proceed now to consider an ideal gas within the frame- 
work of a grand canonical ensemble. Although an ideal Fer- 
mi gas with equidistant spectrum (with finite level spacing) is 
not quite a pithy model of statistical physics (Eo- N 2), analy- 
sis has shown that when calculating the occupation numbers 
one can proceed in accord with certain rules. Choosing a 
suitable condition for 2 ,  p(m), we obtain the chemical po- 
tentialp = No + a and 

where a is an arbitrary constant la 1 < l/2. The difference 
between thep(m) obtained here and the result (8) within the 
framework of the canonical ensemble must be attributed to 
peculiarities of the considered ideal-gas model. 

The constructions of the grand canonical ensemble can 
by analogy be transferred to the quantum-mechanical prob- 
lem of interest to us. The state whose normalization constant 
A is connected with the partition function takes in this case 
the form 

The state I QmO ) is so constructed that 

i.e., the mean value of Sm " is described by a classical expres- 
sion. This equality can be proved also by direct calculation, 
using (8). The width of the Gaussian distribution in (10) is 
A k -0-'I2, and in the Ising model (10) reduces to a cluster of 
No flipped spins. The calculation of the mean value ofS, ' in 
the state (10) entails no difficulties in principle, and we pres- 
ent the final expression 

This result coincides with the classical result (4). It is 
easy to verify that (Qm0 ISm IQmo ) = 0, and consequently 
in this state the mean values of S ",satisfy at any m the classi- 
cal condition 

The energy of the state (10) at large No also coincides with 
ED,, so that the obtained state is a complete analog of a 
classical domain wall. It appears that state Bm,.,.mm is singled 
out for some more profound region, e.g., the uncertainty 
principle. A detailed investigation of this question is outside 
the scope of the present discussion. We note only that the 
interpretation offered here of a classical wall as a linear com- 
bination of spin complexes is reminiscent of the interpreta- 
tion of the classical spin wave as a linear combination of 
stationary states of a Hamiltonian (this combination is 
known as a coherent state''). 

We show next how to obtain the explicit form of the 
state (10) from the results of Ref. 7 and the solution of the 
classical problem (4). In the cases = 1/2 the state considered 
in Ref. 7 can be written in the form 

sin (0,/2) 
m 

where 8, is a solution of the classical-theory equation (3). 
Writing 

using the solution (4) and the asymptotic expressions for the 
amplitudes Bm,,,,mn from (6), we succeed after prolonged cal- 
culations in finding a Gaussian distribution for C kmo). 

In conclusion, we dwell briefly on the contribution of a 
domain wall to the low-temperature thermodynamics of a 
one-dimensional magnet. Although our quantum treatment 
applied only to the cases = 1/2, there are grounds (favored, 
in particular, by the results of Ref. 7) for assuming that the 
picture qualitatively described here is valid also at s > 2. In 
other words, we assume that at any s the spectrum of an open 
chain contains a degenerate (in first approximation) level of 
order N with energy ED,, and the states of this level can be 
chosen both in the form of spin complexes (fixed n) and in the 
form of linear combinations of the type (10) or of domain 
walls. In the case when all other excitations of the system (1) 
(magnons, volume complexes) lie higher, the considered lev- 
el of the wall determines completely the low-temperature 
dynamics. In particular, the specific heat takes the form 

This case is realized for a spin s = 1/2 at g > 5/3, when the 
magnon energy is E, = 1 - g-  ' cos k. At g < 5/3 the mag- 
non energy E, < EDw and c a exp( - &, /T) down to very 
small values of the anisotropy, when the volume spin com- 
plexes assume a substantial role. Such a crossover type be- 
havior was found earlier in Ref. 11 in a solution of the Yang- 
Gaudin integral equations. We emphasize here the direct 
connection between the indicated behavior and the presence 
of low-lying domain walls in the chain of spins s = 1/2. At 
s > 2 we have E, < EDw and consequently there is no region 
of the constant g where the wall could dominate in the low- 
temperature region. It appears that the magnons in these 
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chains lie lower than all the spin complexes (this can be 
proved in the Ising model, and in the general case there is a 
known solution, which confirms the foregoing, only for two- 
magnon complexes), and they determine the low-tempera- 
ture thermodynamics of an anisotropic chain. 

The author is deeply grateful to V. M. Tsukernik, A. M. 
Kosevich, and M. I. Kaganov for a discussion of the results 
of this paper. 
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