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A consistent general theory of nonlinear resonance interactions between the particles of a relativ- 
istic collisionless plasma and high-frequency waves propagating in an arbitrary direction relative 
to an external magnetic field is presented. The theory is based on a drift-kinetic description of a 
plasma and the eikonal approximation for a high-frequency field. The general integral of the 
characteristic equations of the zeroth-order approximation is found. Cherenkov resonance at the 
beats of two wave packets is treated. The permittivity tensor of a relativistic weakly-inhomogen- 
eous plasma immersed in a nonuniform magnetic field is calculated without recourse to lineariza- 
tion of the kinetic equation. 

PACS numbers: 52.40.Db, 52.35.M~~ 52.60. + h, 52.25.Mq 

Resonance interactions between particles and high-fre- 
quency waves play an important role in a variety of problems 
of plasma physics under both experimental conditions and 
conditions found in outer space.'-3 Methods of simplified 
(averaged) description of the interaction are used to one de- 
gree or another in solving this type of problem. A rather 
general theory to describe the interaction of plasma particles 
and a high-frequency wave under cyclotron resonance con- 
ditions (with Doppler shift)4 and semicyclotron resonance 
conditions5 has been developed4s5 using the Bogolyubov-Mi- 
tropol'skii m e t h ~ d . ~  However, this theory is limited to the 
case of a uniform plasma immersed in a uniform and steady 
magnetic field whose resonant particles interact with an iso- 
lated plane wave. The influence of relativistic effects that 
may be of substantial importance under resonance condi- 
tions is ignored here. 

A consistent theory based on a drift-kinetic description 
of the plasma and on the eikonal approximation for a high- 
frequency field has been previously ~onsidered.~ However, 
the theory is valid only for waves propagating quasilongitu- 
dinally relative to an external magnetic field. This corre- 
sponds to the case of particles with small cyclotron radius 
(compared with the wavlength). 

In the present article we propose a general theory to 
describe resonance interactions between the particles of a 
relativistic collisionless plasma and high-frequency fields in 
the case of waves propagating in an arbitrary direction rela- 
tive to the magnetic field (the case of a finite cyclotron radi- 
us). In this case, the high-frequency fields are considered in 
the form of a superposition of a finite number of wave pack- 
e t ~ . ~  Such waves may be excited in the plasma either by ex- 
ternal sources or as a consequence of a variety of instabilities. 
The small parameter of the drift theory is taken as the expan- 
sion parameter. The resulting zeroth-order approximation 
theory describes cyclotron-resonance interactions. In the 
first-order approximation, which is quadratic in wave ampli- 
tude, resonances are produced in which two wave packets 
participate in particular, the semicyclotron resonances pre- 
viously considered5 in a special case, and cyclotron reson- 
ances at the beats of two waves. More complicated reson- 

ances involving three, etc., wave packets are possible in the 
succeeding approximations. 

Note that, despite the fact that the effects of higher ap- 
proximations are minor, they may be of substantial impor- 
tance due to the large number of plasma particles participat- 
ing in the resonant interactions. 

In this article we obtain a drift-kinetic zeroth-and first- 
order approximation equation for the resonant particles. 
The variable part of the distribution function of the first- 
order approximation is computed and a technique for treat- 
ing the higher-order approximations is indicated. The gen- 
eral integral of the characteristic equations of the 
zeroth-order approximation is found. Motion of particles in- 
teracting in resonance with the beats of two wave packets is 
considered. The permittivity tensor is computed for a colli- 
sionless weakly-inhomogeneous plasma immersed in a non- 
uniform magnetic field for a case of a wave packet propagat- 
ing in an arbitrary three-dimensional direction. The 
standard technique for linearizing a kinetic equation is not 
used here. 

1. BASIC ASSUMPTIONS AND INITIAL EQUATIONS 

We assume that the electromagnetic fields E and B may 
be divided into two parts: slowly varying fields E,(r,t ) and 
B(r,t ) and high-frequency fields E- and B- which may be 
represented in the form 

Here E, (r,t ) and B, (r,t ) are slowly varying complex ampli- 
tudes and 8, is the fast phase (eikonal) of the s-th wave pack- 
et. If1 B- I < I B, I, the unit vectors of the drift theory7s9 may be 
introduced: 

Then the motion equations of the relativistic particle may be 
written in cylindrical coordinates in momentum space in the 
form 
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I 
dp, -= do0 

a,, -= o,+A0. 
at dt 

The expressions for a, and A, are similar to those for all with 
the coefficients ai replaced by bi and ci, respectively. These 
coefficients are 

ip,eB.e- ip,eB.e+ 
as.=eE.eI, a,. = - a,,= -- 

2mc ' 2mc ' 

where the colons denote the double scalar products of the 
dyads (tensors). 

In our problem, 

If L is the characteristic linear scale of the field inhomogene- 
ities and of the parameters of the plasma and if Tis the corre- 
sponding time scale, then in the case of a strong magnetic 
field B, the small parameter of the drift theory 

E =rJL (7) 

may be introduced, where r, is the cyclotron radius of the 
particles. If the phases 8 vary rapidly, this will mean that the 
corresponding frequencies w are high, i.e., 

Condition (8) applied to the wave packet (I), (5) breaks up 
into two conditions: 

which constitute the approximation conditions of geometric 
optics for packets propagating along a magnetic field. 

Equations (5) are valid only if the wave propagates qua- 
silongitudinally, in which case 

This corresponds to the case of a small cyclotron radius. If 
the cyclotron radius is finite, i.e., 

~ k r e  8, is'the phase of the particle cyclotron rotation in k,rc-l, 
the field B,; w, = - eB,Jm&y=f2,Jy is the relativistic cy- 

(11) 

clotron frequency: 
it is best to switch from the phases 8, to new phases rCl, by 
means of the formula 

p11.1 
v11,1=-' m0r ' mO2c2 VL 9.=6. - - k. (ez sin Bo-es cos €lo). 

On 
(12) 

and m, is the rest mass of the particle: 
Then the "high-frequency" parts of the kinetic equations (3) 

a 
e,=e2*ie3; (. . .) '= (- + v l , e lV)  (. . .). of the particle become more complicated, for example, 

at C C aLsnei(*~n*)+c.c. ,  
The fast phases of the wave pockets (1) are described by the 1GaGM - m s n < m  

(13) 

equations where q0 = O,, 

do. dr -= - O s + k , - = ~ s + - k , ( e - e i e ~ + e + e - i e o ) ~ v , + A s ,  (5) 
2 

a3:=e-'"lp0 {aJJn+a4se1q4T,n-l+agae-i'*ln+l), 
dt at (134 

(pl=arctg (kse3/k,ez) * 

where 
Jn =Jn @,) are Bessel functions, and 

o . ( r ,  t )  =-d0,/dt, k,(r ,  t )  =V0. (54 p. -- - V L  [ (k.e2) '+ (k.e3) '1 Ib. 

0 0  

are the local frequency and wave vector of the s-th packet, The high-frequency parts of the expressions a, and A. are 
and analogous to (13) with the coefficient a replaced by b and c, 

v , = - - ~ ~ + v , , l i  ,,,, k,,,=e,k,. (5b) respectively. 
The new phases rC: are described by the equations 

Equations (3) and (5) constitute what is known as a multiper- - d.9. = v.+cO, + cieei*0+c2se2'va 
iodic system9 of type dt { 

+ CL,. e r p { i ( t . . + n $ ~ ) ) +  c.c.1, (14) 
dx/dt=a ( t ,  X, 8), d0/dt=0 ( t ,  X )  +A ( t ,  X ,  0) .  (6)  ~ G S , G M  - c o S n G m  
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where 

The Vlasov kinetic equation for a relativistic plasma is best 
used in the form7 

Here the equations of the characteristics coincide with the 
kinetic equations (6) of the particle subject to the substitution 
(12); the symbol (a,b ) denotes the scalar product of the vec- 
tors a and b; the small parameter E is introduced explicitly in 
accordance with the procedure for ordering physical quanti- 
ties. 

If there are resonance relations between the frequen- 
cies, 

where Ni are certain integers, the corresponding resonant 
phase combination 

should pertain to the number of additional slow variables of 
the distribution function. It is then necessary to write in the 
braces of (1 5) the additional term (A,, af /a$,), whose explic- 
it form depends on the particular resonance. 

2. DRIFT-KINETIC EQUATION FOR RESONANT PARTICLES 
OF A COLLISIONLESS PLASMA 

According to the Bogolyubov-Mitropol'skii tech- 
n i q ~ e , ~ . ~  the smoothened quantities are defined by the for- 
mula 

zn 

f - (2.) -'"+" J . . . J d$o d$, . . . d$Mf, (17) 
0 

so that7 depends on the slow variables (including the reso- 
nance phase difference). In the general case, 

f = f + f - ,  (18) 

where the variable part f - depends on the fast phases $. 
Expanding the distribution function in powers of the 

parameters E, 

f= f0+~f t+e2 f i+  . . . , (19) 

we easily see from (15) that fo is independent of the fast 
phases: 

f O z f O  ( t ,  r, pll, PLY $ I N ) .  Po) 
Here 

is the resonant phase difference of the zeroth-order approxi- 
mation and corresponds to the resonance relations between 
the frequencies, 

The subscript "I" denotes one of the M resonating wave 
packets, and N is an arbitrary integer. 

In the first approximation in the parameter E,  equation 
(15) has the form 

The drift-kinetic equation for the distribution function fo 
follows hence after averaging over all fast phases in accor- 
dance with (17): 

The characteristics of this equation are determined by the 
smoothened kinetic equations of the particle in the zeroth- 
order approximation: 

~ P I I  - = ao+ (aSlN exp i$lN+ c.c .)  =iill, 
dt 

-- d p ~ -  bo+ 0," exp i$,,+c.c.) cri,,  
dt 

- 
E A ~ N .  

(24) 
Equations (24) have a common formal integral 

where 

I J I =  pexp dtr ~ ( t . 1  1 2 ,  z ~ = I P I , = ~ ~ I ~ ,  
to 

d ln cp  
P=cp(pL) exp igl,,'A ( t )  =-bo - - i (vl+Nao+col+Nco),  

~ P L  

f 1' 

G ( t )  = J d t ' ~  ( t ' )  exp J d t " ~  (trr) , 

dcp Q ( t )  = - bsiN*+icp ( c z l + ~ c S I N )  *. 
~ P L  

Here the function q, ( p,) satisfies the equation 

In the case of a small cyclotron radius, the function g, + p,  , 
in which case Q + 1. The quantity I =pl2/B0 constitutes 
then a "transverse invariant" which is not preserved in the 
case of a high-frequency resonant field. Equation (25) is a 
generalization of the well-known result of Canobbio," 
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which is valid in the case of a cyclotron wave propagating in 
the longitudinal direction, and may be useful in problems of 
cyclotron heating of a plasma in toroidal magnetic traps. If 
the resonance relations (21a) do not hold, i.e., if the phases 
$, are fast, averaging with respect to them is required. The 
drift-kinetic equation (23) is then entirely independent of the 
high-frequency field, in agreement with previous  result^.^ 

From Eq. (22) it follows that the variable part of the 
distribution function of the first-order approximation satis- 
fies the equation 

afiu a h  a h  
- (av -) = (a* + ( A ~ ~ - , ~ ) ,  (26) 

where a- and A ,  are periodic (nonresonant) parts of the 
functions a and A,N. Hence, it is easily found that 

Here the quantities ii are defined by formulas of the form 

The prime at the summation sign denotes that terms with 
resonant combinations of phases (and frequencies must be 
omitted, and that summation must be over all 1 < s < M and 
- w <n<oo.  

The equation for the smoothened part of the distribu- 
tion function follows from the second approximation of Eq. 
(15): 

where the resonances $, are, in general, different from the 
resonances Averaging over the fast phases, we thus ob- 
tain the drift-kinetic equation of the first approximation: 

Its explicit form depends on the particular resonance (or re- 
sonances) under consideration. 

Terms occur in this equation that are independent of the 
high-frequency fields, along with terms that are determined 
entirely by the high-frequency fields; the high-frequency 
parts contain both nonresonant and resonant terms. If the 
waves propagate in the longitudinal direction, the nonreson- 
ant terms in (29) vanish, so that if there are no resonances the 
high-frequency field does not occur in the drift-kinetic equa- 
tion of the first-order approximation. This is in agreement 
with previous conclusions7 that the averaged action of a non- 
resonant high-frequency field on a plasma is a second-order 
effect. At first glance it would seem that, according to (27), 
Eq. (29) contains the second derivatives of the distribution 
function. However, rather cumbersome computations dem- 
onstrate that terms with second derivatives drop out, and the 

characteristics of the equation coincide with the correspond- 
ing averaged kinetic equations of the particle. 

The resonances (21) are the strongest resonances, since 
they appear even in the zeroth-order approximation. If these 
resonances do not occur in the zeroth-order approximation, 
according to (27) they will not occur in any of the succeeding 
approximations. Other, weaker resonances may then ap- 
pear. It follows from (27) and (29) that resonances with the 
phase combinations 

may occur in the first-order approximation. Here the sub- 
scripts "I " and "s" denote the two resonating wave packets 
and N is an integer. If 1 = s, and if N is odd and if there are 
only plus signs in the equation, the resonant phase combina- 
tion in (30) will correspond to the previously considered 
semi-cyclotron re~onances.~ If I #s, then if there is a minus 
sign in (30) the phases of (30) will correspond to cyclotron 
resonances at the beats of the two waves. Both types of reso- 
nance are quadratic in the wave amplitude. 

By means of eq. (28) it is possible to compute the func- 
tion f ,- , which has a very cumbersome form. In the third- 
order approximation, it is then possible to find from Eq. (1 5) 
an equation for f., etc. Complex resonances with three or 
more wave packets then arise. 

3. CHERENKOV RESONANCE AT BEATS OF TWO WAVES 

Let us consider the Cherenkov resonance (N = 0) at the 
beats of a longitudinal and a transverse wave as a simple 
example of the resonances of the first-order approximation 
(30). We will assume that the transverse wave with phase $, 
is a whistler propagating at some angle to a steady magnetic 
field Po, while the longitudinal wave with phase $,, which 
travels along the magnetic field, is a Langmuir wave. Then 
the equations for the characteristics of the drift-kinetic equa- 
tion (29) (averaged kinetic equations of the resonant particle) 
have the form (at E, = 0) 

dz -- dp,, 2AkJo (p) (1-vIl2Ic2) -Vll, -= 
dt dt moyoto2 e2EiE2 sin q, (3 1) 

dpl. -=o, -- " -v,-v,=-Aw+u,, Ak. 
dt  d t  

Here 
Ao=ol-02, Ak=kl--kz, $=.9i-'z, 

It  is assumed that the velocity of the particle is much less 
than the phase velocities of the waves under consideration, 
so that the relativistic effects in equations (3 1) are negligible. 
In the classical limit, an approximate "energy" integral in 
the space of the dephasing of p may be obtained from a uni- 
form plasma from the sytem of equations (3 1). This system is 
analogous to the corresponding integral under the condi- 
tions of Cherenkov resonance with a separate Langmur 
wave2.' : 
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Here the "potential energy" is determined by the formula 

eAk l o ( p ) E i E z  
u(q)=2 (;) cos (P=Q~ cos cp, (33) 

where the potential barrier is quadratic in the wave ampli- 
tude; by contrast, in the case of Cherenkov and cyclotron 
resonances with a separate wave the potential barrier is lin- 
ear in wave amplitude. 

The quantity 

characterizes the time in which the resonant particles inter- 
act nonlinearly with beats of two wave packets. 

The motion of a charged particle may be computed by 
means of (32) and (33) using the well-known technique for the 
treatment of a nonlinear Cherenkov resonance in the field of 
a Langmuir ' 
4. PERMITTIVITY TENSOR FOR A COLLlSlONLESS 
RELATIVISTIC NON-UNIFORM PLASMA IMMERSED IN A 
NON-UNIFORM MAGNETIC FIELD 

Usually the permittivity tensor is computed by assum- 
ing that the given wave propagates without leaving some 
plane that passes through the force line of the magneitc 

This assumption in general is not justified for a non- 
uniform plasma and a non-uniform magnetic field. 

Below we give a general derivation of the permittivity 
tensor without making use of the standard procedure for 
linearizing the Vlasov kinetic equation. Bearing in mind the 
ordering (9), it follows from Maxwell's equations that the 
amplitudes of the wave packets (1) in the lowest approxima- 
tion are related as 

A h h 

Here is = I + X ,  is the permittivity tensor, I a unit tensor, 
and j, the density of the current induced by the wave 

The subscript "a" indicates the type of particle, and ( . . .) - 
denotes the alternating part of the expression. The alternat- 
ing part of the distribution function f ,  is determinee by (27). 
When integrating with respect to $o=80, the inverse trans- 
formation $, + 8, must be performed in the high-frequency 

terms of the expression forf,- in accordance with (12), since 
the high-frequency fields (1) are determined by the phases El,, 

and not by the phases $, . Thus we obtain 

Here 

In particular cases, Eqs. (37)-(39) turn into well-known ex- 
pression~.'"'~ 
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