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A theoretical analysis of the propagation of surface polaritons along the interface between two
dielectrics is carried out for the case in which the permittivity of one of the media depends
quadratically on the wave field. A method involving the superposition of the phase portraits of the
adjoining media is proposed for the solution of the problem. Several possible cases of the various
relations between the signs of the nonlinear coefficient and the permittivities of the adjoining
media are considered. The dependence of the energy flux on the effective refractive index for a
surface wave is computed for each of them. The dispersion relations for surface polaritons are
obtained for the case in which one of the adjoining media possesses a resonance permittivity. It is
shown that, when the nonlinearity is taken into account, the surface polaritons occupy some
region in the frequency-wave vector plane, one of the boundaries of which is the dispersion curve

for the linear surface polaritons.

PACS numbers: 71.36. + ¢, 73.40. — ¢, 77.20. + y

1. INTRODUCTION

The possibility of the existence at the interface between
two media of nonlinear surface waves is theoretically investi-
gated in a number of papers published in recent years.'~!!
The analyses in these papers are for both the case of TM
modes ' and the case of TE modes*~® and, in particular, for
thin films located between semi-infinite media.** The propa-
gation of nonlinear 7M waves at a plasma boundary is inves-
tigated in Refs. 7-10 for various mechanisms of the nonlin-
earity. But the dispersion relations for nonlinear surface
polaritons (NSP) propagating at the boundary between two
dielectrics were derived in the case of special anisotropic
nonlincar media,'~® for which the Maxwell equations, as
written for nonlinear media, are amenable to exact analytic
solution. In the case of an isotropic nonlinear medium a
complete analytic solution does not exist, and in Ref. 11 the
first terms of the expansion of the dispersion relation in pow-
ers of the field amplitude are found.

In the present paper we consider the problem of the
propagation of NSP at the interface between two dielectrics
in the case when one of the adjoining media possesses a linear
permittivity £, and the second medium has a permittivity
that depends quadratically on the applied optical field:

e=eota|E|% (1)
where the coefficients £, and a are assumed to be isotropic.

We propose for the solution of the problem a method
involving the superposition of the phase portraits of the ad-
joining media, which allows us to determine graphically on
the phase plane which types of surface waves can exist at the
interface between the two media in question, and in which
parameter ranges they can exist. Here each of the permittivi-
ties £, and £, may be frequency dependent, and we show that,
in a situation where one of the them is a resonance permittiv-
ity and becomes negative in some frequency region, the NSP
in the frequency-effective refractive index plane can exist in
aregion one of whose boundaries is the dispersion curve for
the linear surface polaritons. The possibilities of dispersion
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of the nonlinear susceptibility a is also taken into account. In
the case when the nonlinear medium is the resonant medi-
um, the dispersion of @ can bring about a significant reduc-
tion in the radiation energy fluxes necessary for the observa-
tion of the NSP.

2. THE WAVE EQUATIONS FOR THE NONLINEAR MEDIUM

Let us choose the system of coordinates such that the set
of Maxwell equations for a 7M wave reduces to a set of equa-
tions for the components £, and E, of the electric field and
the component H, of the magnetic field. We shall assume
that the wave propagates along the x axis. Then the solution
for the fields has a form ~exp(ik, x — iwt ), and we obtain
the following system of equations:

dE.Jdz=ik.E . +ik,Il,,
dH,|dz=ik.E.[esto (| E:|*+|E.|?)], (2)
kH, A+ kB, [eota (| Ee| 2+ | E.|?)] =0,

where k, = w/c. Let us introduce in these equations the new
variables:

X(1)=—i(la|)"Ex,

Z(v)=(la|)"E..

T=K,32,
Y(v)=(|a|)"H,y

In this case the system (2) assumes the form

X=nZ+Y, (3a)
V==X (e, +BX*+BZ?), (3b)
nY+Z (e, +pX*+pZ?) =0, (3¢c)

where n = k. /k,, B = sgn(a) all the quantities are real, and
the dot denotes differentiation with respect to 7. The system
(3) possesses the first integral

Yi=¢ (e*—C*)/2p (2n*—¢), (4)
where £ = £, + B (X? + Z?), and C is a constant of integra-

tion, that, for the trajectories passing through the origin, is
equal to £, With the aid of (4), we can immediately write out
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the dispersion relation® for the surface waves:
n'=[2¢e,— (e, Feo) ] 81281/[ (3e,—¢,) 312_512 (eitel)], (5)

where ¢,, the permittivity of the nonlinear medium at the
interface, depends on the fields at the boundary. But this
formula does not solve the problem as a whole, since, to
determine the fields at the boundary in each particular case,
we must carry out numerical computations. Furthermore,
the quantity that can be prescribed in experiment is not the
field at the boundary, but the integrated energy flux .S in the
surface wave, and the dispersion relation into which S enters
is the more convenient one. Therefore, we carry out the anal-
ysis of the NSP, proceeding directly from the equations (3).

The equations (3) constitute a system of two differential
equations, given the additional relation (3c) and they can be
analyzed on the phase plane of any pair of the variables X, Y,
and Z.'>"'5 For our purposes, however, it is convenient to
choose the variables X and Y, since they are proportional to
the tangential components of the fields, and therefore we
can, when considering layered media, match the solution
trajectories for the various media on one and the same phase
plane so as to obtain a complete continuous trajectory. Such
a superposition of phase portraits turns out to be especially
convenient in the investigation of surface waves in layered
media with several interfaces.

Solving the last of the equations (3) for Z, and substitut-
ing the resulting function Z = Z (X, Y ) into Eqgs. (3a) and (3b),
we obtain a system of two independent equations for the
variables X and Y. Here it is necessary to consider the follow-
ing cases separately:

1. The parameters £, and a have the same sign, i.e.,
£oa > 0. The discriminant

Q=["/s((eo/B) +X*)] "+ (nY/2)*
of Eq. (3a) in this case is positive, and (3c) has one real solu-
tion:

Z(X, Y)=(nY/24+T0) "+ (n¥/2—TQ) ™. (6)
The function (6) is single-valued, and the system (3) has a
unique phase portrait in the plane of the variable X and Y.

FIG. 1. Phase trajectories of nonlinear surface waves.
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2. The parameters £, and a have different signs: £,a < 0.
In this case the discriminant Q is negative in some region of
the (X, Y ) plane within the limits of the dotted lines in Figs. 1b
and 1d (in each figure we show only the part of the line locat-
ed in one of the quadrants), and Eq. (3¢) in this region has
three real roots, which it is convenient to write in the trigon-
ometric form:
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The qualitative analysis of the system (3) should be carried
out after the substitution of each of the solutions (7) into the
system. Thus, there exist three phase portraits of the system
(3) in the case £, <0, a transition from one phase portrait to
another being possible during the motion along the trajector-
ies on the Q = 0 line.'®'*!5 In the present paper, however,
we shall limit ourselves to the considerations of the solutions
that do not go outside the limits of one phase portrait: To the
solutions in the form of surface waves correspond phase tra-
jectories that begin and end at the coordinate origin, and
below we shall consider only such trajectories. This condi-
tion is fulfilled by the root Z, with the plus sign in (7a). The
parameter @ is assumed to be positive.

3. PHASE TRAJECTORIES OF THE SURFACE WAVES

Let us consider the possible types of phase portraits cor-
responding to the solutions in the form of surface waves as
functions of the parameters of the layered system. Here we
shall consider straight away the trajectories that arise as a
result of the superposition of the phase portraits of the linear
and nonlinear media. The equations for the linear medium
are obtained from (3) by setting 8 = 0 in them and replacing
€, by the permittivity &, of the linear medium. For n?> ¢,
these equations have a solution in the form of an exponential
function Y = 4 exp( + ¥, 7), where ¥, = (n? — ¢,)!/?and 4 is
a constant that can be determined from the boundary condi-
tions. The phase trajectory of interest to us is given by the
formula

X=-4_>(yl/al)Y. (8)
and is reprsented in all the cases in Fig. 1 in the form of a
straight line passing through the coordinate origin. The di-
rection of the trajectory in a given quadrant depends on the
sign of ¢,.

For the nonlinear medium, the shape of the phase tra-
jectory depends on two parameters: £, and £3. It is assumed
that n2 > &,. Let us consider various particular cases:

1. Let £,>0, @ >0, and ¢, < 0. The phase trajectory for
this case is shown in Fig. 1a. The complete trajectory of the
nonlinear solution, that goes out of the coordinate origin, is
an eightshaped horizontal figure that is symmetrical about
the X and Y axes. The figure shows half of this trajectory.
The continuous line depicts the surface polariton’s trajec-
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tory obtained as a result of the superposition of the linear and
nonlinear trajectories. At the point A (7 = 0), which corre-
sponds to the interface, there occurs a transition from the
nonlinear to the linear medium, and, as can be seen from the
figure, the magnetic field for this solution attains its maxi-
mum at the boundary between the media.

Let us compute the parameter values at which a surface
wave of the type in question exists. The asymptotic behavior
of the nonlinear solution near the coordinate origin has the
form Y~exp( + y7), where ¥ = (n> — &,)"/? the variables X
and Y arelinearly related (X = — yY /¢,) and the slope of the
trajectory is equal to — y/¢,. A surface wave can exist only
in the case when the slope of the linear trajectory is smaller
than that of the nonlinear trajectory at small X, Y values, i.e.,
when |y, /€,| < |y/&,|. It follows from this inequality that the
permittivities should satisfy the condition ¢, < — £, and that
the effective refractive index for the surface wave should be
greater than the value n, = [g,£,/(€, + £,)]"/? correspond-
ing to a linear surface polariton: n> n, >¢£,'/2. When the
slopes are nearly equal, the small-amplitude solutions de-
generate into linear solutions. Thus, surface waves of the
type in question can be obtained from ordinary linear surface
polaritons by increasing the wave amplitude.

The energy flux in a surface wave can be computed from
the formula

§=—[zvar, 9)
which gives a dimensionless value for the flux. In order to
obtain the dimensional energy flux, we must multiply S by
the coefficient ¢/87|a|k,. To find the magnitude of the ener-
gy for each n, we compute numerically, using (3) and (7), the
dependence of Z and Y on 7, and perform the integration in
(9). Figure 2a shows the effective refractive index (n) depen-
dence of S' thus obtained for £, = 2.25 and several values of
£,. It can be seen that, as n increases, the energy flux in-
creases up to some limiting value and then decreases to zero.
This is due to the fact that, in a medium with negative per-
mittivity, the energy flux and the wave vector have opposite
directions, and this gives rise to the inverse dependence of
the energy flux on the effective refractive index » in some
region of n values. The energy density in the region around
the boundary increases monotonically with increasing n.

A negative permittivity can be realized at frequencies
close to resonance frequencies. Let the frequency depen-
dence of the permittivity of the linear medium have the form

e(8)=e.tp/(1-8%). (10)
where £ = w/w, is the frequency reduced by the resonance
frequency, p is the “oscillator strength,” and ¢ is the con-
tribution from the other resonances to the permittivity. The
longitudinal frequency in this representation is equal to £,
=(1+4p/£_)"?, and the surface frequency &g

=[1+ p/le., +&o)]'"? under the condition that the per-
mittivity of the neighboring medium is equal to &,. Since, as
we have seen, the NSP in the case of negative ¢, exist in some
interval of n values, it is clear that these polaritons will occu-
py in the (£,n) plane a band lying to the right of the dispersion
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curve for the linear surface polaritons (the hatched region in
Fig. 3a). To each point in this band corresponds a definite
energy flux.

2. Now lete, <0, >0, and ¢, > 0. The phase trajectory
is shown in Fig. 1b. The trajectory of the nonlinear solution
in the present case turns out to be open. It terminates on the
Q = 0 line, which is represented in the figure by the broken
lines. Solving the equation Q = 0 together with (4), we find
the coordinates of the point B and then the greatest possible
slope of the linear trajectory:

Y, /e, <[(2e.—3e )/ (3e . *—e’)]", (11)
where
P n . €0
ac=n2[1—-2005( 3°+—3)] sing , = o

In the present case the surface waves exist in a bounded
range of variation of n. The upper limit for n, which we de-
note by n, can be found numerically from the relation (11).
The lower bound is given by the inequality y,/¢€, > |¥/&|,
which can be satisfied only when ¢, < — £, and whose solu-
tion is the inequality 7 > n, > £, '/%. Figure 2b shows the n
dependence of the energy flux, as computed from the for-
mula (9), for £, = 2.25 and several values of €,. The curves
have a maximum in the interval n, <n < n_. Notice that in
the present case the nonlinear equations (3) allow the con-
tinuation of the trajectory beyond the point B on another
sheet of the nonlinear phase portrait, which is indicated by
dotsin Fig. 1b.'*!* A waveguide channel is then formed near
the surface, which requires an increase in the wave power.
But, as calculations show, the effective refractive index de-
creases from the value n, as the energy flux increases, so that
two values of S will correspond to one 7 value, and the wave
with the lower energy flux value should be realized.
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FIG. 2. Dependence of the energy flux of a surface wave on the effective
refractive index in four different cases. For the medium with the positive
permittivity (¢, or £,) we chose the value £ = 2.25. The values of the per-
mittivity of the adjoining medium are indicated above the curves.
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Let the permittivity of the nonlinear medium in the
present case be frequency dependent: £, = £(£ ). The nonlin-
ear susceptibility a does not enter directly into the equations
(3), and we can for the present neglect its dispersion. It is easy
to see that, in the plane (£,n), the NSP of the type in question
also occupy a band lying to the right of the dispersion branch
for the linear surface polaritons, but that this band is nar-
rower than in the preceding case. Thus, for positive nonlin-
earity (the cases 1 and 2), the effective refractive index for the
NSP is always greater than the value n, corresponding to the
linear surface polaritons, irrespective of which of the media
is nonlinear.

3. Let us now turn to the case £, <0, @ <0, and £, > 0.
The phase trajectory is shown in Fig. 1c. The complete tra-
jectory of the nonlinear solution in the present case is also
open, and goes out to infinity; therefore, the surface-wave
amplitude determined by the coordinates of the point 4 can
also increase without restriction as n — ¢, /2. For this type
of surface wave to exist, the inequality ¥, /€, > |¥/€,|, which
has a solution for all £, > 0:

a'l/' <n<ng for 0<81<"80,
, (12)
g <n<ew  for & >—¢o,
must be satisfied. Figure 2c shows for the present case the n
dependence of the energy flux computed from the formula
(9). As was to be expected, the energy flux is equal to zero
when 1 = n,, and increases without restriction as n — ¢, /2.
Of special interest is the situation in which ¢, > — g,. For
such a relation between the permittivities, surface waves do
not exist in the linear case, and NSP can exist only when the
energy flux exceeds some finite value (the curves for
go= — 2.1 and g, = — 1.45). The minimum energy flux is
realized at n — oo.

We shall assume that the permittivity g, of the nonlin-
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FIG. 3. Admissible regions {hatched) for the dispersion curves of the non-
linear surface polaritons. The medium with the negative permittivity was
chosen as the resonant medium. The continuous line represents the dis-
persion curve of the linear surface polaritons. The computations were
performed with the parameters £, =4, p = 0.1, and £ = w/w,,.
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ear medium has a resonance character, and that its frequen-
cy dependence is given by the formula (10). Then in the plane
(&,n) the NSP occupy a triangular region lying to the left of
the dispersion curve for the linear surface polaritons and also
the band lying between the longitudinal £, and surface £
frequencies, in which surface waves do not, in the linear case,
exist at all. Inside this band, however, surface polaritons can
exist only at finite energy flux values, and not beginning with
the zero value, as obtains in all the remaining cases.

Thus far, we have assumed that @ = const in the case
when £, is frequency dependent. In point of fact this is not so,
and the nonlinear susceptibility a also exhibits dispersion.
What changes will occur in our results if we take this fact
into account? Since only the sign of the coefficient a, and not
its magnitude, enters into the basic equations (3), for o that
does not change sign in the frequency region where £, <0,
the analysis for our dimensionless quantities remains un-
changed. But if because of dispersion the coefficient a
changes sign at some frequency in the frequency region
where £, < 0, then a transition from the case 2 to the case 3
will occur at this frequency. Notice, however, that the mag-
nitude ¢S /87| |k, which depends on the magnitude of @, of
the actual energy flux will change at each point of the
hatched regions in Figs. 3b and 3c. Because of the resonance
character of the dependence (¢ ), this circumstance can sig-
nificantly lower the energy flux values necessary for the ob-
servation of NSP. Notice also that, since the quantity a en-
ters into the expression for the energy flux simply as a factor
in the denominator, we can, by comparing the theoretical
and experimental frequency dependence of the energy flux,
obtain the o dispersion at frequencies close to the resonance
frequency.

4. Now let£,> 0, @ <0, and g, <0. The phase trajectory
is shown in Fig. 1d, and is a symmetrical replication of the
trajectory shown in Fig. 1b. The slope of the linear trajectory
here is also bounded from both sides. The lower bound is
determined by the inequality |y, /¢, | > ¥/€,, which has solu-
tions for any £, <0:

s
80'<n’<n| for el<—'803

(13)

1
£, <n<<oo for g,>—g,.

We find an additional limitation on the range of variation of
n from the following inequality, the analogue of (11):

—,/e,>[(2e0—3¢ . )/ (3e *~es*)]"™, (14)
where £, is given by the formula (11a). The case £, > — £, is
excluded by the inequality (14), and therefore the NSP can
exist only when £, < — g,,. The effective refractive index can
then vary within the limits n. <n <n,, where n_ can be
found numerically from (14). Figure 2d shows the n depen-
dence of the energy flux for this case when £, = — 3.05,
—3.45, and — 4.25. The energy flux increases as n de-
creases from the value n = n,, and the curves terminate ab-
ruptly at n = n_, when the point 4 merges with the point Bin
Fig. 1d. In this situation the nonlinear trajectory can be con-
tinued on the other sheet of the nonlinear phase portrait de-
termined by the root Z, in (7), which is illustrated in Fig. 1d
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by the dotted curve. But as the energy flux increases, the
quantity » will decrease, starting from » = n_, so that the
two energy flux values will correspond to one effective re-
fractive index. Since those branches of the curves which start
from linear surface waves are stable in the case of small am-
plitudes, the NSP having, for a given n, the higher S value
should break away and form a lower branch.

If we assume that the frequency dependence of ¢, has
the resonance character (10), then, in the plane (§,n), the giv-
en type of NSP occupies a region lying to the left of the
dispersion curve for the linear surface polaritons, which is
illustrated by the hatched region in Fig. 3d. Thus, for nega-
tive nonlinearity (the cases 3 and 4), irrespective of which of
the media is nonlinear, as the energy flux increases, the effec-
tive refractive index for the NSP decreases, starting from the
value n, corresponding to the linear surface polaritons.

5. Let us now consider the case in which all the param-
eters £y, @, and ¢, are positive. The phase trajectory of the
surface wave terminates in the fourth and first quadrants
(the broken lines in Fig. 1a). There occurs a transition to the
linear trajectory at the point A'. The magnetic field attains
its maximum in the nonlinear medium, and not at the inter-
face between the two media. In this sense, this wave is similar
to the surface TE wave considered in Ref. 2. Such a self-
focused solution is possible only if £, > £,, and the resonance
conditions for the permittivities are not required here. This
wave can exist only when the energy flux exceeds some
threshold value (Fig. 4), and therefore it does not have an
analogue in the linear optics of surface waves.

Let us note that we do not cover all the possible cases in
the present paper. In particular, NSP that go over from one
sheet of the phase portrait of the nonlinear equations (3) to
another'® are possible in the case when &, and ¢, have the
same sign. The special type of solution that the nonlinear
equations possess in this situation requires a separate analy-
sis.

4. SMALL-AMPLITUDE EXPANSIONS

The first four types of NSP considered above develop
from the linear surface polaritons as the wave amplitude in-
creases, and, for them, it is convenient, in computing the
energy flux, to use the small-amplitude expansions. Since, as
we have seen, the NSP exist in a finite range of variation of n,
the curves in Fig. 2 can be described with sufficient accuracy
by a finite expansion. To reproduce the curves in Fig. 2 with
a high accuracy it is sufficient to limit ourselves in the expan-
sions of the nonlinear equations to terms of third order in the
amplitude when determining the energy flux (only terms of
odd order enter into the expansions), and to find the field
amplitude at the boundary with the same degree of accuracy
we must expand the phase trajectories up to terms of fifth
order in the amplitude.

The solution of the cubic equation for small X and Y up

to terms of fifth order has the form
J 5

Z=—2 Y+p—
€o

g

4" X'y — ngX‘Y.
50 80

(15)
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FIG. 4. Dependence of the energy flux of a surface wave on the effective
refractive index in the case when £, = 2.25, ¢, = 2.5, and @ > 0.

Substituting this solution into the system of equations (3a)
and (3b), we obtain the following system with the same de-
gree of accuracy:

2 2
=—-—Y—Y+p Y3+;3 _ Xy
12
6 & 2
_an Ys_i'z—xzw— ~_xy, (16a)
€0 €o €0
n? nt
Y=—e X—pX'—f — XY*+2 —— XY* Y?,
-7} €o
(16b)

The phase trajectories of those solutions to this system
which pass through the origin can be represented in the form
of two expansions: as an X dependence of Y:

y—m 2y B xey TV o (17)
Y 4y° 32¢&,Y
where
f=2n*—g,, v=4n‘—12n’e,teo%,

or in the form of a ¥ dependence of X:

2 2
XL BP . fu
32e,"y?

€ beo'y
where u = 28n* — 36n%¢, + 7¢,°. The signs of the expansion
are correct for the same quadrants in which we carried out
the analysis of the phase trajectories in Fig. 1. Substituting
(17) and (18) into Egs. (16a) and (16b) respectively, and limit-
ing ourselves now to the cubic terms, we obtain two ordinary
differential equations with one variable:

(18)

1

=1 X—Bf(2n*+e0) X*/4eoy’, (19a)
=Y —Bf(3e,—2n%) Y*/4es’y. (19b)

The solutions to these equations can also be found in the
form of expansions. But to find the energy flux in a wave we
can proceed somewhat differently. Let us go over in the for-
mula (9) from integration over 7 to integration over the vari-
able Y. Then

_ J- A Y

where Y, is the value of Y at the boundary and the first term
in (20) is the already integrated energy flux in the linear me-
dium. After substituting into (20) ¥ from (19b) and Z from

(20)

28171
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the formula (15) with the variable X expressed in terms of Y
with the aid of (18), we can easily perform the integration in
(20), and for the energy flux we obtain the formula
L Bl (B =Ter)

1
S=_r'L—( 1 +—") YO + 3, 4
2 \egYy &Y 161°e,

(21)

The field strength Y, at the boundary is the coordinate of the
point 4 in Fig. 1, and it is found as the intersection of the
straight line X = — (y,/€,)Y with the phase trajectory (18):

y,: = 2o { 1 —[ g e (L +L1.)]'/2 } .
u Y \ee gy
The formula (22) gives a positive value for Y in the regions
of existence qf the NSP. Let G = (y/g, + 7,/€,), so that
G = Ois the dispersion relation for the linear surface waves.
Then, substituting (22) into (21), we obtain the expansion of
the energy flux in powers of the quantity G:

)G+[3nso‘ (eou
o \e,

(22)

S = ————ZBnYEO <—1—+ ! + 1617.27) G*.
f : 5171 €0

(23)
The formula (23) is valid in all the four cases of surface waves
considered above, and it reproduces all the characteristics of
the curves shown in Fig. 2. Therefore, it can be used [with
allowance for the limitations (11)] to carry out the calcula-
tions when making a comparison with the experimental
data.

5. CONCLUSIONS

We have considered here the influence of the wave in-
tensity in the nonlinear medium on the dispersion character-
istics of the surface polaritons. As we have seen, the energy
flux, the frequency, and the effective refractive index turn
out to be connected by different relations in the cases of the
various relations between the signs of the permittivities and
the nonlinear susceptibility, and a separate analysis is re-
quired in each specific case. Of greatest interest in connec-
tion with the experimental investigation of NSP are the cases
2) and 3), since not only the permittivity, but also the nonlin-
ear susceptibility @, exhibits dispersion in the vicinity of the
resonance lines, and the extent of the dispersion allows us to
observe the NSP-induced effects at low radiation powers. In
particular, the measurement of the frequency dependence of
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the energy flux and the comparison of it with the theoretical
curves would allow us to measure thereby the a dispersion in
the frequency region of the longitudinal-transverse splitting,
which it is, as is well known, quite difficult to do by other
methods. Chen and Carter'S have measured with the aid of
NSP the nonlinear susceptibility in the opposite situation,
i.e., in the case when the linear medium has the negative
permittivity. Let us also note that we can artificially increase
the nonlinear cubic susceptibility & by many orders of mag-
nitude in layered media.'” This opens up the possibility of
significantly reducing the energy fluxes necessary for the
manifestation of nonlinearity in the dispersion characteris-
tics of surface waves and, consequently, of their wide use
both for measurement purposes and in integral-optics de-
vices.
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